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Abstract

We propose a few-shot learning method for detecting out-of-distribution (OOD)
samples from classes that are unseen during training while classifying samples
from seen classes using only a few labeled examples. For detecting unseen classes
while generalizing to new samples of known classes, we synthesize fake samples,
i.e., OOD samples, but that resemble in-distribution samples, and use them along
with real samples. Our approach is based on an extension of model-agnostic meta
learning (MAML) and is denoted as OOD-MAML, which not only learns a model
initialization but also the initial fake samples across tasks. The learned initial
fake samples can be used to quickly adapt to new tasks to form task-specific fake
samples with only one or a few gradient update steps using MAML. For testing,
OOD-MAML converts a K-shot N -way classification task into N sub-tasks of
K-shot OOD detection with respect to each class. The joint analysis ofN sub-tasks
facilitates simultaneous classification and OOD detection and, furthermore, offers
an advantage, in that it does not require re-training when the number of classes for
a test task differs from that for training tasks; it is sufficient to simply assume as
many sub-tasks as the number of classes for the test task. We also demonstrate the
effective performance of OOD-MAML over benchmark datasets.

1 Introduction

Deep neural networks (DNNs) have demonstrated excellent performances in many machine learning
tasks such as speech recognition [20], object detection [8], and image classification [10]. However,
they usually require large amounts of training data to perform well. When the amount of training
data is small, DNNs often provide low levels of performance. This is a critical issue, because a large
number of problems in the real world are confronted with the lack of training data. For example, the
drug discovery problem involves the prediction of whether a molecule increases the pharmaceutical
activity [1]. However, often only a small amount of data relating to molecules are available, which
makes it difficult to use DNNs for this task. The learning problem under the circumstance wherein
only a few labeled examples are available is referred to as few-shot learning, and it has attracted
significant interest recently [24, 3, 21, 7]. “K-shot N -way" classification is one of the major tasks
that few-shot learning deals with, wherein a small number of samples K (such as 1,5, or 10) per each
of N classes are available for training to classify a new sample into one of the N classes. Several
methods, e.g., siamese network [13] and prototypical network (PN) [22], were proposed for K-shot
N -way problems.

In general, in few-shot classification algorithms, it is assumed that the training and test data are
drawn from the same distribution, and the algorithm requires a test sample to be classified into one
of the known classes encountered during training. However, in many real-world applications, it is
unreasonable to assume the same distribution for the training and test data [5, 23, 4]. If the test data
are drawn from a different distribution, it is more desirable to have classification algorithms that
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not only classify the test samples drawn from the same distribution of training data, but also detect
out-of-distribution (OOD) samples drawn from an unknown distribution. Humans can easily do this
even in a few-shot scenario. For example, let us suppose that a child learns the alphabets ‘A’ and ‘B’
from a few examples. This child would then not only discriminate between ‘A’ and ‘B’, but also can
say “I did not learn it" on seeing ‘C’ and ‘D’. In supervised learning settings, methods have been
proposed for detecting OOD samples, and the majority of these methods are based on uncertainty
quantification (UQ) for predictions [15, 18]. However, the algorithms in previous studies are not
designed for few-shot settings.

In this paper, we propose a method for detecting OOD samples from unseen classes during training
while classifying samples from known classes under few-shot settings. There are two major challenges
in the problem of few-shot OOD detection and classification: (1) a lack of training data required for
learning the distribution of the data from known classes and (2) the absence of OOD samples during
training.

To address the first challenge, we use meta-learning, which is a general paradigm for few-shot
learning. The objective of meta-learning is to learn a learning strategy to learn quickly on new tasks.
In general, meta-learning algorithms involve two core processes: learning the transfer of knowledge
across tasks and rapid adaptation to a new task. In this study, we use model-agnostic meta-learning
(MAML) [7], which is a popular gradient-based meta-learning algorithm. The objective of MAML is
to find good initial parameters of a model (e.g., DNN), such that updating the initial parameters via
one or a few gradient steps can result in a model that provides a good performance for a new task.
More details about MAML are presented in Section2.2.

