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Abstract

We introduce the technique of adaptive discretization to design an efficient model-
based episodic reinforcement learning algorithm in large (potentially continuous)
state-action spaces. Our algorithm is based on optimistic one-step value iteration
extended to maintain an adaptive discretization of the space. From a theoretical
perspective we provide worst-case regret bounds for our algorithm which are
competitive compared to the state-of-the-art model-based algorithms. Moreover,
our bounds are obtained via a modular proof technique which can potentially
extend to incorporate additional structure on the problem.
From an implementation standpoint, our algorithm has much lower storage and
computational requirements due to maintaining a more efficient partition of the state
and action spaces. We illustrate this via experiments on several canonical control
problems, which shows that our algorithm empirically performs significantly better
than fixed discretization in terms of both faster convergence and lower memory
usage. Interestingly, we observe empirically that while fixed discretization model-
based algorithms vastly outperform their model-free counterparts, the two achieve
comparable performance with adaptive discretization. 1

1 Introduction

Reinforcement learning (RL) is a paradigm modeling an agent’s interactions with an unknown
environment with the goal of maximizing their cumulative reward throughout the trajectory [43]. In
online settings the dynamics of the system are unknown and the agent must learn the optimal policy
only through interacting with the environment. This requires the agent to navigate the exploration
exploitation trade-off, between exploring unseen parts of the system and exploiting historical high-
reward decisions. Most algorithms for learning the optimal policy in these online settings can be
classified as either model-free or model-based. Model-free algorithms construct estimates for the
Q-function of the optimal policy, the expected sum of rewards obtained from playing a specific action
and following the optimal policy thereafter, and create upper-confidence bounds on this quantity
[38, 16]. In contrast, model-based algorithms instead estimate unknown system parameters, namely
the average reward function and the dynamics of the system, and use this to learn the optimal policy
based on full or one-step planning [5, 13].

1The code for the experiments are available at https://github.com/seanrsinclair/
AdaptiveQLearning. A full report is available at https://arxiv.org/abs/2007.00717.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/seanrsinclair/AdaptiveQLearning
https://github.com/seanrsinclair/AdaptiveQLearning
https://arxiv.org/abs/2007.00717


Algorithm Regret Time Complexity Space Complexity

ADAMB (Alg. 1) (dS > 2) H1+ 1
d+1K

1− 1
d+dS HK

1+
dS
d+dS HK

(dS ≤ 2) H1+ 1
d+1K

1− 1
d+dS+2 HK

1+
dS

d+dS+2 HK
1− 2

d+dS+2

ADAPTIVE Q-LEARNING [38] H5/2K1− 1
d+2 HK logd(K) HK1− 2

d+2

KERNEL UCBVI [11] H3 K1− 1
2d+1 HAK2 HK

NET-BASED Q-LEARNING [42] H5/2K1− 1
d+2 HK2 HK

LOWER-BOUNDS [40] H K1− 1
d+2 N/A N/A

Table 1: Comparison of our bounds with several state-of-the-art bounds for RL in continuous settings.
Here, d is the covering dimension of the state-action space, dS is the covering dimension of the state
space, H is the horizon of the MDP, and K is the total number of episodes. Implementing KERNEL
UCBVI [11] is unclear under general action spaces, so we specialize the time complexity under a
finite set of actions of size A. As running UCBVI with a fixed discretization is a natural approach
to this problem, we include a short discussion of this algorithm in Appendix G.1. Since the results
are informal, we do not include them in the table here. We include ‘N/A’ under the time and space
complexity lower bound as there is no prior work in this domain to our knowledge.

RL has received a lot of interest in the design of algorithms for large-scale systems using parametric
models and function approximation. For example, the AlphaGo Zero algorithm that mastered Chess
and Go from scratch trained their algorithm over 72 hours using 4 TPUs and 64 GPUs [36]. These
results show the intrinsic power of RL in learning complex control policies, but are computationally
infeasible for applying algorithms to RL tasks in computing systems or operations research. The
limiting factor is implementing regression oracles or gradient steps on computing hardware. For
example, RL approaches have received much interest in designing controllers for memory systems [1]
or resource allocation in cloud-based computing [15]. Common to these examples are computation
and storage limitations on the devices used for the controller, requiring algorithms to compete on
three major facets: efficient learning, low computation, and low storage requirements.

Motivated by these requirements we consider discretization techniques which map the continuous
problem to a discrete one as these algorithms are based on simple primitives easy to implement
in hardware (and has been tested heuristically in practice [32, 22]). A challenge is picking a
discretization to manage the trade-off between the discretization error and the errors accumulated
from solving the discrete problem. As a fixed discretization wastes computation and memory by
forcing the algorithm to explore unnecessary parts of the space, we develop an adaptive discretization
of the space, where the discretization is only refined on an as-needed basis. This approach reduces
unnecessary exploration, computation, and memory by only keeping a fine-discretization across
important parts of the space [38].

