
DAGs with No Fears: A Closer Look at Continuous
Optimization for Learning Bayesian Networks

Dennis Wei
IBM Research

dwei@us.ibm.com

Tian Gao
IBM Research

tgao@us.ibm.com

Yue Yu
Lehigh University

yuy214@lehigh.edu

Abstract

This paper re-examines a continuous optimization framework dubbed NOTEARS
for learning Bayesian networks. We first generalize existing algebraic charac-
terizations of acyclicity to a class of matrix polynomials. Next, focusing on a
one-parameter-per-edge setting, it is shown that the Karush-Kuhn-Tucker (KKT)
optimality conditions for the NOTEARS formulation cannot be satisfied except in a
trivial case, which explains a behavior of the associated algorithm. We then derive
the KKT conditions for an equivalent reformulation, show that they are indeed
necessary, and relate them to explicit constraints that certain edges be absent from
the graph. If the score function is convex, these KKT conditions are also sufficient
for local minimality despite the non-convexity of the constraint. Informed by the
KKT conditions, a local search post-processing algorithm is proposed and shown
to substantially and universally improve the structural Hamming distance of all
tested algorithms, typically by a factor of 2 or more. Some combinations with local
search are both more accurate and more efficient than the original NOTEARS.

1 Introduction

Bayesian networks are directed probabilistic graphical models used to model joint probability
distributions of data in many applications [20, 25]. Automatic discovery of their directed acyclic
graph (DAG) structure is important to research areas from causal inference to biology. However,
DAG structure learning is in general an NP-hard problem [8]. Many learning algorithms have been
proposed to circumvent exhaustive search in the discrete space of DAGs, including those for discrete
variables [7, 1, 24, 16, 9, 30, 12] and continuous variables [6, 27].

Recently, Zheng et al. [31] proposed a continuous optimization formulation, referred to as NOTEARS,
in which acyclicity of the graph is enforced by a trace of matrix exponential constraint on a weighted
adjacency matrix. Several works have since successfully extended the formulation to nonlinear and
nonparametric models [29, 19, 17, 32].

This paper takes further steps toward fulfilling the promise of [31] in opening the door to continuous
optimization techniques for score-based structure learning. We contribute in particular to theoretical
understanding of this framework, leading to significant algorithmic improvements.

First, in Section 2, the acyclicity constraints of [31, 29] are generalized to a class of matrix polynomials
with positive coefficients whose traces characterize acyclicity. We also provide a characterization
involving the gradient of functions in this class, which is not only essential to proving later results but
also has an intuitive graphical interpretation.

In Section 3.1, we revisit the NOTEARS formulation of [31] in which a weighted adjacency matrix is
obtained by element-wise squaring of the parameter matrix. It is shown that the Karush-Kuhn-Tucker
(KKT) optimality conditions for this constrained optimization cannot be satisfied except in a trivial
case. This negative result is somewhat surprising given the empirical success of the augmented

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Lagrangian algorithm of [31], and we use the result to explain why the algorithm does not converge
to an exactly acyclic solution even when the penalty parameters are very high.

In Section 3.2, we consider an equivalent reformulation in which the adjacency matrix is given by the
absolute value of the parameter matrix, motivated in part by the connection between the `1 norm and
sparsity. We show that the KKT conditions for this reformulation are indeed necessary conditions
of optimality, i.e. they are satisfied by all local minima, although even here common constraint
qualification methods turn out to fail. If the score function is convex, then the KKT conditions are
also sufficient for local minimality, despite the non-convexity of the constraint. We then relate the
KKT conditions to the optimality conditions for score optimization subject to explicit edge absence
constraints. The KKT conditions can thus be understood through edge absences: together these must
be sufficient to ensure acyclicity, but each absence must also be necessary in preventing a cycle.

The theoretical development of Section 3.2 naturally suggests two algorithms: an augmented La-
grangian algorithm as in [31] with an absolute value adjacency matrix instead of quadratic, and a
local search algorithm, KKTS, informed by the KKT conditions and proven to satisfy them. We
find in Section 5 that neither of these algorithms yields state-of-the-art accuracy by itself. However,
when combined with other algorithms, KKTS substantially reduces structural Hamming distance
(SHD) with respect to the true graph, typically by a factor of at least 2. Moreover, this improvement
is consistent across dimensions and base algorithms. In the case of NOTEARS, new state-of-the-art
accuracy is obtained, while other combinations can outperform NOTEARS and take less time.

More on related work Bayesian network structure learning has long been an active research area.
Constraint- and score-based methods utilize independence tests and graph scores respectively to learn
the DAG structure. Optimization methods such as greedy search [7], dynamic programming [18],
branch and bound [10], A* search [30, 28], local-to-global search [13] as well as approximation
methods [22] have all been proposed. As mentioned, this paper is most closely related to the
continuous framework of [31] and subsequent works [29, 32]. Regression-based methods for DAG
learning, without the matrix exponential constraint, have also been carefully studied [23, 6, 2, 14].

