
A Table of Notation

Symbol Definition
Problem setting specifications

S,A, H,K State space, action space, steps per episode, number of episodes
rh(x, a) , Th(· | x, a) Average reward/transition kernel for taking action a in state x at step h
πh, V

π
h (·), Qπh(·, ·) Arbitrary step-h policy, and Value/Q-function at step h under π

π?h, V
?
h (·), Q?h(·, ·) Optimal step-h policy, and corresponding Value/Q-function

Lr, LT , LV Lipschitz constants for r, T and V ? respectively
DS , DA, D Metrics on S, A, and S ×A respectively

Algorithm variables and parameters
k, h Index for episode, index for step in episode
(Xk

h , A
k
h, R

k
h) State, action, and received reward under algorithm at step h in episode k

Pkh Partition tree of S ×A for step h at end of episode k
RELEVANTkh(x) Set of balls relevant for x at (k, h) (i.e., {B ∈ Pk−1

h |(x, a) ∈ B for some a ∈ A})
x̃(B), ã(B) Associated state/action for ball B (i.e., ‘center’ of ball B)

Bkh Ball in Pk−1
h selected at (k, h) (argmaxB∈RELEVANTkh(Xkh) Q

k−1

h (B))
n+(B) Threshold number of samples after which ball B is split

Q
k

h(B) Q-function estimates for ball B ∈ Pkh , at end of episode k
Ṽk
h(A) V -function estimate for a ball A ∈ S(Pkh), at end of episode k

V
k

h(x) V -function estimate for a point x ∈ S, at end of episode k
nkh(B) Number of times B has been chosen by the end of episode k
r̂kh(B), T̂k

h(· | B) Empirical rewards and transitions from ball B ∈ Pkh at end of episode k

rkh(B),T
k

h(· | B) Inherited reward/transition estimates for B ∈ Pkh at end of episode k
Definitions used in the analysis

∆(S) Set of probability measures on S
�` Set of dyadic cubes of S of diameter 2−`

S(Pkh) Induced state partition from Pkh
S(Pkh , x) Region in S(Pkh) containing the point x
S(B),A(B) Projection of a ball B = BS ×BA to BS and BA accordingly
D(B) The diameter of a ball B
`(B) The depth in the tree of ball B, equivalent to log2(D(S ×A)/D(B))

R(K) The regret up to episode K
E[Vh+1(x̂) | x, a] Ex̂∼Ph(·|x,a)[Vh+1(x̂)]

Fk Sigma-field generated by all information up to start of episode k
Ek[X] Expectation conditioned on information before episode k, i.e., E[X | Fk]

Table 2: List of common notation

B Related Work

There is an extensive literature on model-based reinforcement learning; below, we highlight the work
which is closest to ours, but for more extensive references, see [43] for RL, and [6, 41] for bandits.

Tabular RL: There is a long line of research on the sample complexity and regret for RL in
tabular settings. In particular, the first asymptotically tight regret bound for tabular model-based
algorithms with non-stationary dynamics of O(H3/2

√
SAK) where S,A are the size of state/action

spaces respectively was established in [5]. These bounds were matched (in terms of K) using an
‘asynchronous value-iteration’ (or one-step planning) approach [4, 13], which is simpler to implement.
Our work extends this latter approach to continuous spaces via adaptive discretization. More recently,

15

analysis was extended to develop instance-dependent instead of worst-case guarantees [49, 37] There
has also been similar regret analysis for model-free algorithms [16].

Parametric Algorithms: For RL in continuous spaces, several recent works have focused on the use
of linear function approximation [17, 12, 50, 45, 44, 30]. These works assume that the controller
has a feature-extractor under which the process is well-approximated via a linear model. While the
resulting algorithms can be computationally efficient, they incur linear loss when the underlying
process does not meet their strict parametric assumptions. Other work has extended this approach to
problems with bounded eluder dimension [44, 33].

Nonparametric Algorithms: In contrast, nonparametric algorithms only require mild local assump-
tions on the underlying process, most commonly, that the Q-function is Lipschitz continuous with
respect to a given metric. For example, [48] and [34] consider nearest-neighbour methods for deter-
ministic, infinite horizon discounted settings. Others assume access to a generative model [18, 14].

The works closest to ours concerns algorithms with provable guarantees for continuous state-action
settings (see also Table 1). In model-free settings, tabular algorithms have been adapted to continuous
state-action spaces via fixed discretization (i.e., ε-nets) [42]. In model-based settings, researchers
have tackled continuous spaces via kernel methods, based on either a fixed discretization of the
space [21], or more recently, without resorting to discretization [11]. While the latter does learn
a data-driven representation of the space via kernels, it requires solving a complex optimization
problem at each step, and hence is efficient mainly for finite action sets (more discussion on this
is in Section 4). Finally, adaptive discretization has been successfully implemented in model-free
settings [38, 7], and this provides a good benchmark for our algorithm, and for comparing model-free
and model-based algorithms.

Discretization Based Approaches: Discretization-based approaches to reinforcement learning have
been investigated heuristically through many different settings. One line of work investigates adaptive
basis functions, where the parameters of the functional model (e.g. neural network) are learned online
while also adapting the basis functions as well [19, 25, 47]. Similar techniques are done with soft
state aggregation [39]. Most similar to our algorithm, though, are tree based partitioning rules, which
store a hierarchical tree based partition of the state and action space (much like ADAMB) which
is refined over time [32, 22]. These were tested heuristically with various splitting rules (e.g. Gini
index, etc), where instead we split based off the metric and level of uncertainty in the estimates.

C Proof Sketch

The high level proof is divided into three sections. First, we show concentration and clean-events,
under which our estimates constitute upper bounds on the relevant quantities. Afterwards, we show
a regret decomposition, which relates the difference between the estimated value and the value
accumulated by the algorithm with the bonus terms. Lastly, we use an LP-based argument to bound
the worst-case size of the partition and the sum of the bonus terms which is used for the final regret
bound. We discuss each of them briefly before giving more technical details. As the final regret-bound
is technical and mostly involves algebra and combining terms, its derivation is deferred to Appendix J.

C.1 Concentration and Clean Events (Appendix D)

ADAMB maintains estimates rkh(B) and T
k

h(· | B) of the unknown rewards and transitions of the
underlying MDP. In order to ensure that the one-step value iteration update in Equation 4 concentrates
we need to verify that these estimates provide good approximations to their true quantities. In
particular, applying Azuma-Hoeffding’s inequality shows that:
Lemma C.1. With probability at least 1− δ we have that for any h, k ∈ [H]× [K] and ball B ∈ Pkh ,
and any (x, a) ∈ B, ∣∣rkh(B)− rh(x, a)

∣∣ ≤ RUCBkh(B).

The next step is ensuring concentration of the transition estimates T
k

h(· | B). As the algorithm takes
expectations over Lipschitz functions with respect to these distributions, we use recent work on

16

Wasserstein distance concentration. This is in contrast to previous work that requires using a covering
argument on the space of value functions in order to show concentration guarantees for the transition
kernel [10, 17, 11]. In particular, we show the following:
Lemma C.2. With probability at least 1−2δ we have that for any h, k ∈ [H]× [K] and ballB ∈ Pkh
with (x, a) ∈ B that

dW (T
k

h(· | B), Th(· | x, a)) ≤ 1

LV
TUCBkh(B)

The main proof uses recent work on bounding the Wasserstein distance between an empirical measure
and the true measure [46]. For the case when dS > 2 the concentration inequality holds up to a
level of n−

1
dS with high probability. We use this result by chaining the Wasserstein distance of

various measures together. Unfortunately, the scaling does not hold for the case when dS ≤ 2.
In this situation we use the fact that T

k

h(· | B) is constructed as an empirical measure with finite
support |�`(B)| = 2dS`(B). Although Th(· | x, a) is a continuous distribution, we consider “snapped”
versions of the distributions and repeat a similar argument. This allows us to get the scaling of√

2dS`(B)/n seen in the definition of TUCBkh(B). The result from [46] has corresponding lower
bounds, showing that in the worst case scaling with respect to dS is inevitable. As the transition
bonus terms leads to the dominating terms in the regret bounds, improving on our result necessitates
creating concentration intervals around the value function instead of the model [3].

The Wasserstein concentration established in the previous lemmas allows us to forgo showing uniform
convergence of the transition kernels over all value functions. Indeed, the variational definition of
the Wasserstein metric between measures is dW (µ, ν) = supf

∫
fd(µ− ν) where the supremum is

taken over all 1-Lipschitz functions. Noting that V ?h and V
k

h(·) are constructed to be LV -Lipschitz

functions we therefore get that for V = V ?h or V = V
k

h(·):

E
X∼Tkh(·|B)

[V (X)]− EX∼Th(·|x,a)[V (X)] ≤ LV dW (T
k

h(· | B), Th(· | x, a)) ≤ TUCBkh(B).

Getting improved bounds for model-based algorithms in continuous spaces will necessitate showing
that the algorithm does not need to show uniform concentration over all value functions or all
Lipschitz functions, but rather a subset that is constructed by the algorithm.

These concentration bounds allow us to now demonstrate a principle of optimism for our value-
function estimates. Formally, we show that conditioned on the concentration bounds on the rewards
and transitions being valid, the estimates for Q?h and V ?h constructed by ADAMB are indeed upper
bounds for the true quantities. This follows a common approach for obtaining regret guarantees for
reinforcement learning algorithms [37].
Lemma C.3. With probability at least 1− 3δ, the following bounds are all simultaneously true for
all k, h ∈ [K]× [H], and any partition Pkh

Q
k

h(B) ≥ Q?h(x, a) for all B ∈ Pkh , and (x, a) ∈ B
Ṽk
h(A) ≥ V ?h (x) for all A ∈ S(Pkh), and x ∈ A

V
k

h(x) ≥ V ?h (x) for all x ∈ S

C.2 Regret Decomposition (Appendix E)

Similar to [13], we use one step updates for Q
k

h(·) and V
k

h(·). We thus use similar ideas to obtain
the final regret decomposition, which then bounds the final regret of the algorithm by a function of
the size of the partition and the sum of the bonus terms used in constructing the high probability
estimates. In particular, by expanding the update rules on Q

k

h(B) and V
k

h(x) we can show:
Lemma C.4. The expected regret for ADAMB can be decomposed as

E[R(K)] .
K∑
k=1

H∑
h=1

E
[
Ṽk−1
h (S(Pk−1

h , Xk
h))− Ṽk

h(S(Pkh , Xk
h))
]

17

+

H∑
h=1

K∑
k=1

E
[
2RUCBkh(Bkh)

]
+

H∑
h=1

K∑
k=1

E
[
2TUCBkh(Bkh)

]
+

K∑
k=1

H∑
h=1

LV E
[
D(Bkh)

]
.

where S(Pk−1
h , Xk

h) is the region in S(Pk−1
h) containing the point Xk

h .

The first term in this expression arises from using one-step planning instead of full-step planning, and
the rest due to the bias in the estimates for the reward and transitions. Using the fact that the Ṽk

h are
decreasing with respect to k we can show that this term is upper bounded by the size of the partition.
Obtaining the final regret bound then relies on finding a bound on the size of the partition and the
sum of bonus terms.

C.3 Bounds on Size of Partition and Sums of Bonus Terms (Appendix F)

We show technical lemmas that provide bounds on terms of the form
∑K
k=1

1
(nkh(Bkh))α

almost surely
based on the splitting rule used in the algorithm and the size of the resulting partition. We believe
that this is of independent interest as many optimistic regret decompositions involve bounding sums
of bonus terms over a partition that arise from concentration inequalities.