Adaptive discretization techniques have been successfully applied to multi-armed bandits [40] and
model-free RL [38]. The key idea is to maintain a non-uniform partition of the space which is refined
based on the density of samples. These techniques do not, however, directly extend to model-based
RL, where the main additional ingredient lies in maintaining transition probability estimates and
incorporating these in decision-making. Doing so is easy in tabular RL and ε-net based policies, as
simple transition counts concentrate well enough to get good regret. This is much less straightforward,
though, when the underlying discretization changes in an online, data-dependent way.

Our Contributions. We design and analyze a model-based RL algorithm, ADAMB, that discretizes
the state-action space in a data-driven way so as to minimize regret. ADAMB requires the underlying
state and action spaces to be embedded in compact metric spaces, and the reward function and
transition kernel to be Lipschitz continuous with respect to this metric. This encompasses discrete
and continuous state-action spaces with mild assumptions on the transition kernel, and deterministic
systems with Lipschitz continuous transitions. Our algorithm only requires access to the metric, unlike
prior algorithms which require access to simulation oracles [18], strong parametric assumptions [17],
or impose additional assumptions on the action space to be computationally efficient [11].

Our policy achieves near-optimal dependence of the regret on the covering dimension of the metric
space when compared to other model-based algorithms. In particular, we show that for a H-step
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MDP played over K episodes, our algorithm achieves a regret bound

R(K) .

{
H1+ 1

d+1K
d+dS−1

d+dS dS > 2

H1+ 1
d+1K

d+dS+1

d+dS+2 dS ≤ 2

where dS and dA are the covering dimensions of the state and action space respectively, and d =
dS + dA. As Table 1 illustrates, our bounds are uniformly better (in terms of dependence on K and
H , in all dimensions) than the best existing bounds for model-based RL in continuous-spaces [21, 11].
In addition to having lower regret, ADAMB is also simple and practical to implement, with low query
complexity and storage requirements (see Table 1) compared to other model-based techniques.

To highlight this, we complement our theory with experiments comparing model-free and model-
based algorithms, using both fixed and adaptive discretization. Our experiments show that with
a fixed discretization, model-based algorithms outperform model-free ones; however, when using
an adaptive partition of the space, model-based and model-free algorithms perform similarly. This
provides an interesting contrast between practice (where model-based algorithms are thought to
perform much better) and theory (where regret bounds in continuous settings are currently worse for
model-based compared to model-free algorithms), and suggests more investigation is required for
ranking the two approaches.

Related Work. There is an extensive literature on model-based reinforcement learning; below, we
highlight the work which is closest to ours, but for more extensive references, see [43] for RL,
and [6, 41] for bandits (and a longer discussion in Appendix B).

Recently there has been a surge in theoretical analysis of nonparametric algorithms for RL in
continuous spaces. These algorithms all require mild local assumptions on the underlying process,
most commonly that the Q function is Lipschitz continuous with respect to a given metric. For
example, some work considers nearest-neighbour methods for deterministic, and infinite horizon
discounted settings [48, 34]. Other work assumes access to a generative model instead of the
online setting considered here [18, 14]. The work closest to ours concerns algorithms with provable
guarantees for continuous state-action settings (see also Table 1). In model-free settings, tabular
algorithms have been adapted to continuous state-action spaces via fixed discretization (i.e., ε-
nets) [42]. In model-based settings, researchers have tackled continuous spaces via kernel methods,
based on either a fixed discretization of the space [21], or more recently, without resorting to
discretization [11]. While the latter does learn a data-driven representation of the space via kernels,
it requires solving a complex optimization problem at each step, and hence is efficient mainly for
finite action sets (more discussion on this is in Section 4). Finally, adaptive discretization has been
successfully implemented in model-free settings [38, 7], and this provides a good benchmark for our
algorithm, and for comparing model-free and model-based algorithms.

2 Preliminaries

MDP and Policies. We consider an agent interacting with an underlying finite-horizon Markov
Decision Processes (MDP) over K sequential episodes, denoted [K] = {1, . . . ,K}. The underlying
MDP is given by a five-tuple (S,A, H, T,R) where horizon H is the number of steps (indexed
[H] = {1, 2, . . . ,H}) in each episode, and (S,A) denotes the set of states and actions in each step.
When needed for exposition, we use Sh,Ah to explicitly denote state/action sets at step h. When the
step h is clear we omit the subscript for readability.