Although meta-learning is a good approach to few-shot classification, it does not address the second
challenge. In the absence of OOD examples from unknown classes, meta-learning algorithms,
including MAML, would generate trivial classifiers that predict all the examples as in-distribution
examples. To address this issue, we propose the synthesis of OOD examples from unknown classes,
which are then used along with in-distribution examples to learn a classifier. We were inspired by
MetaGAN [26], which uses adversarial samples generated from GAN to help few-shot classifiers
learn a sharper decision boundary. Similarly, we synthesize adversarial samples to represent an OOD
class during training. However, instead of using GAN, we generate adversarial samples via gradient
updating for special meta-parameters, called fake-sample parameters. This generation strategy allows
us to avoid the difficulty of training the GAN. The proposed method is called OOD-MAML.

To facilitate the OOD detection, OOD-MAML is trained to adapt quickly for OOD tasks with respect
to a single class. In meta-testing phase, given K-shot N -way samples, we construct N sub-tasks of
K-shot OOD detection with respect to each class. Then N classifiers are adapted to each sub-task
with meta-knowledge. By merging the results of N OOD detection tasks, we can implement OOD
detection and K-shot N -way classification simultaneously. This approach has an advantage, in that it
does not require re-training when the number of classes for the test tasks are changed. The code for
OOD-MAML is available at https://github.com/twj-KAIST/OOD-MAML.

2 Background

2.1 Task formulation in general meta-learning algorithms

We first discuss the task formulation considered in general meta-learning algorithms. We deal with
two types of meta-sets, one is for meta-training and the other is for meta-testing, which are denoted
by Dmeta−train and Dmeta−test, respectively. Each of Dmeta−train and Dmeta−test contains
multiple datasets, each of which is divided into a training set Dtrain and a test set Dtest as in the
typical classification task. Thus, we can rewrite Dmeta−train = {(Di

train, D
i
test)

Nmeta−train

i=1 } and
Dmeta−test = {(Dj

train, D
j
test)

Nmeta−test

j=1 }, where Nmeta−train and Nmeta−test are the numbers
of classification tasks in Dmeta−train and Dmeta−test, respectively, and (Di

train, D
i
test) denote the

training and test sets for the ith task, Ti. In particular, on considering theK-shotN -way classification
task, Di

train contains K examples from each of N classes of Ti. That is, Di
train consists of a

total of N ×K examples. Similarly, Di
test contains some examples, each of which is assumed to

be drawn from one of the N classes considered during the training. Generally, it is assumed that
Dmeta−train and Dmeta−test are exclusive, i.e., Dmeta−train and Dmeta−test do not share the same
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task. Therefore, in meta-learning methods, the ability of generalizing or adapting to new tasks is
trained in the meta-training phase, and the trained ability is evaluated in the meta-testing phase.

2.2 Model-Agnostic Meta-Learning

MAML [7] is a popular optimization-based meta-learning approach that learns the initial model
parameters, which result in fast learning on new tasks through gradient-based optimization. More
specifically, MAML takes a DNN, fθ with meta-parameter θ, as the base model, and learns the θ that
allows fast adaptation to new tasks when used as the initial parameters. Given Di

train for task Ti,
MAML implements the adaptation of θ to task-specific parameters θiadapt via gradient updates of θ
with respect to LTi , which is the loss for Ti. On assuming a single gradient step, the update equation
is given by

θiadapt = θ − α∇θLTi(fθ(D
i
train)),

where α > 0 is the adaptation learning rate. In a few-shot classification, the cross-entropy function
is commonly used as a loss function. The adaptation of θ is then evaluated on Dtest.In MAML,
θ is trained by optimizing the performance of θiadapt with respect to θ for all the tasks. That is, θ
is trained to be θmeta−opt = argmin

θ

∑
Ti∼P (T )

LTi(fθiadapt
(Di

test)), where P (T ) is the distribution

of tasks. MAML can be interpreted from the perspective of fine-tuning, such that the objective of
MAML is to learn a good initial parameter of the base model after one or a few gradient update steps
using only a few labeled samples. MAML updates θ across tasks via stochastic gradient descent with
the meta learning rate β:

θ ← θ − β∇θ
∑

Ti∼P (T )

LTi
(fθiadapt

(Di
test)).