We formulate these quantities as a linear program (LP) where the objective function is to maximize
either the size of the partition or the sum of bonus terms associated to a valid partition (represented
as a tree) constructed by the algorithm. The constraints follow from conditions on the number of
samples required before a ball is split into subsequent children balls. To derive an upper bound on the
value of the LP we find a tight dual feasible solution. This argument could be broadly useful and
modified for problems with additional structures by including additional constraints into the LP. In
particular, we are able to show the following:
Corollary C.5. For any h ∈ [H], consider any sequence of partitions Pkh , k ∈ [K] induced under
ADAMB with splitting thresholds n+(`) = φ2γ`. Then, for any h ∈ [H] we have:

• |Pkh | ≤ 4dK
d
d+γ φ−

d
d+γ

• For any α, β ≥ 0 s.t. α ≤ 1 and αγ − β ≥ 1, we have

K∑
k=1

2β`(B
k
h)(

nkh(Bkh)
)α = O

(
φ
−(dα+β)
d+γ K

d+(1−α)γ+β
d+γ

)
• For any α, β ≥ 0 s.t. α ≤ 1 and αγ − β/`? ≥ 1 (where `? = 2 + 1

d+γ log2

(
K
φ

)
), we have

K∑
k=1

`(Bkh)β(
nkh(Bkh)

)α = O
(
φ
−dα
d+γK

d+(1−α)γ
d+γ (log2K)

β
)

We use this result with the regret decomposition to show the final regret bound. The splitting threshold
γ is taken in order to satisfy the requirements of the corollary. As the dominating term arises from
the concentration of the transition kernel, for the case when dS > 2 the sum is of the form when
α = 1/dS and β = 0. This gives the K(d+dS−1)/(d+dS) term in the regret bound. The case when
dS ≤ 2 is similar.

D Concentration Bounds, Optimism, and Clean Events

In this section we show that the bonus terms added on, namely RUCBkh(·) and TUCBkh(·), ensure that
the estimated rewards and transitions are upper bounds for the true quantities with high probability.
This follows a proof technique commonly used for multi-armed bandits and reinforcement learning,
where algorithm designers ensure that relevant quantities are estimated optimistically with a bonus
that declines as the number of samples increases.

For all proofs we let {Fk} denote the filtration induced by all information available to the algorithm
at the start of episode k, i.e. Fk = σ

(
(Xk′

h , A
k′

h , B
k′

h , R
k′

h)h∈[H],k′<k ∪Xk
1

)
where we include the

18

starting state for the episode. With this filtration in place, all of the estimates Q
k−1

h , V
k−1

h , and the
policy πk are measurable with respect to Fk.

Before stating the concentration inequalities, we first give a technical result, which we use to simplify
the upper confidence terms. The proof of this result is deferred to Appendix K.
Lemma D.1. For any h, k ∈ [H]× [K] and ball B ∈ Pkh we have that∑

B′⊇B D(B′)nkh(B′)∑
B′⊇B n

k
h(B′)

≤ 4D(B).

D.1 Concentration of Reward Estimates

We start by showing that with probability at least 1− δ, our reward estimate rkh(B) + RUCBkh(B) is
a uniform upper bound on the true mean reward rh(x, a) for any (x, a) ∈ B.

Lemma D.2. With probability at least 1− δ we have that for any h, k ∈ [H]× [K] and ball B ∈ Pkh ,
and any (x, a) ∈ B, ∣∣rkh(B)− rh(x, a)

∣∣ ≤ RUCBkh(B),

where we define RUCBkh(B) =

√
8 log(2HK2/δ)∑
B′⊇B n

k
h(B′)

+ 4LrD(B).

Proof. Let h, k ∈ [H] × [K] and B ∈ Pkh be fixed and (x, a) ∈ B be arbitrary. First consider the
left hand side of this expression,∣∣rkh(B)− rh(x, a)

∣∣ =

∣∣∣∣∣
∑
B′⊇B r̂kh(B′)nkh(B′)∑

B′⊇B n
k
h(B′)

− rh(x, a)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
B′⊇B

∑
k′≤k 1[Bk′h =B′](R

k′

h − rh(Xk′

h , A
k′

h))∑
B′⊇B n

k
h(B′)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
B′⊇B

∑
k′≤k 1[Bk′h =B′](rh(Xk′

h , A
k′

h)− rh(x, a))∑
B′⊇B n

k
h(B′)

∣∣∣∣∣∣.
where we use the definitions of rkh(B) and r̂kh(B) and the triangle inequality.

Next, using the fact that rh is Lipschitz continuous and that (x, a) ∈ B ⊆ B′ and (Xk′

h , A
k′

h) ∈ B′
have a distance bounded above by D(B′), we can bound the second term by∣∣∣∣∣∣

∑
B′⊇B

∑
k′≤k 1[Bk′h =B′](rh(Xk′

h , A
k′

h)− rh(x, a))∑
B′⊇B n

k
h(B′)

∣∣∣∣∣∣ ≤
∣∣∣∣∣
∑
B′⊇B LrD(B′)nkh(B′)∑

B′⊇B n
k
h(B′)

∣∣∣∣∣.
Finally we bound the first term via the Azuma-Hoeffding inequality. Let k1, . . . , kt be the episodes
in which B and its ancestors were selected by the algorithm (i.e. Bkih is an ancestor of B); here
t =

∑
B′⊇B n

k
h(B′). Under this definition the first term can be rewritten as∣∣∣∣∣1t

t∑
i=1

(
Rkih − rh(Xki

h , A
ki
h)
)∣∣∣∣∣

Set Zi = Rkih − rh(Xki
h , A

ki
h). Clearly Zi is a martingale difference sequence with respect to the

filtration F̂i = Fki+1. Moreover, as the sum of a martingale difference sequence is a martingale then
for any τ ≤ K,

∑τ
i=1 Zi is a martingale, where the difference in subsequent terms is bounded by 2.

Thus by Azuma-Hoeffding’s inequality we see that for a fixed τ ≤ K that

P

(∣∣∣∣∣1τ
τ∑
i=1

Zi

∣∣∣∣∣ ≤
√

8 log(2HK2/δ)

τ

)
≥ 1− 2 exp

(
−
τ 8 log(2HK2/δ)

τ

8

)

19

= 1− δ

2HK2
.

When τ = t =
∑
B′⊇B n

k
h(B′) the right hand side in the concentration is precisely√

8 log(2HK2/δ)∑
B′⊇B n

k
h(B′)

.

We then take a union bound over all steps H and episodes K and all K possible values of τ . Note
that we do not need to union bound over the balls B ∈ Pkh as the estimate of only one ball is changed
per (step, episode) pair, i.e. r̂kh(B) is changed for a single ball per episode. For all balls not selected,
it inherits the concentration of the good event from the previous episode because its estimate does not
change. Furthermore, even if ball B is “split” in episode k, all of its children inherit the value of the
parent ball, and thus also inherits the good event, so we still only need to consider the update for Bkh
itself.

Combining these we have for any (h, k) ∈ [H]× [K] and ball B ∈ Pkh such that (x, a) ∈ B

|rkh(B)− rh(x, a)| ≤
√

8 log(2HK2/δ)∑
B′⊇B n

k
h(B′)

+

∑
B′⊇B LrD(B′)nkh(B′)∑

B′⊇B n
k
h(B′)

≤
√

8 log(2HK2/δ)∑
B′⊇B n

k
h(B′)

+ 4LrD(B) = RUCBkh(B) (by Lemma D.1).

D.2 Concentration of Transition Estimates

Next we show concentration of the estimate of the transition kernel. We use recent work on bounding
the Wasserstein distance between the empirical distribution and the true distribution for arbitrary
measures [46]. The proof is split into two cases, where the cases define the relevant TUCBkh(·) used.
We state the result here but defer the full proof to Appendix K.

Lemma D.3. With probability at least 1−2δ we have that for any h, k ∈ [H]× [K] and ballB ∈ Pkh
with (x, a) ∈ B that

dW (T
k

h(· | B), Th(· | x, a)) ≤ 1

LV
TUCBkh(B)

D.3 Optimism Principle

The concentration bounds derived in Appendices D.1 and D.2 allow us to now demonstrate a principle
of optimism for our value-function estimates.

Lemma D.4. With probability at least 1− 3δ, the following bounds are all simultaneously true for
all k, h ∈ [K]× [H], and any partition Pkh

Q
k

h(B) ≥ Q?h(x, a) for all B ∈ Pkh , and (x, a) ∈ B
Ṽk
h(A) ≥ V ?h (x) for all A ∈ S(Pkh), and x ∈ A

V
k

h(x) ≥ V ?h (x) for all x ∈ S

Proof. Recall the ‘good events’ in Lemmas D.2 and D.3 simultaneously hold with probability 1− 3δ.
Conditioned on this, we show the result by forwards induction on k and backwards induction on h.

Base Case (k = 0): Recall the estimates are initialized as Q
k

h(·) = V
k

h(·) = Ṽk
h(·) = H − h+ 1.

Now since all the rewards lie in [0, 1], we have thatQ?h(·, ·) and V ?h (·) are upper bounded byH−h+1,
and so optimism holds for any h ∈ [H].

20

Induction (k−1→ k): We first consider h = H+1 and then proceed via backwards induction on h.
For h = H + 1, optimism holds as all quantities are zero. Next, for any B ∈ Pkh and any (x, a) ∈ B,

Q
k

h(B) = rkh(B) + RUCBkh(B) + E
Y∼Tkh(·|B)

[V
k−1

h+1(Y)] + TUCBkh(B)

≥ rh(x, a) + E
Y∼Tkh(·|B)

[V ?h+1(Y)] + TUCBkh(B) (induction hypothesis and Lemma D.2)

≥ rh(x, a) + EY∼Th(·|x,a)[V
?
h+1(Y)] = Q?h(x, a) (by Lemma D.3)

where we used the fact that V ?h is LV -Lipschitz continuous and that the difference in expectation over
any Lipschitz function with respect to two different distributions is bounded above by the Wasserstein
distance times the Lipschitz constant.

For any A ∈ S(Pkh) and any x ∈ A, if Ṽk
h(A) = Ṽk−1

h (A) then optimism clearly holds by the
induction hypothesis, and otherwise

Ṽk
h(A) = max

B∈Pkh :S(B)⊇A
Q
k

h(B)

≥ Q
k

h(B?) for (x, π?h(x)) ∈ B?

≥ Q?h(x, π?h(x)) = V ?h (x).

For x ∈ A ∈ S(Pkh), and for the ball B? ∈ Pkh that satisfies (x, π?h(x)) ∈ B?, it must be that
S(B?) ⊇ A because of the construction of the induced partition S(Pkh) via Eq. (3), the dyadic
partitioning of P kh which guarantees S(Pkh) is a partition, and the fact that x ∈ S(B?).

And lastly we have that for any x ∈ S,

V
k

h(x) = Ṽk
h(A) + LV dS(x, x̃(A)) for some ball A ∈ S(Pkh)

≥ V ?h (x̃(A)) + LV dS(x, x̃(A)) by optimism of Ṽk
h

≥ V ?h (x) by Lipschitzness of V ?h .

Note that when a ball B is split, it inherits all estimates from its parents, and thus it inherits the
optimistic properties from its parents value functions as well.

E Sample-Path Regret Decomposition

We next outline our sample-path regret decomposition for one-step value iteration, which uses an
idea adapted from Lemma 12 in [13]. We introduce the notation S(Pkh , x) to refer to the state-ball in
S(Pkh) which contains the point x. The proofs of both results are deferred to Appendix K.

We begin by showing a result on the one-step difference between the estimated value of the policy
and the true value of the policy employed. This critically uses the one-step value-iteration update in
order to express the difference as a decreasing bounded process plus the sum of bonus terms.

Lemma E.1. Consider any h, k ∈ [H]× [K], and any dyadic partition Pk−1
h of S × A. Then the

value update of ADAMB in the k’th episode in step h is upper bounded by

Ṽk−1
h (S(Pk−1

h , Xk
h))− V π

k

h (Xk
h)

≤
H∑

h′=h

Ek−1
[
Ṽk−1
h′ (S(Pk−1

h′ , Xk
h′))− Ṽk

h′(S(Pkh′ , Xk
h′)) | Xk

h

]
+

H∑
h′=h

Ek−1
[
rkh′(B

k
h′)− rh′(Xk

h′ , A
k
h′) + RUCBkh′(B

k
h′) | Xk

h

]
+

H∑
h′=h

Ek−1
[
E
x∼Tkh′ (·|Bkh′)

[V
k−1

h+1(x)]− Ex∼Th′ (·|Xkh′ ,Akh′)[V
k−1

h′+1(x)] | Xk
h

]
+

H∑
h′=h

Ek−1
[
TUCBkh′(B

k
h′) | Xk

h

]
+ LV

H∑
h′=h+1

Ek−1
[
D(Bkh′) | Xk

h

]

21

The proof follows directly by expanding and substituting the various quantities. Moreover, using
this lemma, we can further decompose the expected regret using the optimism principle defined in
Appendix D.