Let ∆(X ) denote the set of probability measures over a set X . State transitions are governed by a
collection of transition kernels T = {Th(· | x, a)}h∈[H],x∈S,a∈A, where Th(· | x, a) ∈ ∆(Sh+1)
gives the distribution over states in Sh+1 if action a is taken in state x at step h. The instantaneous
rewards are bounded in [0, 1], and their distributions are specified by a collection of parameterized
distributions R = {Rh}h∈[H], Rh : Sh ×Ah → ∆([0, 1]). We denote rh(x, a) = Er∼Rh(x,a)[r].

A policy π is a sequence of functions {πh | h ∈ [H]} where each πh : Sh → Ah is a mapping from
a given state x ∈ Sh to an action a ∈ Ah. At the beginning of each episode k, the agent fixes a policy
πk for the entire episode, and is given an initial (arbitrary) state Xk

1 ∈ S1. In each step h ∈ [H], the
agent receives the state Xk

h , picks an action Akh = πkh(Xk
h), receives reward Rkh ∼ Rh(Xk

h , A
k
h), and

transitions to a random state Xk
h+1 ∼ Th

(
· | Xk

h , π
k
h(Xk

h)
)
. This continues until the final transition
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to state Xk
H+1, at which point the agent chooses policy πk+1 for the next episode after incorporating

observed rewards and transitions in episode k, and the process is repeated.

Value Function and Bellman Equations. For any policy π, let Aπh denote the (random) action taken
in step h under π, i.e., Aπh = πh(Xk

h). We define V πh : S → R to denote the policy value function at
step h under policy π, i.e., the expected sum of future rewards under policy π starting from Xh = x
in step h until the end of the episode. Formally,

V πh (x) := E
[∑H

h′=hRh′
∣∣∣ Xh = x

]
for Rh′ ∼ Rh(Xh′ , A

π
h′).

We define the state-action value function (or Q-function) Qπh : S ×A → R at step h as the sum of
the expected rewards received after taking action Ah = a at step h from state Xh = x, and then
following policy π in all subsequent steps of the episode. Formally,

Qπh(x, a) := rh(x, a) + E
[∑H

h′=h+1Rh′
∣∣∣ Xh+1 ∼ Th(· | x, a)

]
for Rh′ ∼ Rh′(Xh′ , A

π
h′).

Under suitable assumptions on S ×A and reward functions [31], there exists an optimal policy π?
which gives the optimal value V ?h (x) = supπ V

π
h (x) for all x ∈ S and h ∈ [H]. For ease of notation

we denote Q? = Qπ
?

. The Bellman equations [31] state that,

V πh (x) = Qπh(x, πh(x)) ∀x ∈ S
Qπh(x, a) = rh(x, a) + E

[
V πh+1(Xh+1) | Xh = x,Ah = a

]
∀ (x, a) ∈ S ×A (1)

V πH+1(x) = 0 ∀x ∈ S.
For the optimal policy π?, it additionally holds that V ?h (x) = maxa∈AQ

?
h(x, a).

In each episode k ∈ [K] the agent selects a policy πk, and is given an arbitrary starting state Xk
1 .

The goal is to maximize the total expected reward
∑K
k=1 V

πk

1 (Xk
1 ). We benchmark the agent on

their regret: the additive loss over all episodes the agent experiences using their policy instead of the
optimal one. In particular, the regret R(K) is defined as:

R(K) =
∑K
k=1

(
V ?1 (Xk

1 )− V πk1 (Xk
1 )
)
. (2)

Our goal is to show that the regret R(K) is sublinear with respect to K.

Metric Space and Lipschitz Assumptions. We assume the state space S and the action spaceA are
each separable compact metric spaces, with metrics DS and DA, and covering dimensions dS and dA
respectively. This imposes a metric structure D on S ×A via the product metric, or any sub-additive
metric such that

D((x, a), (x′, a′)) ≤ DS(x, x′) +DA(a, a′).

This also ensures that the covering dimension of S ×A is at most d = dS + dA. We assume that the
algorithm has oracle access to the metrics DS and DA through several queries, which are explained
in more detail in Appendix G.1. We also need that Th(· | x, a) is Borel with respect to the metric DS
for any (x, a) ∈ S ×A.

We assume w.l.o.g. that S × A has diameter 1, and we denote the diameter of S as D(S) =
supa∈A,(x,y)∈S2 D((x, a), (y, a)) ≤ 1. For more information on metrics and covering dimension,
see [40, 20, 38] for a summary.