2 Characterizations of acyclicity

In this first section, we provide algebraic characterizations of acyclicity for a directed graph in terms
of its adjacency matrix. For a directed graph G = (V, E) with vertices V = {1, . . . , d} and directed
edges (i, j) ∈ E , a non-negative matrix A is a (weighted) adjacency matrix for G if Aij > 0 for
(i, j) ∈ E and Aij = 0 otherwise.

We consider a class of functions h(A) corresponding to matrix polynomials of degree d with positive
coefficients, P (A) = c0I + c1A+ · · ·+ cdA

d with cp > 0 for p = 1, . . . , d, from which we define

h(A) = tr(P (A))− c0d =

d∑
p=1

cp tr(A
p). (1)

This class includes the function h(A) = tr
(
(I + A/d)d

)
− d from [29], which corresponds to

cp =
(
d
p

)
/dp, and the trace of matrix exponential from [31],

h(A) = tr(eA)− d =

∞∑
p=1

tr(Ap)

p!
. (2)

Although (2) appears to be an infinite power series, it can be rewritten as a finite series with no powers
higher than d using the Cayley-Hamilton theorem [15], which equates Ad to a linear combination of
I, A, . . . , Ad−1, and similarly for all higher powers of A.

Any function h(A) in (1) can characterize acyclicity. We defer all proofs to the supplement (SM).
Theorem 1. A directed graph G is acyclic if and only if its (weighted) adjacency matrix satisfies
h(A) = 0 for any h defined by (1).

The proof of Theorem 1 is facilitated by Lemma 1 below. We recall that a matrix B is said to be
nilpotent if Bp = 0 for some power p ∈ N , or equivalently if tr(Bp) = 0 for all p ∈ N [15]. We
state the lemma here as there may be independent interest in alternative ways of enforcing nilpotency.

2

Lemma 1. A directed graph G is acyclic if and only if its (weighted) adjacency matrix A is nilpotent.

The gradient of h(A) in (1) is a matrix-valued function given by ∇h(A) =
∑d

p=1 pcp
(
Ap−1)T .

Off-diagonal elements (∇h(A))ij have an intuitive interpretation in terms of directed walks from
j to i, i.e. a sequence of edges (j, i1), (i1, i2), . . . , (il−1, i) ∈ E . If there is a directed walk from j
to i, then there is also a directed path, i.e. a directed walk in which all vertices j, i1, . . . , il−1, i are
distinct [5].
Lemma 2. For any h(A) defined by (1) and i 6= j, (∇h(A))ij > 0 if and only if there exists a
directed walk from j to i in G.

The gradient∇h(A) can also be used to characterize acyclicity, which will prove useful in the sequel.
Lemma 3. A directed graph G is acyclic if and only if the Hadamard product A ◦ ∇h(A) = 0 for
any h defined by (1).

With the help of Lemma 2, we can give a simple graphical interpretation of Lemma 3: If a directed
graph is acyclic, then for every pair (i, j), we must either not have an edge from i to j, i.e. Aij = 0,
or not have a return path from j to i, i.e. (∇h(A))ij = 0.

3 Analysis of continuous acyclicity-constrained optimization

In the remainder of the paper, we address the problem of learning a Bayesian network (a probabilistic
directed graphical model) for the joint distribution of a d-dimensional random vector X , given a data
matrix of n samples X ∈ Rn×d. We assume that the Bayesian network is parametrized by a matrix
W ∈ Rd×d such that the sparsity pattern of W corresponds to the adjacency pattern of the graph:
Wij 6= 0 if and only if (i, j) ∈ E . In other words, each edge is associated with a single parameter
Wij . The most straightforward instance of this setting is a linear structural equation model (SEM)
given by Xj =WT

·jX + zj , where W·j is the jth column of W and zj is random noise. More general
models such as generalized linear models E [Xj |X] = g

(
WT
·jX

)
are also included. While we

experiment only with continuous variables in Section 5, it is straightforward to accommodate binary
variables as well: in a generalized linear structural equation, a single parameter Wij can account for
the effect of a binary input variable Xi, while a suitable link function g (e.g. logistic) can be used for
a binary output Xj .

This section analyzes the continuous optimization problem of minimizing a score function F (W)
subject to the acyclicity constraint h(A) = 0 for any h defined by (1) (thanks to Theorem 1). For
simplicity, it is assumed in this section that F (W) is continuously differentiable, although it is not
hard to extend the analysis to account for an `1 penalty as in (11). We consider two ways of defining
a weighted adjacency matrix A from W . Section 3.1 re-examines the quadratic case A = W ◦W
proposed in [31], while Section 3.2 studies the absolute value case A = |W |.

3.1 Quadratic adjacency matrix

With A =W ◦W as the element-wise square of W , the optimization problem is

min
W

F (W) s.t. h(W ◦W) ≤ 0. (3)

The constraint h(W ◦W) ≤ 0 is equivalent to h(W ◦W) = 0 because h(A) ≥ 0 for non-negative
A, as seen from (1). The matrix exponential case of (3) with h(A) as in (2) was proposed in [31].