2.3 Related works on OOD detection

OOD detection using DNNs is known to be a challenging problem because DNNs can produce
incorrect high-confidence predictions for OOD samples. For example, DNNs can label random noise
static to a particular object class with over 99% confidence [19]. This tendency of DNNs interrupts
the OOD detection. In order to address this issue, several methods based on UQ have been proposed
and have demonstrated successful performances. Softmax scores of pretrained DNNs are used for
UQ based on the observation that DNNs tend to assign higher softmax scores for in-distribution
(seen class) samples than OOD (unseen class) samples [11]. Out-of-DIstribution detector for Neural
network(ODIN) improved this method by applying additional techniques of temperature scaling and
adversarial perturbation [18]. UQ based on Mahalanobis distance (denoted as MAH) are studied
for OOD detection under the assumption that pre-trained features of softmax DNNs follow the
class-conditional Gaussian mixture distribution [15]. After the posterior mean and covariance with
respect to the in-distribution class are estimated, MAH calculates the Mahalanobis distance of a test
input with respect to the posterior mean for each class. MAH also used the adversarial perturbation
and demonstrated the state-of-the-art performance in OOD detection.

3 Few-Shot OOD Detection with MAML (OOD-MAML)

We present the training and testing procedures used in our meta-learning method for few-shot OOD
detection and classification. Let us consider the example of the learning process of children in Section
1, and let us suppose that a child learns ‘A’ and ‘B’ in a step-by-step manner. In the process of
learning ‘A,’ this child attempts to understand two concepts: what is ‘A’ and what is not ‘A.’ This
learning process is similar to that used for learning ‘B.’ We could interpret the learning process for
each alphabet as an OOD detection with respect to the learned alphabet. When the child then sees ‘C,’
the child would combine the conclusions of ‘it is not A’ and ‘it is not B.’ Similarly, for the alphabet
‘B,’ the conclusions of ‘it is not A’ and ‘it is B’ would be integrated. In this manner, a child can
perform OOD-detection and classification simultaneously even in a few-shot scenario. Similarly,
our method can perform OOD detection and classification simultaneously using the classifier that is
trained to detect OOD examples for a given known class. We refer to our method as OOD-MAML as
we use the adaptation rule of MAML.
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Figure 1: Example of OOD-MAML setup

3.1 Task formulation in OOD-MAML

Like other general meta-learning algorithms, we deal with Dmeta−train and Dmeta−test for meta-
training and meta-testing, respectively, but construct them differently. In our work, we allow test
examples for each task to be drawn not only from seen classes but also from unseen classes. To
facilitate few-shot OOD detection, we constructDtrain ∈ Dmeta−train differently from that assumed
in general meta-learning algorithms. We construct Dtrain ∈ Dmeta−train to contain K examples of
one known class. That is, for each task Ti, Dtrain is constructed by Di

train = {xi1, . . . ,xiK}, where
each example xik is assigned the same label of 1. To facilitate the OOD detection, we artificially
generate OOD examples, which are used to train the base model to learn a sharper decision boundary.
The OOD examples are generated as the adversarial samples for Di

train. During the test time, we
evaluate the meta-trained model for both K-shot N -way classification and OOD detection. To do this,
in Dmeta−test, we assume Dtrain ∈ Dmeta−test have a K-shot N -way setting. Given task Tj , we
denote Dj

train = {{xj1k}1≤k≤K , {x
j
2k}1≤k≤K , . . . , {x

j
Nk}1≤k≤K}, where xjnk denote k samples

of the nth class. In the perspective of OOD detection, examples of N classes are in-distribution
examples, but our meta learner is trained in a situation wherein Di

train contains samples of only
a single class. In order to match the situation in the training and testing, we split Tj into multiple
sub-tasks {Tjn}n=1,2,...,N , where the nth class is the only seen class in Tjn. Given sub-task Tjn,
we define Djn

train = {xjnk}1≤k≤K , such that only samples of the nth class belong to the seen class
for Tjn, and we obtain the adapted parameters for Tjn. We set Dj

test to contain samples of several
classes including N classes in Dj

train for each task Tj . The ability of OOD-MAML to perform
OOD detection and classification for Tj is evaluated on Dj

test from the combined results of the OOD
detection tasks of all Tjn. The proposed meta-learning procedure is illustrated in Figure 1.