To motivate the discretization approach, we also assume non-parametric Lipschitz structure on the
transitions and rewards of the underlying process [38].
Assumption 1 (Lipschitz Rewards and Transitions). For every x, x′, h ∈ S × S × [H] and a, a′ ∈
A×A, the average reward function rh(x, a) is Lipschitz continuous with respect to D, i.e.:

|rh(x, a)− rh(x′, a′)| ≤ LrD((x, a), (x′, a′))

For every (x, x′, h) ∈ S × S × [H] and (a, a′) ∈ A × A, the transition kernels Th(x′ | x, a) are
Lipschitz continuous in the 1-Wasserstein metric dW with respect to D, i.e.:

dW (Th(· | x, a), Th(· | x′, a′)) ≤ LTD((x, a), (x′, a′)).

We further assume that Q?h and V ?h are also LV -Lipschitz continuous for some constant LV .

See [38, 11] for conditions that relate LV to Lr and LT .
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Algorithm 1 Model-Based Reinforcement Learning with Adaptive Partitioning (ADAMB)
1: procedure ADAMB(S,A,D, H,K, δ)
2: Initialize partitions P0

h = S ×A for h ∈ [H], estimates Q
0

h(·) = V
k

h(·) = H − h+ 1
3: for each episode k ← 1, . . .K do
4: Receive starting state Xk

1
5: for each step h← 1, . . . ,H do
6: Observe Xk

h and determine RELEVANTkh(Xk
h) = {B ∈ Pk−1

h |Xk
h ∈ B}

7: Greedy selection rule: pick Bkh = argmaxB∈RELEVANTkh(Xkh) Q
k−1

h (B)

8: Play action Akh = ã(Bkh) associated with ball Bkh; receive Rkh and transition to Xk
h+1

9: Update counts for nkh(Bkh), rkh(Bkh), and T
k

h(· | Bkh)
10: if nkh(Bkh) + 1 ≥ n+(Bkh) then REFINE PARTITION(Bkh)

COMPUTE ESTIMATES(Rkh, B
k
h)Hh=1

11: procedure REFINE PARTITION(B, h, k)
12: Construct P(B) = {B1, . . . , B2d} a 2−(`(B)+1)-dyadic partition of B
13: Update Pkh = Pk−1

h ∪ P(B) \B
14: For each Bi, initialize nkh(Bi) = nkh(B), rkh(Bi) = rkh(B) and T

k

h(· | Bi) ∼ T
k

h(· | B)

15: procedure COMPUTE ESTIMATES((Bkh, R
k
h, X

k
h+1)Hh=1)

16: for each h← 1, . . . H and B ∈ Pkh do : Update Q
k

h(B) and V
k

h(·) via Eq. (4) and Eq. (6)

3 Algorithm

We now present our Model-Based RL with Adaptive Partitioning algorithm, which we refer to as
ADAMB. At a high level, ADAMB maintains an adaptive partition of Sh × Ah for each step h,
and uses optimistic value-iteration over this partition. It takes as input the number of episodes K,
metric D over S ×A, and the Lipschitz constants. It maintains optimistic estimates for rh(x, a) and
Th(· | x, a) (i.e. high-probability uniform upper bounds ∀h, x, a). These are used for performing
value iteration to obtain optimistic estimates Qh and Vh via one-step updates in Eq. (4) and Eq. (6).
For full pseudocode of the algorithm, and a discussion on implementation details, see Appendix G.

Adaptive State-Action Partitioning: For each step h ∈ [H], ADAMB maintains a partition of the
space Sh × Ah into a collection of ‘balls’ which is refined over episodes k ∈ [K]. We denote
Pkh to be the partition for step h at the end of episode k; the initial partition is set as P0

h =
S ×A ∀h ∈ [H]. Each element B ∈ Pkh is a ball of the form B = S(B)×A(B), where S(B) ⊂ S
(respectively A(B) ⊂ A) is the projection of ball B onto its corresponding state (action) space. We
let (x̃(B), ã(B)) be the center of B and denote D(B) = sup{D((x, a), (y, b)) | (x, a), (y, b) ∈ B}
to be the diameter of a ball B. The partition Pkh can also be represented as a tree, with leaf nodes
representing active balls, and inactive parent balls of B ∈ Pkh corresponding to {B′ ∈ Pk′h |B′ ⊃
B, k′ < k}; moreover, `(B) is the depth of B in the tree (with the root at level 0). See Figure 1 for
an example partition and tree generated by the algorithm. Let

S(Pkh) :=
⋃

B∈Pkh s.t. @B′∈Pkh ,S(B′)⊂S(B)

S(B) (3)

denote the partition over the state spaced induce by the current state-action partitionPkh . We can verify
that the above constructed S(Pkh) is indeed a partition of S because the partition Pkh is constructed
according to a dyadic partitioning.