Applying Lemma 3 yields the following consequence.
Lemma 4. Let W be a feasible solution to problem (3). Then ∇W (h(W ◦W)) = 0.

The vanishing gradient in Lemma 4 has theoretical and practical implications. First, the Karush-
Kuhn-Tucker (KKT) conditions of optimality [4] for problem (3), namely

∇F (W) + λ∇W (h(W ◦W)) = 0 (4)

with Lagrange multiplier λ ≥ 0, are not satisfied for any feasible solution except in a trivial case.
Proposition 2. Let W be a feasible solution to problem (3). Then unless W is an unconstrained
stationary point of F (W), i.e.∇F (W) = 0, the KKT condition (4) cannot hold.

3

In particular if F (W) is convex, the condition∇F (W) = 0 holds only for unconstrained minimizers
of F (W), so if these solutions are already acyclic, there is nothing more to be done.

On the practical side, Lemma 4 sheds light on the augmented Lagrangian algorithm proposed in [31].
The augmented Lagrangian corresponding to (3) with penalty parameters α and ρ is

F (W) + αh(W ◦W) +
ρ

2
h(W ◦W)2, (5)

with gradient∇F (W) + (α+ ρh(W ◦W))∇W (h(W ◦W)).
Proposition 3. Let W be a feasible solution to problem (3). Then unless W is an unconstrained
stationary point of F (W), W cannot be a stationary point of the augmented Lagrangian (5).

Proposition 3 explains the following observed behavior of the augmented Lagrangian algorithm,
namely that it does not converge to an exactly (or within machine precision) feasible solution of (3)
even when the penalty parameters α, ρ are very high (ρ ∼ 1016). The reason is that a minimizer
of the augmented Lagrangian (5) cannot be a feasible solution to (3) except in the trivial case
discussed above. However, when α and ρ are very large, minimizers of (5) do tend to have gradients
∇W (h(W ◦W)) ≈ 0, and accordingly h(W ◦W) ≈ 0 by continuity. Thus as α and ρ increase, the
augmented Lagrangian algorithm yields solutions that are closer and closer to being feasible.

3.2 Absolute value adjacency matrix

As an alternative, we turn to the absolute value definition A = |W |. The problem becomes

min
W

F (W) s.t. h(|W |) ≤ 0. (6)

Formulation (6) is motivated in part by the failure to satisfy KKT conditions in Section 3.1 and in
part by the connection between the absolute value function/`1 norm and sparsity, which is needed for
acyclicity. While it will be seen that (6) has different theoretical and numerical properties from (3),
the two formulations are equivalent in a sense because acyclicity depends only on the sparsity pattern
of W , which is clearly the same regardless of whether |W | or W ◦W is used.

An equivalent smooth optimization Problem (6) is not a smooth optimization because of the
absolute value function. To avoid any issues with continuous differentiability, we make use of the
following alternative formulation, which we show in the SM to be equivalent to (6):

min
W+,W−

F
(
W+ −W−

)
s.t. h

(
W+ +W−

)
≤ 0, W+,W− ≥ 0. (7)

Given any solution (W+,W−) to (7), a solution to (6) is obtained simply as W =W+ −W−.

3.2.1 KKT conditions and constraint qualification

We proceed to analyze the KKT conditions for the smooth reformulation (7), which are as follows:

±∇F
(
W+ −W−

)
+ λ∇h

(
W+ +W−

)
=M± ≥ 0 (8a)

W± ◦M± = 0, (8b)

in addition to the feasibility conditions in (7). The ± versions of (8a) result from taking gradients
with respect to W+ and W− respectively, where λ ≥ 0 is a Lagrange multiplier. M+, M− are
non-negative matrices of Lagrange multipliers corresponding to the non-negativity constraints in (7),
with complementary slackness conditions (8b).

As in Section 3.1, we must consider whether the KKT conditions are necessary conditions of
optimality, i.e. whether a local minimum must satisfy them. Theorem 6 gives an affirmative answer;
however, it turns out that common constraint qualifications used to establish necessity do not hold.
We refer to [4] and the SM for definitions of regularity and quaisnormality below.
Proposition 4. A feasible solution (W+,W−) to problem (7) cannot be regular.
Proposition 5. A feasible solution (W+,W−) to problem (7) cannot be quasinormal.

In spite of these negative results, the SM provides a direct proof of the necessity of the KKT conditions
(8). The proof uses the following lemma, which we highlight because of its graphical interpretation
in terms of directed paths not being created/destroyed by the addition/removal of certain edges.

4

Lemma 5. For a non-negative matrix A, if (∇h(A))ij > 0, changing the values of Akj for any k
cannot make (∇h(A))ij = 0. Similarly if (∇h(A))ij = 0, changing the values of Akj for any k
cannot make (∇h(A))ij > 0.
Theorem 6. Let (W+,W−) be a local minimum of problem (7). Then there exist a Lagrange
multiplier λ ≥ 0 and matrices M+ ≥ 0, M− ≥ 0 satisfying the KKT conditions in (8).