Lemma E.2. The expected regret for ADAMB can be decomposed as

E[R(K)] .
K∑
k=1

H∑
h=1

E
[
Ṽk−1
h (S(Pk−1

h , Xk
h))− Ṽk

h(S(Pkh , Xk
h))
]

+

H∑
h=1

K∑
k=1

E
[
2RUCBkh(Bkh)

]
+

H∑
h=1

K∑
k=1

E
[
2TUCBkh(Bkh)

]
+

K∑
k=1

H∑
h=1

LV E
[
D(Bkh)

]
.

This again follows from the definition of regret, and uses Lemma E.1. The proof is provided in
Appendix K.

Next we analyze the first term in the regret decomposition by arguing it is bounded uniformly over
all sample paths.

Lemma E.3. Under ADAMB, along every sample trajectory we have

K∑
k=1

H∑
h=1

Ṽk−1
h (S(P k−1

h , Xk
h))− Ṽk

h(S(Pkh , Xk
h)) ≤ H2 max

h
|S(PKh)|.

Proof. We show a somewhat stronger bound, namely, that for every h ∈ [H] we have

K∑
k=1

Ṽk−1
h (S(P k−1

h , Xk
h))− Ṽk

h(S(Pkh , Xk
h)) ≤ (H − h+ 1)|S(Pkh)|

from which the claim then follows.

Recall that by definition, we have Ṽk−1
h (S(P k−1

h , x)) is non-decreasing ∀x ∈ S . Now we can write

K∑
k=1

Ṽk−1
h (S(P k−1

h , Xk
h))− Ṽk

h(S(Pkh , Xk
h)) ≤

K∑
k=1

∑
A∈S(PKh)

Ṽk−1
h (A)− Ṽk

h(A)

where for a set A ∈ S(PKh) which is not in Pkh we let Ṽk
h(A) be the Ṽk

h(·) value of the ball
in S(Pkh) which contains A (i.e., we set Ṽk−1

h (A) = Ṽk−1
h (S(Pk−1

h , x̃(A))) and Ṽk
h(A) =

Ṽk
h(S(Pkh , x̃(A)))). Finally, we can change the order of summations to get

K∑
k=1

∑
A∈S(PKh)

Ṽk−1
h (A)− Ṽk

h(A) =
∑

A∈S(PKh)

K∑
k=1

Ṽk−1
h (A)− Ṽk

h(A)

=
∑

A∈S(PKh)

Ṽ0
h(A)− ṼK

h (A)

≤ (H − h+ 1)|S(Pkh)|.

F Adversarial Bounds for Counts over Partitions

Recall that the splitting threshold is defined to be: split a ball once we have that nkh(B) + 1 ≥ n+(B)

where n+(B) = φ2γ`(B) for parameters φ and γ. As the splitting threshold only depends on the level
of the ball in the partition, we abuse notation and use n+(`) = φ2γ` to denote the threshold number
of samples needed by the splitting rule to trigger splitting a ball at level `. We first provide a general
bound for counts over any partition Pkh .

22

Lemma F.1. Consider any partition Pkh for any k ∈ [K], h ∈ [H] induced under ADAMB with
splitting thresholds n+(`), and consider any ‘penalty’ vector {a`}`∈N0 that satisfies a`+1 ≥ a` ≥ 0
and 2a`+1/a` ≤ n+(`)/n+(` − 1) for all ` ∈ N0. Define `? = inf{` | 2d(`−1)n+(` − 1) ≥ k}.
Then

∞∑
`=0

∑
B∈Pkh :`(B)=`

a` ≤ 2d`
?

a`?

Proof. For ` ∈ N0, let x` denote the number of active balls at level ` in Pkh . Then∑
B∈Pkh :`(B)=` a` =

∑
`∈N0

a`x`. Now we claim that under any partition, this sum can be up-
per bound via the following linear program (LP):

maximize:
∞∑
`=0

a`x`

subject to:
∑
`

2−`dx` ≤ 1 ,∑
`

n+(`− 1)2−dx` ≤ k ,

x` ≥ 0 ∀ `

The first constraint arises via the Kraft-McMillan inequality for prefix-free codes (see Chapter 5
in [9]): since each node can have at most D = 2d (where d = dS + dA) children by definition of
the covering dimension, the partition created can be thought of as constructing a prefix-free code on
a D-ary tree. The second constraint arises via a conservation argument on the number of samples;
recall that n+(B) is the minimum number of samples required before B is split into 2d children – an
alternate way to view this is that each ball at level ` requires a ‘sample cost’ of n+(`− 1)/2d unique
samples in order to be created. The sum of this sample cost over all active balls is at most the number
of samples k.

Next, via LP duality, we get that the optimal value for this program is upper bounded by α+ β for
any α and β such that:

2−`dα+ n+(`− 1)2−dβ ≥ a` ∀` ∈ N0

α, β ≥ 0.

Recall the definition of `? = inf{` | 2d(`−1)n+(`− 1) ≥ k} and consider

α̂ =
2d`

?

a`?

2
β̂ =

2da`?

2n+(`? − 1)
.

We claim that this pair satisfies the constraint that 2−`dα̂+n+(`− 1)2−dβ̂ ≥ a` for any `, and hence
by weak duality we have that ∑

B∈Pkh :`(B)=`

a` ≤ α̂+ β̂ ≤ 2α̂ = 2d`
?

a`? .

To verify the constraints on (α̂, β̂) we check it by cases. First note that for ` = `?, we have
2−`

?dα̂+ n+(`? − 1)2−dβ̂ = a`? .

Next, for any ` < `?, note that 2−`d ≥ 2−(`?−1)d > 2 · (2−`?d), and hence 2−`dα̂ ≥ 2 · (2−`?dα̂) =
a`? ≥ a` by construction of the penalty vector.

Similarly, for any ` > `?, we have by assumption on the costs and n+(`) that

n+(`− 1)

a`
≥ 2`−`

?

n+(`? − 1)

a`?
≥ 2

n+(`? − 1)

a`?
.

23

Then we get by plugging in our value of β̂ that

n+(`− 1)2−dβ̂ =
a`?n+(`− 1)

2n+(`? − 1)
≥ a`

This verifies the constraints for all ` ∈ N0.

Note also that in the above proof, we actually use the condition 2a`+1/a` ≤ n+(`)/n+(`− 1) for
` ≥ `?; we use this more refined version in Corollary F.3 below.

F.1 Worst-Case Partition Size and Sum of Bonus Terms

One immediate corollary of Lemma F.1 is a bound on the size of the partition |Pkh | for any h, k.
Corollary F.2. For any h and k we have that

|Pkh | ≤ 4d
(
k

φ

) d
d+γ

and that

`? ≤ 1

d+ γ
log2(k/φ) + 2.

Proof. Note that the size of the partition can be upper bounded by the sum where we take a` = 1 for
every `. Clearly this satisfies the requirements of Lemma F.1. Moreover, using the definition of `?

we have that 2d(`?−2)n+(`? − 2) ≤ k as otherwise `? − 1 would achieve the infimum. Taking this
equation and plugging in the definition of n+(`) by the splitting rule yields that

`? ≤ 1

d+ γ
log2

(
k

φ

)
+ 2.

Then by plugging this in we get that

|Pkh | ≤ 2d`
?

≤ 2
d
d+γ log2(k/φ)+2d = 4d

(
k

φ

)d/(d+γ)

.

In other words, the worst case partition size is determined by a uniform scattering of samples, wherein
the entire space is partitioned up to equal granularity (in other words, a uniform ε-net).

More generally, we can use Lemma F.1 to bound various functions of counts over balls in Pkh .
In Appendix J we use this to bound various terms in our regret expansion.
Corollary F.3. For any h ∈ [H], consider any sequence of partitions Pkh , k ∈ [K] induced under
ADAMB with splitting thresholds n+(`) = φ2γ`. Then, for any h ∈ [H] we have:

• For any α, β ≥ 0 s.t. α ≤ 1 and αγ − β ≥ 1, we have

K∑
k=1

2β`(B
k
h)(

nkh(Bkh)
)α = O

(
φ
−(dα+β)
d+γ K

d+(1−α)γ+β
d+γ

)
• For any α, β ≥ 0 s.t. α ≤ 1 and αγ − β/`? ≥ 1 (where `? = 2 + 1

d+γ log2

(
K
φ

)
), we have

K∑
k=1

`(Bkh)β(
nkh(Bkh)

)α = O
(
φ
−dα
d+γK

d+(1−α)γ
d+γ (log2K)

β
)

The proof of both the inequalities follows from a direct application of Lemma F.1 (and in fact, using
the same `? as in Corollary F.2), after first rewriting the summation over balls in Pkh as a summation
over active balls in PKh . The complete proof is deferred to Appendix K.

24

Algorithm 2 Model-Based Reinforcement Learning with Adaptive Partitioning (ADAMB)
1: procedure ADAMB(S,A,D, H,K, δ)
2: Initialize partitions P0

h = S ×A for h ∈ [H], estimates Q
0

h(·) = V
k

h(·) = H − h+ 1
3: for each episode k ← 1, . . .K do
4: Receive starting state Xk

1
5: for each step h← 1, . . . ,H do
6: Observe Xk

h and determine RELEVANTkh(Xk
h) = {B ∈ Pk−1

h | Xk
h ∈ B}

7: Greedy selection rule: pick Bkh = argmaxB∈RELEVANTkh(Xkh) Q
k−1

h (B)

8: Play action Akh = ã(Bkh) associated with ball Bkh; receive Rkh and transition to Xk
h+1

9: Update counts for nkh(Bkh), r̂kh(Bkh), and T̂k
h(· | Bkh) via:

10: nkh(Bkh)← nk−1
h (Bkh) + 1

11: r̂kh(Bkh)← (nkh(Bkh)−1)r̂kh(Bkh)+Rkh
nkh(Bkh)

12: T̂k
h(A | Bkh) =

(nkh(Bkh)−1)T̂k−1
h (A|Bkh)+1

[Xkh+1
∈A]

nkh(Bkh)
for A ∈ �`(Bkh)

13: if nkh(Bkh) + 1 ≥ n+(Bkh) then REFINE PARTITION(Bkh)
COMPUTE ESTIMATES(Bkh, R

k
h, X

k
h+1)Hh=1

14: procedure REFINE PARTITION(B, h, k)
15: Construct P(B) = {B1, . . . , B2d} a 2−(`(B)+1)-dyadic partition of B
16: Update Pkh = Pk−1

h ∪ P(B) \B
17: For each Bi, initialize nkh(Bi) = 0, r̂kh(Bi) = 0 and T̂k

h(Bi) = 0

18: procedure COMPUTE ESTIMATES((Bkh, R
k
h, X

k
h+1)Hh=1)

19: for each h← 1, . . . H and B ∈ Pkh do
20: Construct rkh(B) and T

k

h(B) by

21: rkh(B) =
∑
B′⊇B r̂kh(B′)nkh(B′)∑

B′⊇B n
k
h(B′)

22: T
k

h(A | B) =

∑
B′⊇B

∑
A′∈�

`(B′);A⊂A
′ 2−dS (`(B′)−`(B))nkh(B′)T̂kh(A′|B′)∑
B′⊇B n

k
h(B′)

for A ∈ �`(B)

23: Solve for V
k−1

h+1(A) for every A ∈ �`(B) by

V
k−1

h+1(A) = min
A′∈S(Pk−1

h+1)
Ṽk−1
h+1(A′) + LVDS(x̃(A), x̃(A′))

24: Set Q
k

h(B) = rkh(B) + RUCBkh(B) + E
A∼Tkh(·|B)

[V
k−1

h+1(A)] + TUCBkh(B)

25: for each h← 1, . . . H and A ∈ S(Pkh) do
26: Set Ṽk

h(A) = min{Ṽk−1
h (A),maxB∈Pkh ;S(B)⊇AQ

k

h(B)}

G Algorithm and Implementation

In this section we give the full pseudocode for implementing the algorithm, discuss the run-time and
space complexity, and provide some discussion on other heuristic approaches to discretization.

