
A Pseudo-code of OOD-MAML

Algorithm 1 OOD-MAML with K-shot training samples

Require: p(T ): distribution over tasks of OOD detection
Require: α,γ > 0: hyper-parameter

1: randomly initialize θ, θfake and βfake
2: while not done do
3: Sample batch of Ti ∼ p(T )
4: for all Ti do
5: Sample K data points Di

train = {xi1,xi2, . . . ,xiK}
6: First update θ with Eq.(1):

θi = θ − α∇θLθ;Ti
(Di

train, θfake)
7: Update θfake with Eq.(2):

θifake = θfake − βfake � sign(−∇θfake
Lθi;Ti

(Di
train, θfake))

8: Compute the final adapted base parameter θiadapt, with Eq.(3):

θiadapt = θ − α∇θLθi;Ti
(Di

train, (θfake, θ
i
fake))

9: Sample data points
Di
test = {(xi1, yi1), (xi2, y

i
2), . . . , (xiQ, y

i
Q)} from Ti for meta-update

10: end for
11: update θ ← θ − γ∇θ

∑
Ti∼P (T ) L(Di

test)

where θ = (θb, θfake, βfake)
12: end while

B Datasets

Omniglot (Lake et al., 2015) is a dataset of handwritten characters and contains 20 examples of

1623 characters. Omniglot is the most commonly used dataset in few-shot learning, and its images

are resized to 28× 28 (Finn et al., 2017; Santoro et al., 2016; Snell et al., 2017; Sung et al., 2018;

Koch et al., 2015). As in other studies, we randomly select 1200 characters for meta-training and

use the remaining for meta-testing.

miniImageNet is a sub-dataset of ImageNet (Russakovsky et al., 2015). It contains a total of

60K images of 100 different classes, each of which comprises 600 RGB images. Ravi and Larochelle

(2016) presented the protocol for miniImageNet as per which all the images are downsampled

to 84× 84 and are divided into 64 classes for meta-training, 16 classes for meta-validation, and 20

for meta-testing. We followed this protocol but did not use the meta-validation set.

CIFAR-FS is a sub-dataset of CIFAR-100. It contains 600 RGB images per each of the 100 classes.

Bertinetto et al. (2018) resized all the images to 32× 32 and divided this dataset into 64 classes for

meta-training, 16 classes for meta-validation, and 20 classes for meta-testing. We used datasets of
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64 and 20 classes for the meta-training and meta-testing, respectively.

C OOD detection results of OOD-MAML with λ = 0.5

Table 1: OOD detection results

Omniglot
ODIN

-MAML
ODIN
-PN

MAH
-MAML

(N+1)
-MAML

(N+1)
-MAML*

OOD
-MAML(M=3)

OOD
-MAML(M=5)

detect.acc
α = 95

0.8744
(0.0512)

0.8977
(0.0441)

0.8712
(0.0481)

0.9142
(0.0392)

0.9524
(0.0341)

0.9683
(0.0339)

0.9788
(0.0381)

detect.acc
α = 98

0.8912
(0.0331)

0.9122
(0.0287)

0.8320
(0.0785)

TNR
α = 95

0.6942
(0.1142)

0.7122
(0.0533)

0.7288
(0.0821)

0.8722
(0.0730)

0.9201
(0.0633)

0.9380
(0.0674)

0.9429
(0.0639)

TNR
α = 98

0.7124
(0.0988)

0.7369
(0.0629)

0.7544
(0.0233)

CIFAR-FS
detect.acc
α = 95

0.5811
(0.1022)

0.5933
(0.1113)

0.5601
(0.0891)

0.5035
(0.1299)

0.5531
(0.1021)

0.6637
(0.0737)

0.6519
(0.0819)

detect.acc
α = 98

0.6129
(0.1132)

0.6039
(0.1285)

0.5458
(0.0671)

TNR
α = 95

0.2311
(0.1291)

0.1592
(0.1422)

0.2999
(0.1239)

0.1051
(0.1833)

0.2017
(0.0945)