3.2.2 Relationships with explicit edge absence constraints

We now discuss relationships between the KKT conditions (8) and the optimality conditions for
score optimization problems with explicit edge absence constraints, which correspond to zero-value
constraints on the matrix W . Given a set Z of such constraints, we consider the problem

min
W

F (W) s.t. Wij = 0, (i, j) ∈ Z (9)

and denote by W ∗(Z) an optimal solution. The necessary conditions of optimality for (9) are

(∇F (W))ij = 0, (i, j) /∈ Z, Wij = 0, (i, j) ∈ Z. (10)

In one direction, given a KKT point (W+,W−), we define the set P := {(i, j) : (∇h(W+ +
W−))ij > 0}, i.e. the set of (i, j) with directed walks from j to i, according to Lemma 2.
Lemma 6. If (W+,W−) satisfies the KKT conditions in (8), then W ∗ = W+ −W− satisfies the
optimality conditions in (10) for Z = P . If in addition F (W) is convex, then W ∗ is a minimizer of
(9) for Z = P .

Under the assumption that F is convex, we can use Lemma 6 to show that the KKT conditions (8)
are sufficient for local minimality in (6), despite the constraint h(|W |) ≤ 0 not being convex.
Theorem 7. Assume that F (W) is convex. Then if (W+,W−) satisfies the KKT conditions in (8),
W ∗ =W+ −W− is a local minimum for problem (6).

In the opposite direction of Lemma 6, we focus on the case in which a minimizer W ∗(Z) of
(9) is feasible, i.e. h(A∗(Z)) = 0 for A∗(Z) = |W ∗(Z)|. Then by Lemma 3, we must have
(W ∗(Z))ij = 0 wherever

(
∇h(A∗(Z))

)
ij
> 0. If Z does not include such a pair (i, j), we may add

(i, j) to Z while preserving the optimality of the existing solution W ∗(Z) with respect to (9) (since
it already satisfies the new constraint Wij = 0). Hence for feasible W ∗(Z), we adopt the convention
that all (i, j) with (W ∗(Z))ij = 0 and

(
∇h(A∗(Z))

)
ij
> 0 are included in Z .

We call Z irreducible if it contains only pairs (i, j) for which
(
∇h(A∗(Z))

)
ij
> 0.

Theorem 8. If a minimizer W ∗(Z) of (9) is feasible and Z is irreducible, then W+ = (W ∗(Z))+,
W− = (W ∗(Z))− satisfy the KKT conditions in (8).

If W ∗(Z) is feasible but Z is not irreducible, then the following result guarantees that Z may
be reduced to an irreducible set without losing feasibility. We assume that F (W) is separable
(decomposable) as F (W) =

∑d
j=1 Fj

(
W·j

)
.

Lemma 7. Assume that the score function F (W) is separable. Suppose thatW ∗(Z) in (9) is feasible
and Z0(j) = {(i1, j), . . . , (iJ , j)} ⊆ Z is a subset for which

(
∇h(A∗(Z))

)
ij

= 0, (i, j) ∈ Z0(j).
Then W ∗(Z\Z0(j)) is also feasible.

Since the removal of a constraint (i, j) ∈ Z for which
(
∇h(A∗(Z))

)
ij
= 0 does not affect feasibility,

we call such a constraint unnecessary as a somewhat colloquial shorthand.

The development in this subsection suggests the meta-algorithm in Algorithm 1, which we refer to as
KKT-informed local search. An instantiation is described in Section 4.2.
Theorem 9. If F (W) is separable, KKT-informed local search satisfies the KKT conditions (8).

When combined with Theorem 7 and a convex F (W), Theorem 9 guarantees that KKT-informed
local search will result in local minima. However, due to the non-convex constraint, the quality of
such local minima is highly dependent on the particular instantiation of the meta-algorithm. Section 5
shows for example that the choice of initialization plays a large role.

5

Algorithm 1 KKT-informed local search (KKTS)
Require: Initial set Z of edge absence constraints. Solve (9).

1: while W ∗(Z) infeasible do
2: Select edge(s) in cycle ((W ∗(Z))ij 6= 0,

(
∇h(A∗(Z))

)
ij
> 0). Add to Z . Re-solve (9).

3: while Z reducible do
4: Remove one or more unnecessary constraints (i, j) ∈ Z (see Lemma 7). Re-solve (9).

4 Algorithms

For the algorithms in this section, we let the score function F (W) be the sum of a smooth loss
function `(W ;X) with respect to the data X and an `1 penalty to promote overall sparsity, as in [31]:

F (W) = `(W ;X) + τ‖W‖1. (11)

4.1 Augmented Lagrangian with absolute value adjacency matrix

Formulation (6) naturally suggests an augmented Lagrangian algorithm as in [31] but with h(|W |)
instead of h(W ◦W). Using the (W+,W−) representation as in (7), the augmented Lagrangian
minimized in each iteration is

L(W+,W−, α, ρ) = `
(
W+−W−;X

)
+τ1T

(
W++W−

)
1+αh

(
W++W−

)
+
ρ

2
h
(
W++W−

)2
,

subject to W+ ≥ 0 and W− ≥ 0, where 1 is a vector of ones. The gradients are given by

∇W±L(W+,W−, α, ρ) = ±∇`
(
W+−W−;X

)
+τ11T+

(
α+ ρh

(
W+ +W−

))
∇h
(
W++W−

)
.