G.1 Implementation and Running Time

Here we briefly discuss the oracle assumptions required for implementing the algorithm, and analyze
the run-time and storage complexity.

Oracle Assumptions: There are three main oracle assumptions needed to execute the algorithm. In
line 14 of Algorithm 2 we need access to a “covering oracle” on the metric space. This oracle takes as
input a ball B ⊂ S ×A and outputs an r-covering of B. This subroutine is easy in many metrics of
interest (e.g. the Euclidean norm or any equivalent norms in Rd) by just splitting each of the principle
dimensions in half. Second, we need to be able to compute S(B) for any B ∈ S × A. As our

25

algorithm is maintaining a dyadic partition of the space, this subroutine is also simple to implement
as each ball B is of the form S(B) × S(A) and so the algorithm can store the two components
separately. Lastly, we require computing RELEVANTkh(X). By storing the partition as a tree, this
subroutine can be implementing by traversing down the tree and checking membership at each step.
See the Github repository at https://github.com/seanrsinclair/AdaptiveQLearning for
examples of implementing these methods. Storing the discretization as a hash function would allow
some of these access steps to be implemented in O(1) time, with the downside being that splitting a
region has a larger computational requirement.

Storage Requirements: The algorithm maintains a partition Pkh of Sh × Ah for every h, and
the respective induced partition S(Pkh) whose size is trivially upper bounded by the size of the
total partition. Each element B ∈ Pkh maintains four estimates. The first three (nkh(B), r̂kh(B),

and Q
k

h(B)) are linear with respect to the size of the partition. The last one, T̂k
h(· | B) has size

|�`(B)| . O(2dS`(B)). Moreover, the algorithm also maintains estimate Ṽk
h(·) over S(Pkh). Clearly

we have that the worst-case storage complexity arises from maintaining estimates of the transition
kernels over each region in Pkh . Thus we have that the total storage requirement of the algorithm is
bounded above by

H∑
h=1

∑
B∈PKh

2dS`(B).

Utilizing Lemma F.1 with a` = 2dS` we find that the sum is bounded above by

H∑
h=1

∑
B∈PKh

2dS`(B) ≤
H∑
h=1

2d`
?

a`?

. HK
d+dS
d+γ .

Plugging in the definition of γ from the splitting rule yields the results in Table 1.

Run-Time: We assume that the oracle access discussed occurs in constant time. The inner loop of
Algorithm 2 has four main steps. Finding the set of relevant balls for a given state can be implemented
in logd(|Pkh |) time by traversing through the tree structure. Updating the estimates and refining the
partition occur in constant time by assumption on the oracle. Lastly we need to update the estimates
for Q

k

h and V
k

h. Since the update only needs to happen for a constant number of regions (as only one
ball is selected per step episode pair) the dominating term arises from computing the expectation over
T
k

h(· | Bkh). Noting that the support of the distribution is |�`(Bkh)| = 2dS`(B
k
h) the total run-time of

the algorithm is upper bounded by
H∑
h=1

K∑
k=1

2dS`(B
k
h).

Rewriting the sum we have

H∑
h=1

K∑
k=1

2dS`(B
k
h) ≤

H∑
h=1

∑
`∈N

∑
B∈PKh :`(B)=`

2dS`
∑

k∈[K]:Bkh=B

1

.
H∑
h=1

∑
`∈N

∑
B∈PKh :`(B)=`

2dS`n+(B)

.
H∑
h=1

∑
`∈N

∑
B∈PKh :`(B)=`

2dS`φ2γ`.

Utilizing Lemma F.1 with a` = 2(dS+γ)` we find that the sum is bounded above by Hφ2d`
?

a`? .

HK1+
dS
d+γ . Plugging in γ from the splitting rule yields the result in Table 1.

26

https://github.com/seanrsinclair/AdaptiveQLearning

0 250 500 750 1000 1250 1500 1750 2000
Episode

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ob
se

rv
ed

 R
ew

ar
d

Comparison of Observed Rewards

0 250 500 750 1000 1250 1500 1750 2000
Episode

100

200

300

400

500

Nu
m

be
r o

f A
cti

ve
 R

eg
io

ns

Comparison of Size of Partition
Algorithm
adaQL
epsQL
epsMB
adaMB

0.0 0.2 0.4 0.6 0.8 1.0
State Space

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n
Sp

ac
e

Adaptive Discretization for adaQL at Step 2

0.0 0.2 0.4 0.6 0.8 1.0
State Space

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n
Sp

ac
e

Adaptive Discretization for adaMB at Step 2

Figure 3: Comparison of the observed rewards, size of the partition, and resulting discretization
for the four algorithms on the one-dimensional oil problem with no noise and survey function
f(x, a) = 1− (x− .7)2 and α = 1. The colours correspond to the estimated Q

k

h(B) values, where
green corresponds to a larger estimated Q value.

Monotone Increasing Run-Time and Storage Complexity: The run-time and storage complexity
guarantees presented are monotonically increasing with respect to the number of episodes K. How-
ever, to get sublinear minimax regret in a continuous setting for nonparametric Lipschitz models, the
model complexity must grow over episodes. In practice, one would run ADAMB until running out
of space - and our experiments show that ADAMB uses resources (storage and computation) much
better than a uniform discretization. We are not aware of any storage-performance lower bounds, so
this is an interesting future direction.

H Experiments

In this section we give full details on the experiments and simulations performed. For full code
implementation and more results please see the Github repository at https://github.com/
seanrsinclair/AdaptiveQLearning.

For the experiments we were motivated to work on ambulance routing and the oil discovery problem
as efficient algorithms for reinforcement learning in operations tasks is still largely unexplored. It
is, however, a very natural objective in designing systems where agents must learn to navigate an
uncertain environment to maximize their utility. These experiments can have broader implications
in planning effective public transportation, stationing medics at events, or even cache management
(which technically is a discrete measurement, but is most usefully talked about in a continuous manner
due to the magnitude of memory units).

The main objective for continuous space problems in reinforcement learning is to meaningfully store
continuous data in a discrete manner while still producing optimal results in terms of performance
and reward. We find that the oil discovery and ambulance routing problems are simple enough that
we can realistically produce uniform discretization benchmarks to test our adaptive algorithm against.

27

https://github.com/seanrsinclair/AdaptiveQLearning
https://github.com/seanrsinclair/AdaptiveQLearning

0 250 500 750 1000 1250 1500 1750 2000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ob
se

rv
ed

 R
ew

ar
d

Comparison of Observed Rewards

0 250 500 750 1000 1250 1500 1750 2000
Episode

100

200

300

400

500

Nu
m

be
r o

f A
cti

ve
 R

eg
io

ns

Comparison of Size of Partition
Algorithm
adaQL
epsQL
epsMB
adaMB

0.0 0.2 0.4 0.6 0.8 1.0
State Space

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n
Sp

ac
e

Adaptive Discretization for adaQL at Step 2

0.0 0.2 0.4 0.6 0.8 1.0
State Space

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n
Sp

ac
e

Adaptive Discretization for adaMB at Step 2

Figure 4: Comparison of the observed rewards, size of the partition, and resulting discretization for
the four algorithms on the one-dimensional oil problem in the “laplace-reward” setting with α = 1

and λ = 10. The colours correspond to the estimated Q
k

h(B) values, where green corresponds to a
larger estimated Q value.

At the same time, they provide interesting continuous space scenarios that suggest there can be
substantial improvements when using adaptive discretization in real world problems. The ambulance
routing problem also allows us to naturally increase the state and action space dimensionality by
adding another ambulance and consequently test our algorithms in a slightly more complex setting.
In particular, we compare ADAPTIVE Q-LEARNING[38], MODEL-FREE ε-NET[42], ADAMB
(Algorithm 1), and a ε-net variant of UCBVI [5]. We refer to the simulations as ADAQL, EPSILONQL,
ADAMB, and EPSILONMB respectively in the figures.

H.1 Oil Discovery

This problem, adapted from [24] is a continuous variant of the “Grid World” environment. It
comprises of an agent surveying a 1D map in search of hidden “oil deposits”. The world is endowed
with an unknown survey function which encodes the probability of observing oil at that specific
location. For agents to move to a new location they pay a cost proportional to the distance moved,
and surveying the land produces noisy estimates of the true value of that location. In addition, due to
varying terrain the true location the agent moves to is perturbed as a function of the state and action.

To formalize the problem, here the state space S = [0, 1] and action space A = [0, 1], where the
product space is endowed with the `∞ metric. The reward function is defined as

rh(x, a) = max{min{fh(x, a)− α|x− a|+ ε, 1}, 0}

where fh(x, a) is the survey function, corresponding to the probability of observing an oil deposit at
that specific location and α is a parameter used to govern the transportation cost and ε is independent
Gaussian noise. The transition function is defined as

Ph(· | x, a) = max{min{δa +N(0, σh(x, a)2), 1}, 0}

28

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Laplace Reward

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Quadratic Reward

Figure 5: Plot of discretized approximation toQ?h for the one-dimensional oil problem in the “laplace”
(λ = 10) and “quadratic” (λ = 1) setting. Note that here the x-axis corresponds to states and the
y-axis to actions. The colour corresponds to the true Q?2 value where green corresponds to a larger
value.

where again we have truncated the new state to fall within [0, 1] and the noise function σh(x, a) allows
for varying terrain in the environment leading to noisy transitions. Clearly if we take σh(x, a) = 0
we recover deterministic transitions from a state x taking action a to the next state being a.

We performed three different simulations, where we took fh(x, a) and σh(x, a) as follows:

Noiseless Setting: σh(x, a) = 0 and the reward function fh(x, a) = 1 − λ(x − c)2 or fh(x, a) =
1− e−λ|x−c| where c is the location of the oil deposit and λ is a tunable parameter.

Sparse-Reward Setting: σh(x, a) = .025(x+ a)2 and the survey function is defined via:

fh(x, a) =



1
h

(
1− e−λ|x−.5|

)
h = 1

1
h

(
1− e−λ|x−.25|) h = 2

1
h

(
1− e−λ|x−.5|

)
h = 3

1
h

(
1− e−λ|x−.75|) h = 4

1
h

(
1− e−λ|x−1|) h = 5

Discussion. We can see in Figure 4 and in Figure 3 that the EPSILONQL algorithm takes much longer
to learn the optimal policy than its counterpart EPSILONMB and both model-based algorithms. Seeing
improved performance of model-based algorithms over model-free with a uniform discretization is
unsurprising, as it is folklore that model-based algorithms perform better than model-free in discrete
spaces.

The two adaptive algorithms also offer a significantly smaller partition size than the corresponding
uniform discretization. After comparing the adaptive algorithms’ discretization of estimated Q-
values with the true Q?2-values in the state-action space, we find that the adaptive algorithms closely
approximate the underlying Q function (see Figure 5). This is as the adaptive algorithms maintain a
much finer partition in regions of the space where the underlying Q? values are large, thus reducing
unnecessary exploration (hence reducing the size of the partition), and allowing the algorithm to learn
the optimal policy faster (low regret). This demonstrates our algorithms’ effectiveness in allocating
space only to where it is advantageous to exploit more rigorously. Interestingly, we see that the
model-free algorithm is able to more closely resemble the underlying Q? values than the model-based
algorithm. This affirms recent work showing instance-dependent bounds for model-free algorithms
[7], and our discussion on the drawback of model-based algorithms storing estimates of the transition
kernel.

Moreover, in the attached github repository we include code testing the necessity of the splitting rule
in the model based algorithm being of the form n+(B) = φ2γ`(B) for various forms of γ. While
the theoretical results indicate that γ = dS is necessary for convergence, experimentally we see that
γ = 2 matching the model-free algorithm also suffices.

29

0 250 500 750 1000 1250 1500 1750 2000
Episode

3.0

3.5

4.0

4.5

5.0

Ob
se

rv
ed

 R
ew

ar
d

Comparison of Observed Rewards

0 250 500 750 1000 1250 1500 1750 2000
Episode

100

200

300

400

500

Nu
m

be
r o

f A
cti

ve
 R

eg
io

ns

Comparison of Size of Partition
Algorithm
adaQL
epsQL
epsMB
adaMB

0.0 0.2 0.4 0.6 0.8 1.0
State Space

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n
Sp

ac
e

Adaptive Discretization for adaQL at Step 2

0.0 0.2 0.4 0.6 0.8 1.0
State Space

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tio

n
Sp

ac
e

Adaptive Discretization for adaMB at Step 2

Figure 6: Comparison of the observed rewards, size of the partition, and resulting discretization for
the four algorithms on the one ambulance problem with α = 1 and arrivals Fh = Beta(5, 2). The
colors correspond to the estimated Q

k

h(B) values, where green corresponds to a larger estimated Q
value.