While our partitioning works for any compact metric space, a canonical example to keep in mind is
S = [0, 1]dS ,A = [0, 1]dA with the infinity norm D((x, a), (x′, a′)) = ||(x, a)− (x′, a′)||∞ (which
was used in some of the simulations). We illustrate this in Fig. 1 for dS = dA = 1. We define
`(B) = − log2(D(B)) to be the level of a ball B, and construct B as a level-`(B) dyadic cube in
the metric-space (S ×A,D). In our example of ([0, 1]2, || · ||∞), a ball B is an axis-aligned cube of
length 2−`(B) and corners in 2−`(B)Z2, as depicted in Fig. 1.

At the end of each episode, for each active ball B ∈ Pkh ADAMB maintains three statistics:

5



Xk
h Sh

Ah

B1

B21

B23

B22

B24

B3 B4

B1 B3 B4B2

B0

B21 B22 B23 B24

0

1

1

0
Bkh−1

`
(
Bkh−1

)
= 2

Pk−1
h

Illustrating the state-action partitioning scheme

0.0 0.2 0.4 0.6 0.8 1.0
State Space

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n 
Sp

ac
e

Adaptive Discretization for Algorithm at Step 2

Partitioning in practice

Figure 1: Partitioning scheme for S ×A = [0, 1]2: On the left, we illustrate our scheme. Partition
Pk−1
h is depicted with corresponding tree (showing active balls in green, inactive parents in red).

The algorithm plays ball Bkh−1 in step h− 1, leading to new state Xk
h . Since `(Bkh−1) = 2, we store

transition estimates T
k

h−1(· | Bkh−1) for all subsets of Sh of diameter 2−2 (depicted via dotted lines).
The set of relevant balls RELEVANTkh(Xk

h) = {B4, B21, B23} are highlighted in blue.
On the right, we show the partition PK2 from one of our synthetic experiments (See ‘Oil Discovery’
in Appendix H). The colors denote the true Q?2(·) values, with green corresponding to higher values.
Note that the partition is more refined in areas which have higher Q?2(·).

• nkh(B): the number of times the ball B has been selected up to and including episode k.

• r̂kh(B): the empirical (instantaneous) reward earned from playing actions in B.
rkh(B): the empirical reward earned from playing actions in B and its ancestors.

• {T̂k
h(· | B)}: the empirical fractions of transitions to sets in a 2−`(B)-coarse partition of

Sh+1 (which we denote as �`(B)) after playing actions in B.

{Tk

h(· | B)}: the empirical fractions of transitions from playing actions in B and its
ancestors.

These estimates are used to construct optimistic Q-function estimates Q
k

h(B) for each B ∈ Pkh . Each
ball B ∈ Pkh has an associated action ã(B) ∈ A(B) (we take this to be the center of the ball A(B)).

The ADAMB Algorithm: Given the above partitions and statistics, the algorithm proceeds as
follows. In each episode k and step h, ADAMB observes state Xk

h , and finds all relevant balls
RELEVANTkh(Xk

h) = {B ∈ Pk−1
h |Xk

h ∈ B} (see Fig. 1). It then selects an action according to a

greedy selection rule, picking Bkh ∈ RELEVANTkh(Xk
h) with highest Q

k−1

h (B), and plays action
ã(Bkh). Note that the algorithm can also play any action a such that (Xk

h , a) ∈ Bkh uniformly at
random and the theory still applies. Next, the algorithm updates counts for r̂kh(Bkh) and T̂k

h(· | Bkh)
based on the observed reward Rkh and transition to Xk

h+1. Following this, it refines the partition if

needed. Finally, at the end of the episode, ADAMB updates estimates by solving for Q
k

h(·) which are
used in the next episode. We now describe the last three subroutines in more detail; see Algorithm 2
for the full pseudocode, and Appendix G.1 for implementation, space, and run-time analysis.

Update Counts: After playing active ball Bkh and observing (Rkh, X
k
h+1) for episode k step h,

– Increment counts and reward estimates according to

nkh(Bkh) = nk−1
h (Bkh) + 1 and r̂kh(Bkh) =

nk−1
h (Bkh)r̂k−1

h (Bkh) +Rkh
nkh(Bkh)

.
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– Update T̂k
h(· | Bkh) as follows: For each set A in a 2−`(B)-coarse partition of Sh+1 denoted by

�`(B), we set

T̂k
h(A | B) =

nk−1
h (Bkh)T̂k−1

h (A | B) + 1{Xkh+1∈A}

nkh(Bkh)
.

This is maintaining an empirical estimate of the transition kernel for a ball B at a level of granularity
proportional to its diameter D(B) = 2−`(B).