3.2 Meta-training procedure for OOD-MAML

Let us consider a base model fθ parameterized by a DNN with the meta-parameter θ. From
the notations in Section 3.1, we define Linθ;Ti

as the cross-entropy loss for Di
train: Linθ;Ti

=

− 1
K

∑K
k=1 log fθ(x

i
k). If we adapt θ with a gradient update using MAML (i.e., θi = θ−α∇θLinθ;Ti

),
the adapted base parameter would be biased and the adapted base model would become a trivial
classifier (i.e., fθib(x) = 1 for an arbitrary input x) because all the elements of Di

train belong to the
same class.

To address this issue, we introduce a fake-sample parameter vector θfake = (θfake,1, ...θfake,M ),
which is another meta-parameter. It plays the role of M initial fake samples across tasks and
quickly adapts to new tasks to form task-specific fake samples, i.e., unseen class samples with
respect to Di

train. When xik ∈ Rd, we set each θfake,m ∈ Rd. We treat θfake as initial
fake samples and assign them the label 0. We then define an additional loss Loutθ,Ti

(θfake) =

− 1
M

∑M
m=1 log (1− fθ(θfake,m)), which is the cross entropy loss for θfake. Then we denote

Lθ;Ti
(Di

train, θfake) = Linθ;Ti
+ Loutθ;Ti

(θfake). This loss is used for gradient updates with respect to
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θ. Using the adaptation learning rate α > 0, we first update θ to θi for task Ti as follows:

θi = θ − α∇θLθ;Ti
(Di

train, θfake). (1)

The next step involves adapting θfake to task Ti. Note that without adapting θfake, fθi sets θfake
to be the representatives of OOD class for all Ti. Then, θfake has the same value for all Ti, which
indicates that fθi can capture task-agnostic OOD concepts only. To detect OOD samples more
precisely, task-specific OOD concepts should be learned, and thus it is required to adapt θfake. The
issue to be resolved is how to adapt θfake. Here, we are motivated from the idea of MetaGAN [26],
where it was argued that adversarial samples generated using GAN, even with an imperfect generator,
help an adapted classifier to learn a sharper decision boundary. However, instead of using GAN,
we generate adversarial samples via gradient update. Note that the purpose of adapting θfake is to
generate helpful OOD class samples with respect to Ti, wherein the helpful OOD samples mean the
adversarial samples of OOD class such that the classifier with θi in Eq.(1) predicts them wrongly.
We implement this via adversarial gradient updating of θfake with respect to Lθi;Ti

(Di
train, θfake),

and can avoid training GAN, which involves the difficulty such as vanishing gradient [25] and mode
collapsing [17].

However, the amount of the gradient of Lθi;Ti
(Di

train, θfake) for θfake can be small, and thus
standard adversarial gradient updating can lead to small perturbation of θfake. This is not desirable
because we expect the adapted θfake to provide different information (i.e., task-specific OOD
information) from θfake. To resolve this issue, we combine the sign-gradient and meta-SGD [16] for
adapting θfake. The adapted fake samples for task Ti, θifake, are computed as follows:

θifake = θfake − βfake � sign(−∇θfake
Lθi;Ti

(Di
train, θfake)), (2)

where βfake > 0 is another meta-parameter to be learned, but unlike θ and θfake, it is not adapted
for each Ti. � denotes the element-wise product. Note that sign(−∇θfake

Lθi;Ti
(Di

train, θfake)) in
Eq.(2) provides the direction of adversarial updating, and βfake determines how much to update with
the direction. In meta-SGD [16], there is no restriction for βfake, but we restrict it to be positive
because maintaining the adversarial direction can be helpful to generate the adversarial samples with
respect to fθi [9].

To reflect the adversarial input θifake into the base model, we return to updating θ with the gradient
of Lθi;Ti

(Di
train, (θfake, θ

i
fake)), where (θfake, θifake) means the concatenation of θfake and θifake.