Figure 7: Comparison of the observed rewards and the size of the partition for the four algorithms on
the two ambulance problem with α = 1 and arrivals Fh = Beta(5, 2). We ommit confidence bars in
this plot to help with readability.

H.2 Ambulance Routing

This problem is a widely studied question in operations research and control, and is closely related to
the k-server problem. A controller positions a fleet of k ambulances over H time periods, so as to
minimize the transportation costs and time to respond to incoming patient requests. In our setting, the
controller first chooses locations to station the ambulances. Next, a single request is realized drawn

30

from a fixed h-dependent distribution. Afterwards, one ambulance is chosen to travel to meet the
demand, while other ambulances can re-position themselves.

Here the state space S = [0, 1]k and action space A = [0, 1]k where k is the number of ambulances,
and the product space is endowed with the `∞ metric. The reward function and transition is defined
as follows. First, all ambulances travel from their initial state xi to their desired location ai, paying
a transportation cost to move the ambulance to location ai. Afterwards, a patient request location
ph ∼ Fh is drawn i.i.d. from a fixed distribution Fh. The closest ambulance to ph is then selected to
serve the patient, i.e. let

i? = argmin
i∈[k]

|ai − ph|

denote the ambulance traveling to serve the patient. The rewards and transitions are then defined via:

xnewi =

{
ai i 6= i?

ph i = i?

rh(x, a) = 1−
(α
k
‖x− a‖1 + (1− α)|ai? − ph|

)
where α serves as a tunable parameter to relate the cost of initially traveling from their current
location x to the desired location a, and the cost of traveling to serve the new patient ph. We tested
values of α in {0, .25, 1} where α = 1 corresponds to only penalizing the ambulances for traveling
to the initial location, α = 0 only penalizes agents for traveling to serve the patient, and α = 0.25
interpolates between these two settings.

For the arrival distributions, we took Fh = Beta(5, 2), Fh = Uniform(0, 1) and a time-varying
arrival distribution:

Fh =



Uniform(0, .25) h = 1

Uniform(.25, .3) h = 2

Uniform(.3, .5) h = 3

Uniform(.5, .6) h = 4

Uniform(.6, .65) h = 5

Discussion. In both the single ambulance case (Figure 6) and two-ambulance (Figure 7) we see that
the uniform discretization algorithms are outperformed by their adaptive counterparts. Unsurprisingly,
the partition size of both adaptive algorithms is significantly smaller than the epsilon algorithms, with
ADAQL being slightly more efficient. We also see that both adaptive algorithms perform similarly
in terms of rate of convergence and observed rewards for both the two and one ambulance problem.
Again, this is because the adaptive algorithms maintain a finer partition in regions of the space where
the underlying Q? values are large, thus reducing the size of the partition and leading the algorithm to
learn the optimal policy faster. When looking at the resulting discretizations in Figure 6 we observe
similar results to the oil problem, where the model-free algorithm exhibits a finer partition than the
model-based algorithm.

I Experiment Setup and Computing Infrastructure

Experiment Setup: Each experiment was run with 200 iterations where the relevant plots are taking
the mean and a standard-normal confidence interval of the related quantities. We picked a fixed
horizon of H = 5 and ran it to K = 2000 episodes. As each algorithm uses bonus terms of the
form c/

√
t where t is the number of times a related region has been visited, we tuned the constant

c separately for each algorithm (for c ∈ [.001, 10]) and plot the results on the performance of the
algorithm for the best constant c.

Fixed Discretization UCBVI: We bench marked our adaptive algorithm against a fixed-discretization
model-based algorithm with full and one-step planning. In particular, we implemented UCBVI from
[5] using a fixed discretization of the state-action space. The algorithm takes as input a parameter ε
and constructs an ε-covering of S and A respectively. It then runs the original UCBVI algorithm over

31

Table 3: Comparison of the average running time (in seconds) of the four different algorithms
considered in the experimental results: ADAMB (Algorithm 1), ADAPTIVE Q-LEARNING [38],
NET-BASED Q-LEARNING [42], and a FIXED DISCRETIZATION UCBVI [5].
Problem ADAMB ADAQL EPSILONQL EPSILONMB
1 AMBULANCE 8.07 0.90 1.10 16.59
2 AMBULANCES 22.92 1.57 9.54 90.92
OIL PROBLEM 5.63 1.31 2.21 20.27

this discrete set of states and actions. The only difference is that when visiting a state x, as feedback
to the algorithm, the agent snaps the point to its closest neighbour in the covering.

UCBVI has a regret bound of H3/2
√
SAK +H4S2A where S and A are the size of the state and

action spaces. Replacing these quantities with the size of the covering, we obtain

H3/2
√
ε−dS ε−dAK +H4ε−2dS ε−dA .

A rough calculation also shows that the discretization error is proportional to HLKε. Tuning ε so as
to balance these terms, we find that the regret of the algorithm can be upper bounded by

LH2K2d/(2d+1).

The major difference in this approach versus a uniform discretization of a model-free algorithm (e.g.
[42]) is that in model-based algorithms the lower-order terms scale quadratically with the size of
the state space. In tabular settings, this term is independent of the number of episodes K. However,
in continuous settings the discretization depends on the number of episodes K in order to balance
the approximation error from discretizing the space uniformly. See [11] for a discussion on this
dependence.

Obtaining better results for model-based algorithms with uniform discretization requires better
understanding the complexity in learning the transition model, which ultimately leads to the terms
which depend on the size of the state space. The theoretical analysis of the concentration inequalities
for the transitions in Appendix D are min-max, showing that worst case dependence on the dimension
of the state space is inevitable. However, potential approaches could instead model bonuses over
the value function instead of the transitions would lead to better guarantees [3]. Our concentration
inequalities on the transition kernels is a first-step at understanding this feature in continuous settings.

Computing Infrastructure and Run-Time: The experiments were conducted on a personal com-
puter with an AMD Ryzen 5 3600 6-Core 3.60 GHz processor and 16.0GB of RAM. No GPUs were
harmed in these experiments. The average computation time for running a single simulation of an
algorithm is listed in Table 3. As different hyperparameter settings result in similar run-times, we
only show the three major simulations conducted with fixed bonus scaling c = 1. As to be expected,
the adaptive algorithms ran much faster than their uniform discretization counterparts. Moreover, the
model-free methods have lower running time than the model-based algorithms. These results mimic
the run-time and space complexity discussed in Table 1.

J Regret Derivation

In this section we combine all of the previous results to derive a final regret bound. We first provide a
bound on the expected regret for ADAMB, before using a simple concentration inequality to obtain a
high probability result.
Theorem J.1. Let d = dA + dS , then the expected regret of ADAMB for any sequence of starting
states {Xk

1 }Kk=1 is upper bounded by

E[R(K)] .

{
LH1+ 1

d+1K
d+dS−1

d+dS dS > 2

LH1+ 1
d+1K

1− 1
d+dS+2 dS ≤ 2

where L = 1 + Lr + LV + LV LT and . omits poly-logarithmic factors of 1
δ , H,K, d, and any

universal constants.

32

Proof. Using Lemma E.2 we have that

E[R(K)] ≤
K∑
k=1

H∑
h=1

E
[
Ṽk−1
h (S(Pk−1

h , Xk
h))− Ṽk

h(S(Pkh , Xk
h))
]

+

H∑
h=1

K∑
k=1

E
[
2RUCBkh(Bkh)

]
+

H∑
h=1

K∑
k=1

E
[
2TUCBkh(Bkh)

]
+

K∑
k=1

H∑
h=1

LV E
[
D(Bkh)

]
.

We ignore the expectations, arguing a worst-case problem-independent bound on each of the quantities
which appear in the summation. At the moment, we leave the splitting rule defined in the algorithm
description as n+(`) = φ2γ`, where we specialize the regret bounds for the two cases at the end. We
also ignore all poly-logarithmic factors of H , K, d, and absolute constants in the . notation.

First note that via the splitting rule the algorithm maintains that for any selected ball B we have that
D(B) ≤ (φ/nkh(B))1/γ .

Term One: Using Lemma E.3 we have that
K∑
k=1

H∑
h=1

Ṽk−1
h (S(Pk−1

h , Xk
h))− Ṽk

h(S(Pkh , Xk
h)) ≤ H2 max

h
|S(Pkh)|.

However, using Corollary F.2 we have that |S(Pkh)| ≤ |Pkh | ≤ 4d
(
K
φ

)d/(d+γ)

. Thus we can upper

bound this term by H24d
(
K
φ

)d/(d+γ)

. H2Kd/(d+γ)φ−d/(d+γ).

Term Two and Four:
H∑
h=1

K∑
k=1

RUCBkh(Bkh) + LVD(Bkh) =

H∑
h=1

K∑
k=1

√
8 log(2HK2/δ)∑
B′⊇Bkh

nkh(B′)
+ 4LrD(Bkh) + LVD(Bkh)

.
H∑
h=1

K∑
k=1

√
1

nkh(Bkh)
+ (Lr + LV)

(
φ

nkh(Bkh)

) 1
γ

where we used the definition of RUCBkh(B) and the splitting rule.

Next we start by considering the case when dS > 2.

Term Three:
H∑
h=1

K∑
k=1

TUCBkh(Bkh) =

H∑
h=1

K∑
k=1

(LT + 1)LV 4D(B) + 4LV

√
log(HK2/δ)∑
B′⊆B n

k
h(B′)

+

H∑
h=1

K∑
k=1

LTLVD(B) + cLV

 ∑
B′⊆B

nkh(B′)

−1/dS

.
H∑
h=1

K∑
k=1

(LV LT + LV)

(
φ

nkh(Bkh)

) 1
γ

+ LV

√
1

nkh(Bkh)
+ LV

(
nkh(Bkh)

)−1/dS
.

where we used the definition of TUCBkh(Bkh).

Combining Terms: We will take φ ≥ 1 in order to tune the regret bound in terms of H and γ = dS
in this situation. Using this we find that the dominating term is of the form (φ/nkh(Bkh))1/γ . Thus we
get that for L = 1 + Lr + LV + LV LT ,

R(K) . H2φ−
d
d+γK

d
d+γ + Lφ

1
γ

H∑
h=1

K∑
k=1

(
1

nkh(Bkh)

) 1
γ

.

We now use Corollary F.3 for the case when α = 1
γ and β = 0. This satisfies the required conditions

of the result and we get:

R(K) . H2φ−
d
d+γK

d
d+γ +HLφ

1
γ φ−

d
γ(d+γ)K

d+γ−1
d+γ

33

= H2φ−
d
d+γK

d
d+γ +HLφ

1
d+γK

d+γ−1
d+γ .

Taking φ as φ = H
d+γ
d+1 ≥ 1 and plugging in γ = dS we see that

R(K) . LH1+ 1
d+1K

d+dS−1

d+dS .

Next we consider the case when dS ≤ 2. The first two terms and the fourth term remain the same,
whereby now in the third term we have:
H∑
h=1

K∑
k=1

TUCBkh(Bkh) =

H∑
h=1

K∑
k=1

LV

(5LT + 6)D(Bkh) + 4

√
log(HK2)∑
B′⊇Bkh

nkh(B′)
+ c

√√√√ 2dS`(B
k
h)∑

B′⊇Bkh
nkh(B′)


.

H∑
h=1

K∑
k=1

LV (1 + LT)

(
φ

nkh(Bkh)

)1/γ

+ LV

√
1

nkh(Bkh)
+ LV

√
2dS`(B

k
h)

nkh(Bkh)
.

Combining Terms: Again using that we take φ ≥ 1 we can combine terms to get:

R(K) . H2φ−
d
d+γK

d
d+γ + L

H∑
h=1

K∑
k=1

(
1

nkh(Bkh)

) 1
γ

+ L

H∑
h=1

K∑
k=1

√
2dS`(B

k
h)

nkh(Bkh)
.