Refine Partition: To refine the partition over episodes, we split a ball when the confidence in its
estimate is smaller than its diameter. Formally, for any ball B, we define a splitting threshold
n+(B) = φ2γ`(B) , and partition B once we have nkh(B) + 1 ≥ n+(B). Note the splitting threshold
grows exponentially with the level. More concretely the splitting threshold is defined via

n+(B) = φ2dS`(B) dS > 2

n+(B) = φ2(dS+2)`(B) dS ≤ 2

where the difference in terms comes from the Wasserstein concentration. This is in contrast to the
splitting threshold for the model-free algorithm where n+(B) = 22`(B) [38]. The φ term is chosen to
minimize the dependence on H in the final regret bound where φ = H(d+dS)/(d+1).

In episode k step h, if we need to split Bkh, then we partition S(Bkh) × A(Bkh) using new balls
each of diameter 1

2D(Bkh). This partition P(B) can be constructed by taking a cross product of a
level (`(B) + 1)-dyadic partition of S(Bkh) and a level-(`(B) + 1) dyadic partition of A(Bkh). We
then remove B and add P(B) to Pk−1

h to form the new partition Pkh . In practice, each child ball
can inherit all estimates from its parent, and counts for the parent ball are not updated from then
on. However, for ease of presentation and analysis we assume each child ball starts off with fresh
estimates of r̂kh(·) and T̂k

h(·) and use rkh(·) and T
k

h(·) to denote the aggregate statistics.

Compute Estimates: At the end of the episode we set

rkh(B) =

∑
B′⊇B r̂kh(B′)nkh(B′)∑

B′⊇B n
k
h(B′)

T
k

h(A | B) =

∑
B′⊇B

∑
A′∈�`(B′);A⊂A′

2−dS(`(B′)−`(B))nkh(B′)T̂k
h(A′ | B′)∑

B′⊇B n
k
h(B′)

When aggregating the estimates of the transition kernel, we need to multiply by a factor to ensure we
obtain a valid distribution. This is because any ancestor B′ of B maintain empirical estimates of the
transition kernel to a level �`(B′). Thus, we need to split the mass in order to construct a distribution
over �`(B). We also define confidence terms typically used in multi-armed bandits which are defined
via:

RUCBkh(B) =

√
8 log(2HK2/δ)∑

B′⊇B n
k
h(B′)

+ 4LrD(B)

TUCBkh(B)

=


LV

(
(5LT + 4)D(B) + 4

√
log(HK2/δ)∑
B′⊆B n

k
h(B′)

+ c
(∑

B′⊆B n
k
h(B′)

)−1/dS
)

if dS > 2

LV

(
(5LT + 6)D(B) + 4

√
log(HK2/δ)∑
B′⊇B n

k
h(B′)

+ c

√
2dS`(B)∑

B′⊇B n
k
h(B′)

)
if dS ≤ 2

The difference in definitions of TUCBkh(·) comes from the Wasserstein concentration in Appendix D.
With these in place we set

Q
k

h(B) :=

{
rkH(B) + RUCBkH(B) if h = H

rkh(B) + RUCBkh(B) + E
A∼Tkh(·|B)

[
V
k−1

h+1(A)
]

+ TUCBkh(B) if h < H
(4)
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mimicing the Bellman equations by replacing the true unknown quantities with their estimates. The
value function estimates are computed in a two-stage process. For each ball A ∈ S(Pkh) we have that

Ṽk
h(A) := min{Ṽk−1

h (A), max
B∈Pkh :S(B)⊇A

Q
k

h(B)}. (5)

For technical reasons we need to construct a Lipschitz continuous function to estimate the value
function in order to show concentration of the transition kernel estimates. For each point x ∈ Sh we
define

V
k

h(x) = min
A′∈S(Pkh)

(
Ṽk
h(A′) + LVDS(x, x̃(A′)

)
. (6)

However, as the support of T
k

h(· | B) is only over sets in �`(B) we overload notation to let

V
k

h(A) = V
k

h(x̃(A)). We equivalently overload notation so that x ∼ T
k

h(· | B) refers to sampling
over the centers associated to balls in �`(B).

This corresponds to a value-iteration step, where we replace the true rewards and transitions in the
Bellman Equations (Eq. (1)) with their (optimistic) estimates. We only compute one-step updates as
in [13], which reduces computational complexity as opposed to solving the full Bellman update.

Note that at the end of the episode, for each step h, we only need to update Q
k

h(B) for B = Bkh
and Ṽk

h(A) for each A ∈ S(Pkh) such that A ⊆ Bkh. V
k

h is only used to compute the expectation in
Eq. (4), and thus it is only evaluated in episode k + 1 for balls A in the 2−`(B

k+1
h−1)-coarse partition of

Sh.