We otherwise closely follow the algorithm in [31].

4.2 KKT-informed local search

We now describe an instantiation of the KKT-informed local search meta-algorithm in Algorithm 1,
covering initializing the set Z of edge absence constraints, selecting edges for removal (line 2),
reducing unnecessary constraints (line 4), and re-solving (9). We also discuss an additional operation
of reversing edges, which is not part of Algorithm 1 but helps in attaining better local minima.

Initializing Z Given any matrix W as an initial solution, we set to zero elements in W that are
smaller than a threshold ω in absolute value. The set Z is then defined as Z = {(i, j) :Wij = 0}.

Selecting edges for removal (line 2) We consider an approach of minimizing the Lagrangian
F (W) + αh(|W |) of (6) subject to the existing constraints Wij = 0 for (i, j) ∈ Z . For α = 0, the
minimizer is the existing solution W ∗(Z), and as α increases, weights Wij will be set to zero to
decrease the infeasibility penalty h(|W |) , trading off against the score function F (W).

We implement a computationally simple version of the above idea. First, h(A) = h(|W |)
in the Lagrangian is linearized around A∗(Z) = |W ∗(Z)| as h(A) ≈ h

(
A∗(Z)

)
+〈

∇h
(
A∗(Z)

)
, A−A∗(Z)

〉
. After dropping constant terms and expanding the inner product, the

constrained, linearized Lagrangian to be minimized is as follows:

min
W

F (W) + α
∑

(i,j):i 6=j

(
∇h(A∗(Z))

)
ij
|Wij | s.t. Wij = 0, (i, j) ∈ Z. (12)

Problem (12) is a score minimization problem with a weighted `1 penalty and parameters Wij ,
(i, j) ∈ Z being absent. Furthermore, if F (W) is separable column-wise, (12) is also separable.

Second, we follow the solution path of (12), defined by α, from W ∗(Z) at α = 0 only until the first
existing edge belonging to a cycle ((W ∗(Z))ij 6= 0,

(
∇h(A∗(Z))

)
ij
> 0) is set to zero. If `(W ;X)

in (11) is the least-squares loss, the solution path is piecewise linear and we have implemented a
modified version of the LARS algorithm [11] to efficiently track the path. The modification accounts
for the non-uniformity of the weights

(
∇h(A∗(Z))

)
ij

, some of which may be zero, in the `1 penalty
in (12). It is described further in the SM.

6

Reducing unnecessary constraints (line 4) We also refer to this step as restoring edges (“restore”
because these edges were likely present in an earlier iteration when W was denser), in analogy with
the previous step which removes edges. When there are multiple unnecessary constraints, the order in
which they are removed can matter because the removal of constraints and re-optimization of (9) can
make previously unnecessary constraints necessary. Because of this, even though Lemma 7 allows
for multiple unnecessary constraints (i1, j), . . . , (iJ , j) to be removed at a time, we opt to do so only
one at a time. Given multiple unnecessary constraints (i, j), we greedily choose one for which the
absolute partial derivative of the loss function, |(∇`(W ;X))ij |, is largest. This strategy gives the
largest instantaneous rate of decrease of the loss as the constraint Wij = 0 is relaxed.

Reversing edges In addition to removing and restoring edges, we consider reversing edges, which
involves two operations: adding (i, j) toZ to remove an existing edge (W ∗(Z))ij 6= 0, and removing
(j, i) from Z (which must have been a necessary constraint if W ∗(Z) is feasible, to avoid a 2-cycle)
to introduce the opposite edge. In contrast to removing edges, which generally increases F (W) but
decreases h(A), and restoring edges, which decreases F (W) and is guaranteed by Lemma 7 not to
increase h(A), reversing edges does not necessarily decrease F (W) or h(A). We therefore accept an
edge reversal only if it decreases one of F (W), h(A) relative to the original direction and does not
increase the other, and otherwise reject the reversal.

There are many possible variations in when to perform edge reversals within Algorithm 1. In our
implementation, we restrict reversals to the second while-loop and alternate between restoring one
edge (reducing Z by one) and attempting all possible reversals given the current state. When there
are multiple reversal candidates, similar to restoring edges, we evaluate the loss partial derivatives
|(∇`(W ;X))ji|, this time associated with introducing the reverse edges (j, i), and proceed in order
of decreasing |(∇`(W ;X))ji|.
The edge reversal operation is made much more efficient by keeping a memory of previously attempted
reversals that do not have to be attempted again for some time. When the reversal of edge (i, j) is
attempted, it is recorded in the memory, and if the reversal is accepted, reversal of (j, i) is also added
to the memory as it would revert to the previous inferior state. The memory for (i, j) is cleared when
either column i or j is updated since this may change the value of reversing (i, j).