Again using Corollary F.3 for the case when γ = dS + 2 which satisfies the requirements we get

R(K) . H2φ−
d
d+γK

d
d+γ + LHφ

1
d+γK

d+γ−1
d+γ + LHφ−

d
2(d+γ)K

d+1
2
γ+1

2
d+γ

. H2φ−
d
d+γK

d
d+γ + LHφ

1
d+γK

d+γ−1
d+γ .

where we used the fact that the second term dominates the third when γ = dS + 2. Taking φ the
same as the previous case we get:

R(K) . LH1+ 1
d+1K

d+dS+1

d+dS+2 .

Using this bound on the expected regret and a straightforward use of Azuma-Hoeffding’s inequality
we can show the following:
Theorem J.2. Let d = dA + dS , then the regret of ADAMB for any sequence of starting states
{Xk

1 }Kk=1 is upper bounded with probability at least 1− δ by

R(K) .

{
LH1+ 1

d+1K
d+dS−1

d+dS dS > 2

LH1+ 1
d+1K

d+dS+1

d+dS+2 dS ≤ 2

where L = 1 + Lr + LV + LV LT and . omits poly-logarithmic factors of 1
δ , H,K, d, and any

universal constants.

Proof. Let R(K) =
∑K
k=1 V

?
1 (Xk

1) − V π
k

1 (Xk
1) be the true regret of the algorithm. We apply

Azuma-Hoeffding’s inequality, where we use Theorem J.1 to find a bound on its expectation. Keeping
the same notation as before, let Zτ =

∑τ
k=1 V

?
1 (Xk

1) − V πk1 − E
[∑τ

k=1 V
?
1 (Xk

1)− V πk1 (Xk
1)
]
.

Clearly we have that Zτ is adapted to the filtration Fτ , and has finite absolute moments. Moreover,
using the fact that the value function is bounded above by H then

|Zτ − Zτ−1| = |V ?1 (Xτ
1)− V π

τ

1 (Xτ
1)− E

[
V ?1 (Xτ

1)− V π
τ

1 (Xτ
1)
]
|

≤ 4H.

Thus we get, via a straightforward application of Azuma-Hoeffding’s that with probability at least
1− δ,

R(K) ≤ E[R(K)] +
√

32H2K log(1/δ)

.

{
LH1+ 1

d+1K
d+dS−1

d+dS dS > 2

LH1+ 1
d+1K

1− 1
d+dS+2 dS ≤ 2.

34

K Proofs for Technical Results

Finally we provide some additional proofs of the technical results we use in our regret analysis.

Proof of Lemma D.1. Recall we want to show that for any ball B and h, k ∈ [H]× [K] we have∑
B′⊇B D(B′)nkh(B′)∑

B′⊇B n
k
h(B′)

≤ 4D(B).

First notice that the term on the left hand side can be rewritten as:∑
B′⊇B D(B′)nkh(B′)∑

B′⊇B n
k
h(B′)

=
1

t

t∑
i=1

D(Bkih)

where t =
∑
B′⊇B n

k
h(B′) is the number of times B or its ancestors were selected and k1, . . . , kt are

the episodes for which they were selected. Using the fact that D(Bkih) are decreasing over time as the
partition is refined, this average can be upper bounded by only averaging over the ancestors of B, i.e.∑

B′⊇B D(B′)nkh(B′)∑
B′⊇B n

k
h(B′)

≤
∑
B′)B D(B′)nkh(B′)∑

B′)B n
k
h(B′)

.

Using the splitting threshold n+(B) = φ2γ`(B), we can upper bound this quantity by∑
B′)B n

k
h(B′)D(B′)∑

B′)B n
k
h(B′)

=

∑`(B)−1
i=0 2−iφ2γi∑`(B)−1
i=0 φ2γi

≤
2(γ−1)(`(B)−1)

∑∞
i=0 2−(γ−1)i

2γ(`(B)−1)

≤ 2 · 2(γ−1)(`(B)−1)

2γ(`(B)−1)
because 2−(γ−1) ≤ 1

2

= 4 · 2−`(B) = 4D(B).

Proof of Lemma D.3, for dS > 2. Let h, k ∈ [H] × [K] and B ∈ Pkh be fixed and (x, a) ∈ B be
arbitrary. We use a combination of Proposition 10 and 20 from [46]. Let P0 = Th(· | x0, a0) where
(x0, a0) = (x̃(B), ã(B)) is the center of the ball B. Our goal then is to come up with concentration
between the one-Wasserstein metric of T

k

h(· | B) and Th(· | x, a). We break the proof down into
four stages, where we show concentration between the one-Wasserstein distance of various measures.
As defined, T

k

h(· | B) is a distribution over �`(B), the uniform discretization of S at over balls with

diameter 2−`(B). However, we will view T
k

h(· | B) as a distribution over a set of finite points in S,
where

T
k

h(x | B) = T
k

h(A | B) if x = x̃(A).

Step One: Let T̃ kh (· | B) be the true empirical distribution of all samples collected from B′ for any
B′ which is an ancestor of B, i.e.

T̃ kh (· | B) =

∑
B′⊇B

∑
k′≤k δXk′h+1

1[Bk′h =B′]∑
B′⊇B n

k
h(B′)

. (7)

LetAk
′

h+1 denote the region in�`(Bk′h) containing the pointXk′

h+1. Recall T
k

h(· | B) is the distribution
defined according to:

T
k

h(· | B) =

∑
B′⊇B

∑
k′≤k 1[Bk′h =B′]

∑
A∈�`(B):A⊆Ak

′
h+1

2−dS(`(B′)−`(B))δx̃(A)∑
B′⊇B n

k
h(B′)

.

35

We can verify that
∑
A∈�`(B):A⊆Ak

′
h+1

2−dS(`(B′)−`(B)) = 1 as the number of regions in �`(B)

which contain any region in �`(B′) is exactly 2dS(`(B′)−`(B)). Furthermore Xk′

h+1 and x̃(A) are both
contained in Ak

′

h+1 so that DS(Xk′

h+1, x̃(A)) ≤ DS(Ak
′

h+1) ≤ D(Bk
′

h), where we use the definition
of �`(Bk′h) for the last inequality. Using these observations, it follows that

dW (T
k

h(· | B), T̃ kh (· | B)) ≤

∑
B′⊇B

∑
k′≤k 1[Bk′h =B′]∑

B′⊇B n
k
h(B′)

∑
A∈�`(B):A⊆Ak

′
h+1

2−dS(`(B′)−`(B))DS(Xk′

h+1, x̃(A))

≤

∑
B′⊇B

∑
k′≤k 1[Bk′h =B′]∑

B′⊇B n
k
h(B′)

∑
A∈�`(B):A⊆Ak

′
h+1

2−dS(`(B′)−`(B))DS(Ak
′

h+1)

≤

∑
B′⊇B

∑
k′≤k 1[Bk′h =B′]D(Bk

′

h)∑
B′⊇B n

k
h(B′)

≤
∑
B′⊇B D(B′)nkh(B′)∑

B′⊇B n
k
h(B′)

Step Two: Next we bound the difference between T̃ kh (· | B) and T̃h(· | x0, a0) where T̃h(· | x0, a0)
is a ‘ghost empirical distribution’ of samples whose marginal distribution is Th(· | x0, a0). By
Lipschitzness of the transition kernels, for every x, a, x0, a0,

dW (Th(· | x, a), Th(· | x0, a0)) ≤ LTD((x, a), (x0, a0)).

Using the coupling definition of the Wasserstein metric, there exists a family of distributions
ξ(·, ·|x, a, x0, a0) parameterized by x, a, x0, a0 such that

E(Z,Y)∼ξ(·,·|x,a,x0,a0)[DS(Z, Y)] = dW (Th(· | x, a), Th(· | x0, a0)) ≤ LTD((x, a), (x0, a0)),

whose marginals are∫
S
ξ(z, y|x, a, x0, a0)dy = Th(z | x, a) and

∫
S
ξ(z, y|x, a, x0, a0)dz = Th(y | x0, a0).

For (Z, Y) ∼ ξ(·, ·|x, a, x0, a0), let ξ′(·|z, x, a, x0, a0) denote the conditional distribution of Y given
Z, such that

ξ(z, y|x, a, x0, a0) = Th(z | x, a)ξ′(y|z, x, a, x0, a0). (8)

For ease of notation let us denote t =
∑
B′⊇B n

k
h(B′) and let the indexing k1, . . . , kt be the

episodes for which B or its ancestors were selected by the algorithm. For the sequence of samples
{(Xki

h , A
ki
h , X

ki
h+1)}i∈[t] realized by our algorithm, consider a ‘ghost sample’ Y1, . . . , Yt such that

Yi ∼ ξ′(·|Xki
h+1, X

ki
h , A

ki
h , x0, a0) for i ∈ [t]. Let T̃h(· | x0, a0) denote the empirical distribution of

these samples such that

T̃h(· | x0, a0) =
1

t

t∑
i=1

δYi and recall by definition T̃ kh (· | B) =
1

t

t∑
i=1

δ
X
ki
h+1

.

Using the definition of the Wasserstein distance we have that

dW (T̃ kh (· | B), T̃h(· | x0, a0)) ≤ 1

t

t∑
i=1

DS(Xki
h+1, Yi). (9)

We will use Azuma-Hoeffding’s to provide a high probability bound on this term by its expectation.
For any τ ≤ K define the quantity

Zτ =

τ∑
i=1

DS(Xki
h+1, Yi)− E

[
DS(Xki

h+1, Yi)
]
.

36

Let Fi be the filtration containing Fki+1 ∪ {Yj}j≤i. It follows that Zτ is a martingale with respect to
Fτ . The process is adapted to the filtration by construction, has finite first moment, and we have that

E[Zτ | Fτ−1] = Zτ−1 + E
[
DS(Xτ

h+1, Yτ)
]
− E

[
DS(Xτ

h+1, Yτ)
]

= Zτ−1.

Moreover, we also have the differences are bounded by

|Zτ − Zτ−1| =
∣∣∣DS(Xkτ

h+1, Yτ)− E
[
DS(Xkτ

h+1, Yτ)
]∣∣∣ ≤ 2

since by assumption DS(S) ≤ 1. By Azuma-Hoeffding’s inequality, with probability at least
1− δ

HK2 ,

1

τ

τ∑
i=1

DS(Yi, X
ki
h+1) ≤ E

[
1

τ

τ∑
i=1

DS(Yi, X
ki
h+1)

]
+

√
8 log(HK2/δ)

τ
. (10)

Moreover, by construction of the ghost samples we have that

1

τ

τ∑
i=1

E
[
DS(Yi, X

ki
h+1)

]
=

1

τ

τ∑
i=1

E
[
dW (Th(· | Xki

h , A
ki
h), Th(· | x0, a0))

]
≤ 1

τ

τ∑
i=1

LVD(Bkih+1)

since x0, a0 is in the ball B which is contained in the ball Bkih+1. By plugging this into Eq. (10),
taking a union bound over the number of steps H , the number of episodes K, the number of potential
stopping times K, and combining it with Eq. (9) and using the construction of t, it follows that with
probability at least 1− δ, for all h, k,B

dW (T̃ kh (· | B), T̃h(· | x0, a0)) ≤ LT

∑
B′⊇B n

k
h(B′)D(B′)∑

B′⊇B n
k
h(B′)

+

√
8 log(HK2/δ)∑
B′⊇B n

k
h(B′)

.

Note that we do not need to union bound over all balls B ∈ Pkh as the estimate of only one ball is

changed per (step, episode) pair, i.e. T̂k
h(B) and correspondingly T

k

h(B) is changed for only a single
ball B = Bkh per episode. For all balls not selected, it inherits the concentration of the good event
from the previous episode because its estimate does not change. Furthermore, even if ball B is “split”
in episode k, all of its children inherit the value of the parent ball, and thus also inherits the good
event, so we still only need to consider the update for Bkh itself.