4 Main Results

We start with giving worst-case regret guarantees for ADAMB.
Theorem 4.1. Let d = dA + dS , then the regret of ADAMB for any sequence of starting states
{Xk

1 }Kk=1 is upper bounded with probability at least 1− δ by

R(K) .

{
LH1+ 1

d+1K
d+dS−1

d+dS dS > 2

LH1+ 1
d+1K

d+dS+1

d+dS+2 dS ≤ 2

where L = 1 + Lr + LV + LV LT and . omits poly-logarithmic factors of 1
δ , H,K, d, and any

universal constants.

Comparison to Model-Free Methods: Previous model-free algorithms achieve worst-case bounds
scaling via H5/2K(d+1)/(d+2), which achieve the optimal worst-case dependence on the dimension
d [38]. The bounds presented here have better dependence on the number of stepsH . This is expected,
as current analysis for model-free and model-based algorithms under tabular settings shows that
model-based algorithms achieve better dependence on H . However, under the Lipschitz assumptions
here the constant L also scales with H so the true dependence is somewhat masked. A modification
of our algorithm that uses full planning instead of one-step planning will achieve linear dependence
on H , with the negative effect of increased run-time. When we compare the dependence on the
number of episodes K we see that the dependence is worse - primarily due to the additional factor of
dS , the covering dimension of the state-space. This term arises as model-based algorithms maintain
an estimate of the transition kernel, whose complexity depends on dS .

Comparison to Model-Based Methods: Current state of the art model-based algorithms (KERNEL-
UCBVI) achieve regret scaling like H3K2d/(2d+1) [11]. We achieve better scaling with respect
to both H and K, and our algorithm has lower time and space complexity. However, we require
additional oracle assumptions on the metric space to be able to construct packings and coverings
efficiently, whereas KERNEL-UCBVI uses the data and the metric itself. Better dependence on H
and K is primarily achieved by using recent work on concentration for the Wasserstein metric. These
guarantees allow us to construct tighter confidence intervals which are independent of H , obviating
the need to construct a covering of H-uniformly bounded Lipschitz functions like prior work (see
Appendix D).
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Figure 2: Here we compare four algorithms: EPSQL and EPSMB, uniform discretization versions of
model-free and model-based algorithms, and ADAQL and ADAMB, their adaptive discretization
counterparts. More simulation results are in Appendix H.

In addition, KERNEL-UCBVI uses a fixed bandwidth parameter in their kernel interpolation. We
instead keep an adaptive partition of the space, helping our algorithm maintain a smaller and more
efficient discretization. This technique also lends itself to show instance dependent bounds, which we
leave for future work.

Discussion on Instance-Specific Bounds: The bounds presented here are worst-case, problem
independent guarantees. Recent work has shown that model-free algorithms are able to get problem
dependent guarantees which depend on the zooming dimension instead of the covering dimension of
the space [7]. Extending this result to model-based algorithms will be more technical, due to requiring
improved concentration guarantees for the transition kernel. Most model-based algorithms require
showing uniform concentration, in particular that the estimate of the transition kernel concentrates
well when taking expectation over any Lipschitz function. Getting tighter bounds for model-based
algorithms in continuous settings will require showing that the transition kernel is naturally estimated
well in parts of the space that matter - as the state-visitation frequency is dependent on the policy
used. In Appendix C we discuss the transition concentration in more details.

Proof Sketch: The high level proof is divided into three sections. First we show concentration and
clean-events, under which our estimates r and T constitute upper bounds on the relevant quantities
(Appendix D). Afterwards, we show a regret decomposition, which relates the difference between the
estimated value and the value accumulated by the algorithm to the bonus terms (Appendix E). Lastly,
we use an LP-based argument to bound the worst-case size of the partition and the sum of the bonus
terms which is used for the final regret bound (Appendix F). The full proof sketch is in Appendix C.

5 Conclusion

We presented an algorithm using adaptive discretization for model-based online reinforcement
learning based on one-step planning. In worst case instances, we showed regret bounds for our
algorithm which are competitive with other model-based algorithms in continuous settings under
the assumption that the underlying dynamics of the system are Lipschitz continuous with respect
to a known metric on the space. We also provided simulations comparing model-based and model-
free methods using an adaptive and fixed discretizations of the space on several canonical control
problems. Our experiments showed that adaptive partitioning empirically performs better than fixed
discretizations in terms of both faster convergence and lower memory.