Note that compared with Eq.(1), θifake is now added to the representatives of OOD class. The final
adapted base parameter θiadapt is obtained as follows:

θiadapt = θ − α∇θLθi;Ti
(Di

train, (θfake, θ
i
fake)). (3)

With the final adapted classifier fθiadapt
, we run meta-optimization across tasks via stochastic gradient

descent, similar to MAML. When Di
test = {(xi1, yi1), (xi2, yi2), . . . , (xiQ, yiQ)} are given for each

Ti, where yiq = 1 if xiq is a seen class sample and yiq = 0 otherwise, we train all meta-parameters
(θ, θfake, βfake) as follows:

(θ, θfake, βfake)← (θ, θfake, βfake)− γ∇(θ,θfake,βfake)

∑
Ti∼P (T )

L(Di
test), (4)

where L(Di
test) = − 1

Q

∑Q
q=1 y

i
q log p

i
q + (1− yiq) log (1− piq), piq = fθiadapt

(xiq), and γ > 0 is the
meta-learning rate.

3.3 Meta-testing procedure for OOD-MAML

Given sub-task Tjn from Djn
train, we obtain θjnadapt in the same manner as in Eqs.(1),(2), and (3).

Now, we validate the adaptation to the samples in Dj
test. Given x ∈ Dj

test, we concatenate the
adaptation results for x from Tjns, i.e., pj(x) = [fθj1adapt

(x), . . . , fθjNadapt
(x)], where pj(x) denotes

the K-shot N -way results for Tj . Note that fθjnadapt
(·) are binary classifiers, and the label 0 can be

assigned if fθjnadapt
(·) < λ, where λ is a threshold, while the label 1 is assigned otherwise, in the
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test phase. The threshold λ can be determined based on some criteria such as the true positive ratio
(TPR), or simply set to 0.5 as a default value for binary classification. In our experiments in Section
4, we set the threshold at 95 or 98 % TPR. More details on the determination of λ based on TPR
are described in Section 4.1. If all the N elements in pj(x) are less than λ, we assign the unseen
class (out-of-distribution) for x. Otherwise, we assign the maximum index of pj(x) as the class for
x among N classes, i.e., the index of the assigned class for x is equal to argmax1≤n≤Nfθjnadapt

(x).
Figure 1 depicts the OOD-MAML procedure discussed in Sections 3.2 and 3.3.

4 Experiments

We run the experiments for few-shot OOD detection and classification tasks with OOD-MAML. In
the meta-training phase, we set the 5-shot data of one class in Dtrain and set 50 samples in Dtest,
where 25 samples are drawn from seen classes (i.e., classes encountered in Dtrain) and the remaining
25 samples are drawn from unseen classes. In the meta-testing phase, we set 5-shot 5-way data for
Dtrain, and we setDtest to contain 50 samples of the same setting ofDtest in the meta-training phase.
Under these settings, we evaluated the performance of OOD-MAML by implementing OOD detection
and classification in experiments, and compared the obtained results with the performances of several
OOD detection methods. First, we considered ODIN and MAH. To apply these methods, pre-trained
softmax classifiers are required. For pre-trained classifiers, we constructed an MAML model for
5-shot 5-way classification. To avoid any confusion with Dmeta−train in OOD-MAML, we denote
the meta-training data set for this MAML model as DMAML

meta−train. Dtrain and Dtest in DMAML
meta−train

consist of 5-shot 5-way datasets. After training this MAML model with DMAML
meta−train (see Section

2.2), the base model is adapted to Dtrain in the meta-testing phase. We applied ODIN and MAH to
this adapted model. Moreover, we apply ODIN with PN [22], such that ODIN’s techniques are used
for softmax over distances to the prototypes in PN. Furthermore, we considered (N+1) classes with
MAML, N in-distribution classes and 1 OOD class, with the same set of Dmeta−train. Here, we
consider two cases: (1)(N+1) classes with MAML without fake images and (2) (N+1) classes with
MAML with θfake and θifake (denote as (N+1)-MAML and (N+1)-MAML*, respectively). We ran
experiments on Omniglot [14], CIFAR-FS [2], and miniImageNet [24], which are popular benchmark
datasets used for few-shot learning.
4.1 Evaluation criteria