Re-solving (9) (lines 2, 4) Removing, restoring, and reversing edges all involve re-solving (9) after
adding to Z , reducing Z , or both in the case of reversals. When `(W ;X) in (11) is the least-squares
loss, these re-optimizations can be done efficiently using the LARS algorithm. In the case of adding
(i, j) to Z , an increasing penalty is imposed on |Wij |, while in the case of removing (i, j) from Z , a
penalty equivalent to the constraint Wij = 0 is inferred and then decreased to zero. Further details
are in the SM.

5 Experiments

We compare the structure learning performance of the following base algorithms: NOTEARS [31],
the FGS implementation [21] of GES [7], MMHC [27], PC [26], augmented Lagrangian with absolute
value adjacency matrix A = |W | (Section 4.1, abbreviated ‘Abs’), and KKT-informed local search
(Section 4.2, KKTS) initialized with the unconstrained solution (Z = {(i, i), i ∈ V} just to avoid
self-loops). We also experimented with CAM [6] but defer those results to the SM as we found
them less competitive in the tested settings. In addition, we use each of the above base algorithms to
initialize KKTS (denoted by appending ‘-KKTS’ and excepting KKTS itself). Algorithm parameter
settings are detailed in the SM. Of note are the default termination tolerance on h, ε = 10−10, and
the threshold on W , ω = 0.3 following [31], applied after NOTEARS, Abs, and KKTS as well as to
initialize Z before KKTS.

The experimental setup is similar to [31]. In brief, random Erdös-Rényi or scale-free graphs are
generated with kd expected edges (denoted ERk or SFk), and uniform random weights W are
assigned to the edges. Data X ∈ Rn×d is then generated by taking n i.i.d. samples from the linear
SEM X = WTX + z, where z is either Gaussian, Gumbel, or exponential noise. 100 trials are
performed for each graph type-noise type combination, which is an order of magnitude larger than in
e.g. [31, 29] and reduces the standard errors of the estimated means.

7

10 30 50 100

100

101
SH

D

ER2, gaussian

10 30 50 100
d

100

101

102

tim
e

[s
ec

on
ds

]

10 30 50 100

100

101

102

ER4, gumbel

10 30 50 100
0

5

10

15

20

25

ER4, gumbel

10 30 50 100
d

100

101

102

103
10 30 50 100

100

101

102

SF4, exp

10 30 50 100
d

100

101

102
NOTEARS
NOTEARS-KKTS
NOTEARS-1e-5
NOTEARS-1e-5-KKTS
Abs
Abs-KKTS
FGS
FGS-KKTS
MMHC
MMHC-KKTS
PC
PC-KKTS
KKTS

Figure 1: Structural Hamming distances (SHD) with respect to true graph and solution times for
n = 1000. Error bars indicate standard errors over 100 trials. Red lines overlap with orange in the
SF4 SHD plot. The upper right panel focuses on combinations with NOTEARS using a linear vertical
scale.

Figure 1 shows structural Hamming distances (SHD) with respect to the true graph and running
times for three graph-noise combinations and n = 1000. Figure 2 shows the same metrics and
combinations for the more challenging setting n = 2d, with largely similar patterns. Other graph-
noise combinations, results in tabular form, and computing environment details are in the SM.

We focus first on the base algorithms (solid lines), of which NOTEARS is clearly the best in terms of
SHD.1 Abs is next and better than FGS, MMHC, and PC. We hypothesize that the smoothness of the
quadratic adjacency A =W ◦W used by NOTEARS is better able to overcome non-convexity than
the non-smooth A = |W | of Abs, which tends to force parameters Wij to zero, perhaps too soon.
The non-convexity is further reflected in the inferior performance of (pure) KKTS, which only takes
local steps starting from the unconstrained solution.

We now turn to the ‘-KKTS’ combinations (dashed lines). It is seen that KKTS, and the theoretical
understanding it embodies, improve the SHD of all base algorithms (including CAM in the SM). The
improvement is by at least a factor of 2, except when the SHD is already low (e.g. NOTEARS on
SF4), and moreover is consistent across dimensions d. An ablation study in the SM shows that both
reducing unnecessary constraints and reversing edges contribute to the improvement.

In the case of NOTEARS-KKTS, while Proposition 3 asserts that NOTEARS cannot yield an exactly
feasible solution, let alone a KKT point, Figure 1 confirms that it yields high-quality nearly feasible
solutions. NOTEARS is therefore well-suited as an initialization for KKTS, and combining them
apparently results in new state-of-the-art accuracy. Furthermore, in an attempt to achieve feasibility,
NOTEARS uses more augmented Lagrangian iterations and very large penalty parameters α and ρ.
The latter causes the augmented Lagrangian (5) to be poorly conditioned and optimization solvers for
it to take longer to converge. Thus, to reduce solution time as well as satisfy KKT conditions, we
terminate NOTEARS early with a higher h tolerance of ε = 10−5 before running KKTS. Figure 1
shows that this results in nearly the same SHD improvement over NOTEARS while also taking

1The SHDs for NOTEARS and FGS in Figure 1 are much better than those reported in [31], by almost an
order of magnitude in some cases. Part of the improvement is due to code updates for NOTEARS but the rest we
cannot explain. We also show in the SM that subtracting the mean from X improves the SHD by a noticeable
factor for some noise types. All results in Figure 1 are obtained with zero-mean X.