One future direction for the work is analyzing the discrepancy between model-based and model-free
methods in continuous settings, as model-based algorithms so far have sub-optimal dependence on
the dimension of the space. Moreover, we hope to characterize problems where model-based methods
using adaptive discretization are able to outperform model-free methods using a gap-dependent
analysis inspired by recent gap-dependent analysis for tabular algorithms [37].
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Broader Impact

Exploring Memory-Computation Trade-offs in RL

Reinforcement learning policies have enjoyed remarkable success in recent years, in particular in
the context of large-scale game playing. These results, however, mask the high underlying costs in
terms of computational resources and training time that the demonstrations requires [36, 26, 27, 35].
For example, the AlphaGo Zero algorithm that mastered Chess and Go from scratch trained their
algorithm over 72 hours using 4 TPUs and 64 GPUs. These results, while highlighting the intrinsic
power in reinforcement learning algorithms, are computationally infeasible for applying algorithms
to RL tasks in computing systems. As an example, RL approaches have received much interest in
several of the following problems:

• Memory Management: Many computing systems have two sources of memory; on-chip
memory which is fast but limited, and off-chip memory which has low bandwidth and suffers
from high latency. Designing memory controllers for these system require a scheduling
policy to adapt to changes in workload and memory reference streams, ensuring consistency
in the memory, and controlling for long-term consequences of scheduling decisions [1, 2, 8].

• Online Resource Allocation: Cloud-based clusters for high performance computing must
decide how to allocate computing resources to different users or tasks with highly variable
demand. Controllers for these systems must make decisions online to manage the trade-offs
between computation cost, server costs, and delay in job-completions. Recent work has
studied RL algorithms for such problems [15, 23, 28, 22].

Common to all of these examples are computation and storage limitations on the devices used for the
controller.

• Limited Memory: On chip memory is expensive and off-chip memory access has low-
bandwidth. As any reinforcement learning algorithm requires memory to store estimates of
relevant quantities - RL algorithms for computing systems must manage their computational
requirements.

• Power Consumption: Many applications require low-power consumption for executing RL
policies on general computing platforms.

• Latency Requirements: Many problems for computing systems (e.g. memory manage-
ment) have strict latency quality of service requirements that limits reinforcement learning
algorithms to execute their policy quickly.

Our algorithm ADAMB takes a first step towards designing efficient reinforcement learning algorithms
for continuous (or large finite) spaces, where efficient means both low-regret, but also low storage and
computation complexity (see Table 1). ADAMB is motivated by recent algorithms for reinforcement
learning on memory constrained devices which use a technique called cerebellar model articulation
controller (CMAC). This technique uses a random-discretizations of the space at various levels of
coarseness [15]. Moreover, heuristic algorithms which use discretizations (either fixed or adaptive)
have been extensively studied on various tasks [32, 39, 22].

We are able to show that our algorithm achieves good dependence with respect to K on all three
dimensions (regret, computation, and storage complexity). With future work we hope to determine
problem specific guarantees, exhibiting how these adaptive partitioning algorithms are able to extract
structure common in computing systems problems.
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Societal Projects

An important component of this research and proposed future work is the focus on building a data-
driven simulator for societal systems, and use these for benchmarking and testing RL algorithms.
Many problems in computing systems and operations research exhibit additional structure, whereby
analyzing how algorithms are able to extract and exploit that structure is paramount to their success
in real-time applications. Examples like the Behaviour Suite for Reinforcement Learning [29] are
designed with toy examples to understand different components in RL algorithms (exploration,
generalization, memory, etc) but is not application driven by design. Our research takes the first-step
in analyzing the performance of adaptive discretization for these tasks. We summarize several
problems below:

• Ambulance Routing (See Appendix H): This problem generalizes the canonical k-Server
problem commonly studied in theoretical computer science. An ambulance operator controls
a fleet of ambulances and must decide on locations to station the ambulances in order to
minimize transportation cost and travel-time to service patients arriving from an unknown
distribution.

• Oil Problem (See Appendix H): This problem generalizes the common discrete Grid-World
environment. Here an operator controls a measurement system (say a machine used to drill
for oil) and must decide on locations to station the rig in order to minimize transportation
cost and maximize the probability of obtaining the resource.

• Online Resource Allocation: Many problems in online resource allocation can be formulated
and solved through reinforcement learning. For a concrete example, consider a mobile-
food pantry that needs to design allocation rules for how much resources to allocate to
a specific location without any knowledge on the distribution of demands for locations
to come. Reinforcement learning policies in this setting will have to balance between
designing algorithms that utilize all of the resources (pareto-optimality), while ensuring
fairness across locations (envy-freeness). This problem helps serve as an interdisciplinary
connection between reinforcement learning, fairness, and resource allocation.
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