ODIN and MAH are score-based methods. They detect OOD samples based on whether the score of
a sample is higher than a fixed threshold. In both cases, the threshold is selected such that the true
positive rate, i.e., the ratio of positive (in-distribution) samples correctly classified as positive samples,
is sufficiently high (both works set it to 95% ). In our comparison, we also set the threshold based on
the true positive rate (TPR) for Dtrain of Dmeta−test.To measure the OOD detection performance
of ODIN and MAH, we used the true negative rate (TNR) at α% TPR. This measure is interpreted
as the probability that negative (OOD) samples are classified correctly as negative when the TPR is
α%. It is computed using TNR = TN/(TN + FP ), where TN and FP denote the numbers of
true negatives and false positives, respectively. A perfect detector has a 1.0 TNR value. In addition to
this, we measure the detection accuracy, which is the ratio of correctly discriminated in- and out-of-
distribution samples among Dtest. We set equal numbers of positive and negative samples in the test
set (25 of 50 as in-distribution samples, and the remaining 25 as OOD samples). Thus, the detection
accuracy is not biased to in- or out-of- distribution. It is also measured at α% TPR. We also set
the threshold λ for OOD-MAML discussed in Section 3.3 at α% TPR. More specifically, we first
meta-trained OOD-MAML and chose 1000 different OOD-detection tasks from Dmeta−train, for
each of which we adapted our base classifier and then calculated in-distribution probability for each
of positive instances (i.e., in-distribution samples) in the test data. Then, based on all calculated
in-distribution probabilities, we determined α% TPR threshold. Because (N+1)-MAML and (N+1)-
MAML* are not score-based classifiers, their performance do not depend on α. We also compared
the classification accuracy for the K-shot N -way classification of OOD-MAML and MAML.
4.2 Details of the neural network architecture

Our base model in both OOD-MAML and MAML has a convolution neural network (CNN) architec-
ture, which has four modules for Omniglot and CIFAR-FS and five modules for miniImageNet. Each
module consists of 3× 3 convolutions and 64 filters for Omniglot and CIFAR-FS, and 32 filters for
miniImageNet, which are followed by batch normalization [12], the exponential linear units (ELU)
activation function [6], and max-pooling with 2× 2 stride and padding. The dimension of the final
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Table 1: OOD detection results
Omniglot

ODIN
-MAML

ODIN
-PN

MAH
-MAML

(N+1)
-MAML

(N+1)
-MAML*

OOD
-MAML(M=3)

OOD
-MAML(M=5)

detect.acc
α = 95

0.8744
(0.0512)

0.8977
(0.0441)

0.8712
(0.0481) 0.9142

(0.0392)
0.9524

(0.0341)

0.9712
(0.0296)

0.9701
(0.0288)

detect.acc
α = 98

0.8912
(0.0331)

0.9122
(0.0287)

0.8320
(0.0785)

0.9838
(0.0225)

0.9833
(0.0214)

TNR
α = 95

0.6942
(0.1142)

0.7122
(0.0533)

0.7288
(0.0821) 0.8722

(0.0730)
0.9201

(0.0633)

0.9924
(0.0224)

0.9918
(0.0225)

TNR
α = 98

0.7124
(0.0988)

0.7369
(0.0629)

0.7544
(0.0233)

0.9831
(0.0342)

0.9839
(0.0359)

CIFAR-FS
detect.acc
α = 95

0.5811
(0.1022)

0.5933
(0.1113)

0.5601
(0.0891) 0.5035

(0.1299)
0.5531

(0.1021)

0.6752
(0.0738)

0.6612
(0.0813)

detect.acc
α = 98

0.6129
(0.1132)

0.6039
(0.1285)

0.5458
(0.0671)

0.6590
(0.0719)

0.6594
(0.0725)

TNR
α = 95

0.2311
(0.1291)

0.1592
(0.1422)

0.2999
(0.1239) 0.1051

(0.1833)
0.2017

(0.0945)

0.5492
(0.1250)

0.5512
(0.1311)

TNR
α = 98

0.2401
(0.1087)

0.1439
(0.1027)

0.1862
(0.1244)

0.4317
(0.1287)

0.4198
(0.1249)

miniImageNet
detect.acc
α = 95

0.5124
(0.0742)

0.5491
(0.0981)