8

10 30 50 100

101SH
D

ER2, gaussian

10 30 50 100
d

100

101

102

tim
e

[s
ec

on
ds

]

10 30 50 100

101

102

ER4, gumbel

10 30 50 100

10

15

20

25

30

ER4, gumbel

10 30 50 100
d

100

101

102

103
10 30 50 100

101

102

SF4, exp

10 30 50 100
d

100

101

102
NOTEARS
NOTEARS-KKTS
NOTEARS-1e-5
NOTEARS-1e-5-KKTS
Abs
Abs-KKTS
FGS
FGS-KKTS
MMHC
MMHC-KKTS
PC
PC-KKTS
KKTS

Figure 2: Structural Hamming distances (SHD) with respect to true graph and solution times for
n = 2d. Red lines overlap with orange in the SF4 SHD plot. The upper right panel focuses on
combinations with NOTEARS using a linear vertical scale.

considerably less time (except for SF4). Abs-KKTS similarly outperforms NOTEARS on ER graphs
and takes even less time.

6 Conclusion and future work

We have re-examined a recently proposed continuous optimization framework for learning Bayesian
networks. Our most important contributions are as follows: (1) better understanding of the NOTEARS
formulation and algorithm of [31]; (2) analysis and understanding of the KKT optimality conditions
for an equivalent reformulation (for which they do indeed hold); (3) a local search algorithm informed
by the KKT conditions that significantly and universally improves the accuracy of NOTEARS and
other algorithms.

A clear next step is to generalize the theory and algorithms to the case in which each edge in the
graph corresponds to multiple parameters. One motivation is to allow nonlinear models; a nonlinear
extension of the absolute value case of Section 3.2 could parallel the recent nonparametric extension
[32] for the quadratic case. Another reason for having multiple parameters is to accommodate non-
binary categorical variables, which are typically encoded into multiple binary variables on the input
side, or predicted using e.g. multi-logit regression [14] on the output side. Other future directions
include improving the efficiency of algorithms for solving (3), (6) and exploring alternative acyclicity
characterizations from Section 2.

Broader Impact

Bayesian networks are fundamentally about modeling the joint probability distribution of data, in
a parsimonious and comprehensible manner. This work therefore contributes mostly to layer 0
(“foundational research”) in the “Impact Stack” of [3], particularly with regard to the theoretical
aspects. If one views Bayesian network structure learning as a “ML technique” rather than a
“foundational technique”, then the algorithmic contribution also falls into layer 1. We thus confine
our discussion of broader impacts mostly to layers 0 and 1, i.e. “tractable” impacts according to [3],
as it is difficult and perhaps inappropriate to speculate further.

9

The predominant contribution of this work is to theoretical understanding of the optimization problem
that is score-based structure learning, and specifically a continuous formulation thereof. This
understanding has resulted in improvements in accuracy (as measured by structural Hamming
distance), and we expect that further improvements will be made in future work. We also believe
that this understanding may lead to advances in computational efficiency as well, beyond the simple
measure of terminating the NOTEARS algorithm early when it has no hope of reaching feasibility,
or observing that the absolute value version (Abs) converges more quickly. For example, new
optimization algorithms may be proposed for problems (3) and/or (6) that take better advantage of
their properties.

As the accuracy and scalability of Bayesian network structure learning continue to increase, we
hope that it becomes an even more commonly used technique for modeling data than it is now. We
are particularly interested in its use as the first step in causal structure discovery, which may then
facilitate other causal inference tasks. We recognize however that errors in structure learning may
compound into potentially more serious downstream errors. This is an issue calling for further study.

Funding Acknowledgments

Y. Yu is supported by the National Science Foundation under award DMS 1753031.

References
[1] Silvia Acid, Luis M de Campos, and Javier G Castellano. Learning Bayesian network classifiers:

Searching in a space of partially directed acyclic graphs. Machine Learning, 59(3):213–235,
2005.

[2] Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse Gaussian Bayesian
networks. J. Mach. Learn. Res., 16(1):2273–2328, January 2015. ISSN 1532-4435.

[3] Carolyn Ashurst, Markus Anderljung, Carina Prunkl, Jan Leike, Yarin
Gal, Toby Shevlane, and Allan Dafoe. A guide to writing the
NeurIPS impact statement, 2020. URL https://medium.com/@GovAI/
a-guide-to-writing-the-neurips-impact-statement-4293b723f832#bee2.
Accessed 2020-06-01.

[4] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, USA, 2nd
edition, 1999.

[5] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer Publishing Company, Incorporated,
1st edition, 2008. ISBN 1846289696.

[6] Peter Bühlmann, Jonas Peters, Jan Ernest, et al. CAM: Causal additive models, high-dimensional
order search and penalized regression. The Annals of Statistics, 42(6):2526–2556, 2014.

[7] David Maxwell Chickering. Optimal structure identification with greedy search. Journal of
Machine Learning Research, 2002.