Step Three: Next we bound dW (T̃h(· | x0, a0), Th(· | x0, a0)). Recall Fi is the filtration containing
Fki+1 ∪ {Yj}j≤i. Note that the joint distribution over {(Xki

h , A
ki
h , X

ki
h+1, Yi)}i∈[t] is given by

Gt({(Xki
h , A

ki
h , X

ki
h+1, Yi)}i∈[t]) =

t∏
i=1

(P (Xki
h , A

ki
h | Fi−1)Th(Xki

h+1|X
ki
h , A

ki
h)ξ′(Yi|Xki

h+1, X
ki
h , A

ki
h , x0, a0),

where P (Xki
h , A

ki
h | Fi−1) is given by the dynamics of the MDP along with the policy that the

algorithm plays. Then we have∫
S×A×S

Gt({(Xki
h , X

ki
h , X

ki
h+1, Yi)}i∈[t])dX

kt
h dA

kt
h dX

kt
h+1

= Gt−1({(Xki
h , X

ki
h , X

ki
h+1, Yi)}i∈[t−1])

·
∫
S×A

P (Xkt
h , A

kt
h | Fkt−1

)

(∫
S
ξ(Xki

h+1, Yi|X
ki
h , A

ki
h , x0, a0)dXkt

h+1

)
dXkt

h dA
kt
h

= Gt−1({(Xki
h , X

ki
h , X

ki
h+1, Yi)}i∈[t−1])Th(Yi|x0, a0)

∫
S×A

P (Xkt
h , A

kt
h | Fkt−1

)dXkt
h dA

kt
h

= Gt−1({(Xki
h , X

ki
h , X

ki
h+1, Yi)}i∈[t−1])Th(Yi|x0, a0).

37

By repeating this calculation, we can verify that the marginal distribution of Y1 . . . Yt is∏
i∈[t] Th(Yi|x0, a0). Following Proposition 10 and 20 from [46] for the case when dS > 2 we have

that with probability at least 1− δ/HK2 for some universal constant c,

dW (T̃h(· | x0, a0), Th(· | x0, a0)) ≤ E
[
dW (T̃h(· | x0, a0), Th(· | x0, a0)

]
+

√
log(HK2/δ)∑
B′⊆B n

k
h(B′)

≤ c

 ∑
B′⊆B

nkh(B′)

−1/dS

+

√
log(HK2/δ)∑
B′⊆B n

k
h(B′)

.

Step Four: Using the assumption that Th is Lipschitz and (x0, a0) and (x, a) ∈ B we have that

dW (Th(· | x, a), Th(· | x0, a0)) ≤ LTD((x, a), (x0, a0)) ≤ LTD(B).

Putting all of the pieces together we get that

dW (T
k

h(· | B), Th(· | x, a))

≤ dW (T
k

h(· | B), T̃ kh (· | B)) + dW (T̃ kh (· | B), T̃h(· | x0, a0))

+ dW (T̃h(· | x0, a0), Th(· | x0, a0)) + dW (Th(· | x0, a0), Th(· | x, a))

≤
∑
B′⊇B n

k
h(B′)D(B′)∑

B′⊇B n
k
h(B′)

+

∑
B′⊆B LTn

k
h(B′)D(B′)∑

B′⊆B n
k
h(B′)

+

√
8 log(HK2/δ)∑
B′⊆B n

k
h(B′)

+ LTD(B) + c

 ∑
B′⊆B

nkh(B′)

−1/dS

+

√
log(HK2/δ)∑
B′⊆B n

k
h(B′)

= (LT + 1)

∑
B′⊇B n

k
h(B′)D(B′)∑

B′⊇B n
k
h(B′)

+ 4

√
log(HK2/δ)∑
B′⊆B n

k
h(B′)

+ LTD(B) + c

 ∑
B′⊆B

nkh(B′)

−1/dS

≤ (5LT + 4)D(B) + 4

√
log(HK2/δ)∑
B′⊆B n

k
h(B′)

+ c

 ∑
B′⊆B

nkh(B′)

−1/dS

by Lemma D.1

The result then follows via a union bound over H , K, the K possible values of the random variable
nkh(B). Per usual we do not need to union bound over the number of balls as the estimate of only one
ball is updated per iteration.

The second concentration inequality deals with the case when dS ≤ 2. The constant c in Proposition
10 from [46] becomes very large when dS → 2, and thus we instead use the fact that T

k

h(· | B) has
finite support over 2dS`(B) points and consider Wasserstein convergence of empirical distributions
sampled from discrete distributions. Th(· | x, a) is still a (potentially) continuous distribution so we
need to change Step 3 of the above argument slightly.

Proof of Lemma D.3, for dS ≤ 2. Let h, k ∈ [H] × [K] and B ∈ Pkh be fixed with (x, a) ∈ B
arbitrary. We use a combination of Proposition 10 and 20 from [46] for the case when when the
distributions have finite support. As before, let (x0, a0) = (x̃(B), ã(B)) be the center of the ball
B. We again break the proof down into several stages, where we show concentration between the
Wasserstein distance of various measures. In order to obtain bounds that scale with the support of
T
k

h(· | B) we consider “snapped” versions of the distributions, where we snap the resulting random
variable to its point in the discretization of �`(B). We repeat the same first two steps as Lemma D.3
which are restated again here for completeness.

Step One: Let T̃ kh (· | B) be the true empirical distribution of all samples collected from B′ for any
B′ which is an ancestor of B, formally defined in Eq. (7). By the same argument as Step 1 in the

38

proof of Lemma D.3 it follows that

dW (T
k

h(· | B), T̃ kh (· | B)) ≤
∑
B′⊇B n

k
h(B′)D(B′)∑

B′⊇B n
k
h(B′)

Step Two: Let T̃h(· | x0, a0) be a ‘ghost empirical distribution’ of samples whose marginal
distribution is Th(· | x0, a0). It consists of t =

∑
B′⊇B n

k
h(B′) samples drawn from Yi ∼

ξ′(·|Xki
h+1, X

ki
h , A

ki
h , x0, a0) as constructed in Eq. (8). By the same argument from Step 2 of the

proof of Lemma D.3, with probability at least 1− δ, for all h, k,B

dW (T̃ kh (· | B), T̃h(· | x0, a0)) ≤ LT

∑
B′⊇B n

k
h(B′)D(B′)∑

B′⊇B n
k
h(B′)

+

√
8 log(HK2/δ)∑
B′⊇B n

k
h(B′)

.

Step Three: Next we let T̃ `(B)
h (· | x0, a0) to be the snapped empirical distribution of the ghost

samples Y1 . . . Yt to their nearest point in �`(B). Denote Ỹi as x̃(Ai) where Ai ∈ �`(B) is the region
containing the point Yi. It follows that:

T̃
`(B)
h (· | x0, a0) =

1

t

t∑
i=1

∑
A∈�`(B)

1[Yi∈A]δx̃(A) =
1

t

t∑
i=1

δỸi .

Since each of the points are moved by at most DS(Ai) ≤ D(B) by construction of T̃ `(B)
h and �`(B),

we have that dW (T̃
`(B)
h (· | x0, a0), T̃h(· | x0, a0)) ≤ D(B).

Define the snapped distribution T `(B)
h (· | x0, a0) according to

T
`(B)
h (x | x0, a0) =

∑
A∈�`(B)

1[x=x̃(A)]

∫
A

Th(y | x0, a0)dy

where we note that this distribution has finite support of size 2−dS`(B) over the set {x̃(A)}A∈�`(B)
.

By the same argument from Step 3 of the proof of Lemma D.3, it holds that by construction, the
marginal distribution of Y1 . . . Yt denoted fY1...Yt is

∏
i∈[t] Th(Yi|x0, a0). Furthermore, conditioned

on (Y1 . . . Yt), the snapped samples (Ỹ1 . . . Ỹt) are fully determined. Recall that Ỹi can only take
values in {x̃(A)}A∈�`(B)

. If Ai refers to the set in �`(B) for which Ỹi = x̃(Ai), then

P (Ỹ1 . . . Ỹt) = P (Y1 ∈ A1, . . . Yt ∈ At)

=

∫
A1

∫
A2

· · ·
∫
At

fY1...Yt(y1 . . . yt)dyt · · · dy1

=

∫
A1

∫
A2

· · ·
∫
At

∏
i∈[t]

Th(Yi|x0, a0)dyt · · · dy1

=
∏
i∈[t]

∫
Ai

Th(Yi|x0, a0)dyi

= T
`(B)
h (Ỹi|x0, a0).

such that the marginal distribution of Ỹ1 . . . Ỹt is equivalent to that of a set of t i.i.d. samples from
T
`(B)
h (·|x0, a0).

By Proposition [13] and [20] from from [46], for some universal constant c, with probability at least
1− δ

HK2 ,

dW (T̃
`(B)
h (· | x0, a0), T

`(B)
h (· | x0, a0))

≤E
[
dW (T̃

`(B)
h (· | x0, a0), T̃

`(B)
h (· | x0, a0))

]
+

√
log(HK2/δ)

t

39

≤c
√

2dS`(B)

t
+

√
log(HK2/δ)

t
.

Step Four: Next we construct a coupling to show that dW (T
`(B)
h (· | x0, a0), Th(· | x0, a0)) ≤ D(B).

For a coupling we define a family of distributions Γ(·, ·|x0, a0, `) parameterized by x0, a0, ` such that

Γ(xsnap, xorig|x0, a0, `) = Th(xorig | x0, a0)
∑
A∈S`

1[xsnap=x̃(A)]1[xorig∈A].

First notice that the marginals of these distributions match T `h and Th respectively since:∫
S

Γ(xsnap, x | x0, a0, `)dx =
∑
A∈S`

1[xsnap=x̃(A)]

∫
A

Th(x | x0, a0)dx = T `h(xsnap | x0, a0)

and ∫
S

Γ(x, xorig | x0, a0, `)dx =
∑
A∈S`

Γ(x̃(A), xorig | x0, a0, `) = Th(xorig | x0, a0).

Using this coupling Γ it follows by definition of Wasserstein distance that

dW (T `h(· | x0, a0), Th(· | x0, a0)) ≤ EXsnap,Xorig∼Γ(·|x0,a0,`(B))[DS(Xsnap, Xorig)]

≤ D(B)

where we used that Xsnap and Xorig have distance bounded by DS(A) for some A ∈ �`(B), and by
construction of �`(B), DS(A) = D(B).

Step Five: Using the assumption that Th is Lipschitz and (x0, a0) and (x, a) ∈ B we have that

dW (Th(· | x, a), Th(· | x0, a0)) ≤ LTD((x, a), (x0, a0)) ≤ LTD(B).

Putting all of the pieces together and a union bound over H , K, the possible values of the random
variables t, and the number of balls B ∈ PKh we get that:

dW (T
k

h(· | B), Th(· | x0, a0))

≤dW (T
k

h(· | B), T̃ kh (· | B)) + dW (T̃ kh (· | B), T̃h(· | x0, a0)) + dW (T̃h(· | x0, a0), T̃
`(B)
h (· | x0, a0))

+ dW (T̃
`(B)
h (· | x0, a0), Th(· | x0, a0)) + dW (Th(· | x0, a0), Th(· | x, a))

≤
∑
B′⊇B n

k
h(B′)D(B′)∑

B′⊇B n
k
h(B′)

+

∑
B′⊇B LTn

k
h(B′)D(B′)∑

B′⊇B n
k
h(B′)

+

√
8 log(HK2/δ)∑
B′⊇B n

k
h(B′)

+ c

√
2dS`(B)∑

B′⊇B n
k
h(B′)

+

√
log(HK2)∑
B′⊇B n

k
h(B′)

+ 2D(B) + LTD(B)

=(1 + LT)

∑
B′⊇B n

k
h(B′)D(B′)∑

B′⊇B n
k
h(B′)

+ 4

√
log(HK2/δ)∑
B′⊇B n

k
h(B′)

+ (2 + LT)D(B) + c

√
2dS`(B)∑

B′⊇B n
k
h(B′)

≤(5LT + 4)D(B) + 4

√
log(HK2/δ)∑
B′⊇B n

k
h(B′)

+ c

√
2dS`(B)∑

B′⊇B n
k
h(B′)

by Lemma D.1.

which is 1
LV

TUCBkh(B) as needed.

Proof of Corollary F.3. The proof of both the inequalities follows from a direct application
of Lemma F.1, after first rewriting the summation over balls in Pkh as a summation over active
balls in PKh .