0.5111
(0.1124) 0.5019

(0.0712)
0.5422

(0.1101)

0.6207
(0.0736)

0.6199
(0.0744)

detect.acc
α = 98

0.5641
(0.0411)

0.5669
(0.1003)

0.5229
(0.1174)

0.6125
(0.0750)

0.6024
(0.0688)

TNR
α = 95

0.1211
(0.1899)

0.1829
(0.1042)

0.1429
(0.1366) 0.0749

(0.0822)
0.1009

(0.1033)

0.6770
(0.1181)

0.6613
(0.1203)

TNR
α = 98

0.1659
(0.1426)

0.1942
(0.0819)

0.1944
(0.1209)

0.4902
(0.1310)

0.4891
(0.1287)

Table 2: Classification accuracy results. M=3 for OOD-MAML

Method Omniglot CIFAR
-FS

mini
Imagenet Method Omniglot CIFAR

-FS
mini

Imagenet
MAML

(K=5,N=5)
0.9911

(0.0371)
0.7084

(0.1230)
0.5926

(0.1086)
OOD-MAML
(K=5,N=3)

0.9996
(0.0054)

0.7220
(0.1121)

0.6322
(0.0989)

OOD-MAML
(K=5,N=5)

0.9989
(0.0071)

0.7158
(0.1129)

0.6044
(0.1098)

OOD-MAML
(K=5,N=7)

0.9894
(0.0287)

0.6964
(0.1139)

0.5822
(0.1319)

CNN layer is 256, 256, and 288 for Omniglot, CIFAR-FS, and miniImageNet, respectively. The
last layer is fed into a softmax, where its dimension is 2 in the case of OOD-MAML and 5 in the
case of MAML. As all the real images in the three considered datasets are bounded in [0, 1] for each
dimension, we re-scaled the fake images (i.e., θfake and θifake) using the sigmoid transformation to
obtain the same domain. We ran the experiments while changing the number of fake images (M ).
Details about hyperparameters are described in Supplementary material.

4.3 Experiment results

Table 1 reports the few-shot OOD detection performance of OOD-MAML with α% TPR threshold
and the considered competing methods. It lists the average and standard deviation of the TNR and
detection accuracy over 1000 different tasks. We can observe that OOD examples were detected more
effectively using OOD-MAML than others. In particular, OOD-MAML demonstrated a significant
improvement in TNR. We also report OOD detection results of OOD-MAML with λ being simply
set as 0.5 in Supplementary material.

Next, we evaluated the few-shot classification performance of OOD-MAML and compared it with
that of MAML. Table 2 lists the average and standard deviation of the 5-shot 5-way classification
accuracy over 1000 different tasks. We measured the classification accuracy over the examples of
the five (known) classes, while excluding the OOD examples. As listed in Table 2, OOD-MAML
performed slightly better or similarly to MAML. We may thus conclude that OOD-MAML is more
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advantageous than MAML because OOD-MAML can also perform OOD detection while achieving a
comparable classification performance. Moreover, we could perform classification tasks with various
numbers of classes (N ) using OOD-MAML without re-training it over different values of N . This is
another advantage of OOD-MAML. As shown in Table 2, the performances of OOD-MAML were
similar for tasks with different N . This shows that OOD-MAML is robust to changes in the number
of classes.

(a) θfake adaptation results (b) θsunfake adaptation results (c) θsunfake and θmoto
fake

Figure 2: Feature map results from OOD task Tsun, where ‘sunflower’ is in-distribution class and
‘motorcycle’ is OOD class. In (a) and (b), θsun (Eq.(1)) and θsunadapt (Eq.(3)) are used as the final
adapted base parameter, respectively. Blue circles: features of in-distribution images. Red circles:
features of OOD images. Green squares: features of θfake. Blue rings: features of θsunfake. Red rings:
features of θmotofake , which were generated from OOD task Tmoto, where ‘motorcycle’ is in-distribution
class.