[8] David Maxwell Chickering, Christopher Meek, and David Heckerman. Large-sample learning
of Bayesian networks is NP-hard. CoRR, abs/1212.2468, 2012.

[9] James Cussens. Bayesian network learning with cutting planes. In Proceedings of the Twenty-
Seventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-11), pages 153–160,
Corvallis, Oregon, 2011. AUAI Press.

[10] Cassio P. de Campos, Zhi Zeng, and Qiang Ji. Structure learning of Bayesian networks using
constraints. In ICML ’09: Proceedings of the 26th Annual International Conference on Machine
Learning, pages 113–120, New York, NY, USA, 2009. ACM.

[11] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.
Ann. Statist., 32(2):407–499, 2004.

10

https://medium.com/@GovAI/a-guide-to-writing-the-neurips-impact-statement-4293b723f832#bee2
https://medium.com/@GovAI/a-guide-to-writing-the-neurips-impact-statement-4293b723f832#bee2

[12] Tian Gao and Dennis Wei. Parallel Bayesian network structure learning. In International
Conference on Machine Learning, pages 1671–1680, 2018.

[13] Tian Gao, Kshitij Fadnis, and Murray Campbell. Local-to-global Bayesian network structure
learning. In International Conference on Machine Learning, pages 1193–1202, 2017.

[14] Jiaying Gu, Fei Fu, and Qing Zhou. Penalized estimation of directed acyclic graphs from
discrete data. Statistics and Computing, 29(1):161–176, January 2019.

[15] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 2nd
edition, 2012. doi: 10.1017/9781139020411.

[16] Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila. Learning Bayesian network
structure using LP relaxations. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research,
pages 358–365. Society for Artificial Intelligence and Statistics, 13–15 May 2010.

[17] Diviyan Kalainathan, Olivier Goudet, Isabelle Guyon, David Lopez-Paz, and Michèle Sebag.
SAM: Structural agnostic model, causal discovery and penalized adversarial learning. arXiv
preprint arXiv:1803.04929, 2018.

[18] Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery in Bayesian networks.
The Journal of Machine Learning Research, 5:549–573, 2004.

[19] Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-
based neural DAG learning. In Proceedings of the 8th International Conference on Learning
Representations (ICLR), April 2020.

[20] Sascha Ott, Seiya Imoto, and Satoru Miyano. Finding optimal models for small gene networks.
In Pacific Symposium on Biocomputing, volume 9, pages 557–567, 2004.

[21] Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour. A million
variables and more: the fast greedy equivalence search algorithm for learning high-dimensional
graphical causal models, with an application to functional magnetic resonance images. Interna-
tional Journal of Data Science and Analytics, 3(2):121–129, 2017.

[22] Mauro Scanagatta, Cassio P de Campos, Giorgio Corani, and Marco Zaffalon. Learning
Bayesian networks with thousands of variables. In Advances in Neural Information Processing
Systems, pages 1864–1872, 2015.

[23] Mark Schmidt, Alexandru Niculescu-Mizil, and Kevin Murphy. Learning graphical model
structure using l1-regularization paths. In Proceedings of the 22nd International Conference on
Artificial Intelligence - Volume 2, AAAI’07, 2007.

[24] Tomi Silander and Petri Myllymaki. A simple approach for finding the globally optimal
Bayesian network structure. In Proceedings of the Twenty-Second Annual Conference on
Uncertainty in Artificial Intelligence (UAI), pages 445–452, 2006.

[25] Peter Spirtes, Clark N Glymour, and Richard Scheines. Computation, Causation, and Discovery.
AAAI Press, 1999.

[26] Peter Spirtes, Clark Glymour, Richard Scheines, Stuart Kauffman, Valerio Aimale, and Frank
Wimberly. Constructing Bayesian network models of gene expression networks from microarray
data, 2000.

[27] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis. The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

[28] Jing Xiang and Seyoung Kim. A* lasso for learning a sparse Bayesian network structure
for continuous variables. In Advances in Neural Information Processing Systems 26, pages
2418–2426, 2013.

[29] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural
networks. In Proceedings of the 36th International Conference on Machine Learning (ICML),
pages 7154–7163, June 2019.

11

[30] Changhe Yuan and Brandon Malone. Learning optimal Bayesian networks: A shortest path
perspective. Journal of Artificial Intelligence Research (JAIR), 48:23–65, 2013.

[31] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs with NO TEARS:
Continuous optimization for structure learning. In Advances in Neural Information Processing
Systems, pages 9472–9483, December 2018.

[32] Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. Learning sparse
nonparametric DAGs. In International Conference on Artificial Intelligence and Statistics,
2020.

12

	Introduction
	Characterizations of acyclicity
	Analysis of continuous acyclicity-constrained optimization
	Quadratic adjacency matrix
	Absolute value adjacency matrix
	KKT conditions and constraint qualification
	Relationships with explicit edge absence constraints

	Algorithms
	Augmented Lagrangian with absolute value adjacency matrix
	KKT-informed local search

	Experiments
	Conclusion and future work