First Inequality: First, observe that we can write
K∑
k=1

2β`(B
k
h)(

nkh(Bkh)
)α =

∑
`∈N0

∑
B:`(B)=`

K∑
k=1

1[Bkh=B]
2β`(B)(
nkh(B)

)α
40

Now, in order to use Lemma F.1, we first need to rewrite the summation as over ‘active balls’ in the
terminal partition PKh (i.e., balls which are yet to be split). Expanding the above, we get

K∑
k=1

2β`(B
k
h)(

nkh(Bkh)
)α =

∑
`∈N0

∑
B∈PKh :`(B)=`

∑
B′⊇B

2d(`(B′)−`(B))
K∑
k=1

1[Bkh=B′]
2β`(B

′)(
nkh(B′)

)α
≤
∑
`∈N0

∑
B∈PKh :`(B)=`

∑
B′⊇B

2d(`(B′)−`(B))2β`(B
′)

n+(`(B′))∑
j=1

1

jα

≤ φ1−α

1− α
∑
`∈N0

∑
B∈PKh :`(B)=`

∑
B′⊇B

2d(`(B′)−`(B))2β`(B
′)2γ`(B

′)(1−α).

where we used the fact that once a ball has been partitioned it is no longer chosen by the algorithm
and an integral approximation to the sum of 1/jα for α ≤ 1. Next, we plug in the levels to get

K∑
k=1

2β`(B
k
h)(

nkh(Bkh)
)α ≤ φ1−α

1− α
∑
`∈N0

∑
B∈PKh :`(B)=`

∑̀
j=0

2d(j−`)2βj2γj(1−α)

=
φ1−α

1− α
∑
`∈N0

∑
B∈PKh :`(B)=`

1

2d`

∑̀
j=0

2j(d+β+γ(1−α))

≤ φ1−α

(2d+β+γ(1−α) − 1)(1− α)

∑
`∈N0

∑
B∈PKh :`(B)=`

1

2d`
2(`+1)(d+β+γ(1−α))

≤ 2φ1−α

(1− α)

∑
`∈N0

∑
B∈PKh :`(B)=`

2`(β+γ(1−α)).

We set a` = 2`(β+γ(1−α)). Clearly we have that a` are increasing with respect to `. Moreover,

2a`+1

a`
=

2 · 2(`+1)(β+γ(1−α))

2(`)(β+γ(1−α))
= 21+β+γ(1−α).

Setting this quantity to be less than n+(`)/n+(`− 1) = 2γ we require that

21+β+γ(1−α) ≤ 2γ ⇔ 1 + β − αγ ≤ 0

Now we can apply Lemma F.1 to get that

K∑
k=1

2β`(B
k
h)(

nkh(Bkh)
)α ≤ 2φ1−α

(1− α)
2d`

?

a`?

=
22(d+β+γ(1−α))φ1−α

(1− α)

(
K

φ

) d+β+γ(1−α)
d+γ

= O
(
φ
−(dα+β)
d+γ K

d+(1−α)γ+β
d+γ

)
.

Second Inequality: As in the previous part, we can rewrite as the summation we have

K∑
k=1

`(Bkh)β(
nkh(Bkh)

)α =
∑
`∈N0

∑
B:`(B)=`

K∑
k=1

1[Bkh=B]
`(B)β(
nkh(B)

)α .
≤
∑
`∈N0

∑
B∈PKh :`(B)=`

∑
B′⊇B

2d(`(B′)−`(B))`(B′)β
n+(`(B′))∑

j=1

1

jα

≤
∑
`∈N0

∑
B∈PKh :`(B)=`

∑
B′⊇B

2d(`(B′)−`(B))`(B′)β
n+(`(B′))1−α

1− α

41

=
φ1−α

1− α
∑
`∈N0

∑
B∈PKh :`(B)=`

∑
B′⊇B

2d(`(B′)−`(B))`(B′)β2`(B
′)γ(1−α)

As before, we plug in the levels to get

K∑
k=1

`(Bkh)β(
nkh(Bkh)

)α =
φ1−α

1− α
∑
`∈N0

∑
B∈PKh :`(B)=`

∑̀
j=0

2d(j−`)jβ2jγ(1−α)

≤ φ1−α

1− α
∑
`∈N0

∑
B∈PKh :`(B)=`

`β

2d`

∑̀
j=0

2j(d+γ(1−α))

≤ 2φ1−α

(1− α)

∑
`∈N0

∑
B∈PKh :`(B)=`

`β2`γ(1−α).

We take the term a` = `β2`γ(1−α). Clearly we have that a` are increasing with respect to `. Moreover,

2a`+1

a`
=

(
1 +

1

`

)β
21+γ(1−α).

We require that this term is less than n+(`+1)/n+(`) = 2γ for all ` ≥ `? (see note after Lemma F.1).
This yields the following sufficient condition (after dividing through by 2γ)(

1 +
1

`

)β
21−αγ ≤ 1 ∀ ` ≥ `?

or equivalently, αγ − β log2(1 + 1/`?) ≥ 1. Finally note that log2(1 + x) ≤ x/ ln 2 ≤ x for all
x ∈ [0, 1]. Thus, we get that a sufficient condition is that αγ − β/`? ≥ 1. Assuming this holds, we
get by Lemma F.1 that

K∑
k=1

`(Bkh)β(
nkh(Bkh)

)α ≤ (2φ1−α

(1− α)

)
2d`

?

a`?

=

(
2φ1−α

1− α

)
4d+γ(1−α)

(
K

φ

) d+γ(1−α)
d+γ

(
log2(K/φ)

d+ γ
+ 2

)β
= O

(
φ
−dα
d+γK

d+(1−α)γ
d+γ (log2K)

β
)
.

Proof of Lemma E.1. We use the notation Bkh′ to denote the active ball containing the point
(Xk

h′ , A
k
h′). Under this we have by the update rule on Ṽk

h′ that for any h′ ≥ h

Ek−1
[
Ṽk
h′(S(Pkh′ , Xk

h′)) | Xk
h

]
≤ Ek−1

[
Q
k

h′(B
k
h′) | Xk

h

]
= Ek−1

[
rkh′(B

k
h′) + E

x∼Tkh′ (·|B)
[V

k−1

h′+1(x)] + RUCBkh′(B
k
h′) + TUCBkh′(B

k
h′) | Xk

h

]
(via update rule for Q

k

h)

= Ek−1
[
rkh′(B

k
h′)− rh′(Xk

h′ , A
k
h′) + RUCBkh′(B

k
h′) | Xk

h

]
+ Ek−1

[
rh′(X

k
h′ , A

k
h′) | Xk

h

]
+ Ek−1

[
E
x∼Tkh′ (·|Bkh′)

[V
k−1

h′+1(x)]− Ex∼Th(·|Xk
h′ ,A

k
h′)

[V
k−1

h′+1(x)] + TUCBkh′(B
k
h′) | Xk

h

]
+ Ek−1

[
Ex∼Th′ (·|Xkh′ ,Akh′)[V

k−1

h′+1(x)] | Xk
h

]
= Ek−1

[
rkh′(B

k
h′)− rh(Xk

h′ , A
k
h′) + RUCBkh′(B

k
h′) | Xk

h

]
+ Ek−1

[
rh(Xk

h′ , A
k
h′) | Xk

h

]
+ Ek−1

[
E
x∼Tkh′ (·|Bkh′)

[V
k−1

h′+1(x)]− Ex∼Th(·|Xk
h′ ,A

k
h′)

[V
k−1

h′+1(x)] + TUCBkh′(B
k
h′) | Xk

h

]
+ Ek−1

[
V
k−1

h′+1(Xk
h′+1) | Xk

h

]
(as Xk

h′+1 ∼ Th(· | Xk
h′ , A

k
h′))

≤ Ek−1
[
rkh′(B

k
h′)− rh(Xk

h′ , A
k
h′) + RUCBkh′(B

k
h′) | Xk

h

]
+ Ek−1

[
rh(Xk

h′ , A
k
h′) | Xk

h

]
42

+ Ek−1
[
E
x∼Tkh′ (·|Bkh′)

[V
k−1

h′+1(x)]− Ex∼Th′ (·|Xkh′ ,akh′)[V
k−1

h′+1(x)] + TUCBkh′(B
k
h′) | Xk

h

]
+ Ek−1

[
Ṽk−1
h′+1(S(Pk−1

h′+1, X
k
h′+1)) + LVD(Bkh′+1) | Xk

h

]
(via update rule for V

k

h)

Taking this inequality and summing from h′ = h up until H we find that∑H
h′=h Ek−1

[
rh′(X

k
h′ , A

k
h′) | Xk

h

]
= V π

k

h (Xk
h). Moreover, by changing the index in the

sum and using the fact that VH+1 = 0, it follows that

H∑
h′=h

Ek−1
[
Ṽk−1
h′+1(S(Pk−1

h′+1, X
k
h′+1)) | Xk

h

]
=

H∑
h′=h

Ek−1
[
Ṽk−1
h′ (S(Pk−1

h′ , Xk
h′)) | Xk

h

]
− Ṽk−1

h (S(Pk−1
h , Xk

h)).

Rearranging the inequalities gives the desired results.

Proof of Lemma E.2. We condition on the good events from Lemmas D.2 and D.3 by taking δ =
1/HK. Using the definition of regret and the law of total expectation we have that:

E[R(K)] = E

[
K∑
k=1

V ?1 (Xk
1)− V π

k

1 (Xk
1)

]

. E

[
K∑
k=1

V
k−1

1 (Xk
1)− V π

k

1 (Xk
1)

]
(via the optimism principle, Lemma D.4)

. E

[
K∑
k=1

Ṽk−1
1 (S(Pk−1

1 , Xk
1)− V π

k

1 (Xk
1) + LVDS(S(Pk−1

1 , Xk
1))

]
(update rule for Ṽk

h)

. E

[
K∑
k=1

Ṽk−1
1 (S(Pk−1

1 , Xk
1)− V π

k

1 (Xk
1) + LVD(Bk1)

]

Next, define Ek−1[·] , E[· | Fk−1]. Now using Lemma E.1, and the tower rule for conditional
expectations, we get

E[R(K)] . E

[
K∑
k=1

Ek−1
[
Ṽk−1

1 (S(Pk−1
1 , Xk

1)− V π
k

1 (Xk
1)
]

+ LVD(Bk1)

]

.
K∑
k=1

H∑
h=1

E
[
Ek−1

[
Ṽk−1
h (S(Pk−1

h , Xk
h))− Ṽk

h(S(Pkh , Xk
h))
]]

+

H∑
h=1

K∑
k=1

E
[
Ek−1

[
rkh(Bkh)− rh(Xk

h , A
k
h) + RUCBkh(Bkh)

]]
+

H∑
h=1

K∑
k=1

E
[
Ek−1

[
E
x∼Tkh(·|Bkh)

[V
k−1

h+1(x)]− Ex∼Th(·|Xkh ,A
k
h)[V

k−1

h+1(x)] + TUCBkh(Bkh)
]]

+

K∑
k=1

H∑
h=1

LV E
[
D(Bkh)

]
=

K∑
k=1

H∑
h=1

E
[
Ṽk−1
h (S(Pk−1

h , Xk
h))− Ṽk

h(S(Pkh , Xk
h))
]

+

H∑
h=1

K∑
k=1

E
[
2RUCBkh(Bkh)

]
+

H∑
h=1

K∑
k=1

E
[
2TUCBkh(Bkh)

]
+

K∑
k=1

H∑
h=1

LV E
[
D(Bkh)

]
where in the last line we used the definition of the good event.

43

	Table of Notation
	Related Work
	Proof Sketch
	Concentration and Clean Events (app:concentration)
	Regret Decomposition (app:decomp)
	Bounds on Size of Partition and Sums of Bonus Terms (app:lpbound)

	Concentration Bounds, Optimism, and Clean Events
	Concentration of Reward Estimates
	Concentration of Transition Estimates
	Optimism Principle

	Sample-Path Regret Decomposition
	Adversarial Bounds for Counts over Partitions
	Worst-Case Partition Size and Sum of Bonus Terms

	Algorithm and Implementation
	Implementation and Running Time

	Experiments
	Oil Discovery
	Ambulance Routing

	Experiment Setup and Computing Infrastructure
	Regret Derivation
	Proofs for Technical Results