4.4 Effects of adapted fake samples

In order to investigate the effects of adapted fake samples in Eq.(2) on the constructed decision
boundary for OOD tasks, we compared the behaviors of classifiers adapted by Eq.(1) and Eq.(3) after
running the meta-training of OOD-MAML. Here, we denote the former and latter classifier as θfake-
classifier and (θfake + θifake)-classifier (i.e., the classifier of OOD-MAML), respectively. Note that
θfake is fixed for all tasks, and thus θfake-classifier is adapted by the representatives of task-agnostic
OOD-samples, while (θfake + θifake)-classifier is adapted by task-specific OOD-samples (Eq.(2)).
We argue that task-specific OOD samples lead to a better decision boundary for OOD tasks than
task-agnostic OOD samples.

After the meta-training of OOD-MAML with benchmark dataset (CIFAR-FS), we compared the
extracted features of in-distribution samples, OOD samples, θfake, and θifake on both θfake-classifier
and (θfake + θifake)-classifier. We first chose one OOD task, Tsun, wherein ‘sunflower’ is in-
distribution class. Then we take the ‘motorcycle’ as OOD class. Figure 2 visualizes the features for
both classifier with respect to Tsun, where the features were extracted from the outputs of the final
layer before softmax. Principle component analysis was applied to depict the features into 2-dim
spaces. Figures 2(a) and 2(b) depict the features on θfake-classifier and (θfake + θsunfake)-classifier
for Tsun, respectively. In both figures, blue and red circles represent the features of in- and out-of
distribution images from the same dataset, respectively; the green squares represent the features of
θfake for both classifiers.

In Figure 2(a), θfake-classifier constructs the decision boundary based on in-distribution samples
(blue circles) and θfake (green squares) assigned as OOD class. In the feature space, in-distribution
samples and θfake are located far away from each other, which results in a loose decision boundary for
OOD detection. The loose decision boundary subsequently led to wrong predictions for some OOD
samples whose features are located near those of some in-distribution samples (see Figure 2(a)). In
Figure 2(b), blue rings represent the features of θsunfake on (θfake + θsunfake)-classifier. Note that Eq.(2)
leads the features of θsunfake to be located near the in-distribution samples, and (θfake+θ

sun
fake)-classifier

is adapted to assign θsunfake(and θfake) to OOD-class. This leads to a tighter decision boundary than
that in Figure 2(a), which subsequently leads to a higher detection accuracy. For example, the wrongly

8



predicted OOD image with the estimated in-distribution probability as 0.987 in Figure 2(a) was
predicted correctly with the estimated in-distribution probability as 0.267 in Figure.2(b).

Next, we generated θmotofake , adapted fake samples from Tmoto, the OOD tasks with ‘motorcycle’ as
in-distribution class. The red rings in Figure 2(c) represent the features of θmotofake on (θfake + θsunfake)-
classifier. We can find that the features of θmotofake are located near the features of motorcycle images
(red circles), while the features of θsunfake (blue rings) are located near the features of sunflower images
(blue circles). This shows that our process to generate adapted fake images (Eq.(2)) successfully
produced different outputs adaptively depending on the tasks.

5 Conclusion

We proposed OOD-MAML, which is a meta-learning method used for implementing K-shot N -way
classification and OOD detection simultaneously. In OOD-MAML, we introduced two types of
meta-parameters: one is related to the base model as in the case of MAML, and the other type, fake-
sample parameters, plays the role of generating OOD samples. Based on the hypothesis regarding
MetaGAN that adversarial samples work as additional training signals to the base model as well as
make the decision boundary sharper, we adapt the fake sample parameters as adversarial samples via
the gradient update with adversarial loss. Our future work could be focused on developing a more
efficient training method for OOD-MAML.

Broader Impact

OOD-MAML can help humans to detect abnormal behaviors quickly and take appropriate actions in
a variety of real-world problems, including production system monitoring, preventive maintenance,
fraud detection, health condition monitoring, and disease surveillance. OOD-MAML can contribute
to the machine learning community by providing a new perspective to OOD detection as a new,
supervised, approach. Previous methods for OOD detection have focused on an unsupervised
learning framework to construct the decision boundary of in-distribution samples. However, this
approach generally requires a huge amount of in-distribution samples and also can suffer from
model uncertainty. Instead, we take a supervised learning framework by introducing an adapted
classifier, which is evaluated not only with in-distribution samples, but also with OOD samples in the
meta-training phase.
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