0.4558
(0.1295)

0.4624
(0.1281)

TNR
α = 98

0.2401
(0.1087)

0.1439
(0.1027)

0.1862
(0.1244)

miniImageNet
detect.acc
α = 95

0.5124
(0.0742)

0.5491
(0.0981)

0.5111
(0.1124)

0.5019
(0.0712)

0.5422
(0.1101)

0.6218
(0.1099)

0.6129
(0.1184)

detect.acc
α = 98

0.5641
(0.0411)

0.5669
(0.1003)

0.5229
(0.1174)

TNR
α = 95

0.1211
(0.1899)

0.1829
(0.1042)

0.1429
(0.1366)

0.0749
(0.0822)

0.1009
(0.1033)

0.6386
(0.1204)

0.6372
(0.1196)

TNR
α = 98

0.1659
(0.1426)

0.1942
(0.0819)

0.1944
(0.1209)

D Hyperparameter settings

We set the learning rates in the adaptation process as α = 0.1. In the meta optimizing process

(Eq.(4)), we used the Adam optimizer (Kingma and Ba, 2015) with the learning rate γ=0.001 and

meta-batch size of 4.

In the meta-training phase, the parameters were updated via one gradient step using Eqs.(1) and

and three gradient steps using Eq.(2) and Eq.(3). In order to reduce the computation cost, we used
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the first-order approximation for updating θfake.

In the meta-testing phase, the parameters were updated via three gradient step using Eqs.(1), and

five gradient steps using Eq.(2) and Eq.(3).

E Further experiments

As previously mentioned, OOD-MAML involves two types of meta-parameters θfake and θ, which

are learned interactively. We performed additional experiments to check whether θfake is really

learned interactively with θ across tasks and also check whether the adapted fake samples θifake

really help the classifier to better perform OOD detection.

We first constructed Dmeta−test in the same manner as that used for Dmeta−train, i.e., Di
train

contained examples of one class, and Di
test contained examples of multiple classes including the class

of Di
train. Then from the trained OOD-MAML for each data source, we changed the adversarial

sample generating process in two ways. The first one is to replace the adapted fake samples by

random fake samples u ∼ U [0, 1]d. The resulting method is denoted as random-OOD-MAML. For

random-OOD-MAML, we changed the loss for the gradient update in Eq.(3) by replacing θifake

with u and then adapt the parameters of the base model via a gradient update with respect to the

changed loss.

The other way in which we changed the adversarial sample generating process was to replace the

trained θfake by arbitrary random initial inputs and follow the adversarial adaptation with respect

to these random initials. The resulting method is denoted as random-(ini)-OOD-MAML. We com-

pared the OOD detection accuracy for Dmeta−test using OOD-MAML, random-OOD-MAML, and

random-(ini)-OOD-MAML over 1000 tasks as shown in Table 2. Note that random-OOD-MAML

and random-(ini)-OOD-MAML share the initial parameter θ of the base model that has already

been meta-trained. The results thus obtained show that OOD-MAML outperformed the other two.

This shows that θfake and θ were interactively meta-trained effectively, and thus, the adapted fake

samples provide more useful information for OOD detection than random OOD samples. Moreover,

the superior performance of random-(ini)-OOD-MAML over that of random-OOD-MAML shows

that the application of the adversarial adaptation strategy in Eq.(2) is reasonable for improving
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the performance.

Table 2: OOD detection accuracy of OOD-MAML, random-OOD-MAML, and random-(ini)-OOD-
MAML

Method Omniglot CIFAR-FS
mini

Imagenet
OOD-MAML

M=3
0.9812

(0.0128)
0.7921

(0.0939)
0.7012

(0.1081)
random-(ini)-OOD-

MAML, M=3
0.9764

(0.0122)
0.7422

(0.1042)
0.6739

(0.1012)
random-OOD-
MAML, M=3

0.9233
(0.0548)

0.6402
(0.1011)

0.6115
(0.1129)

F Comparison between OOD-MAML and MetaGAN

In this section, we discuss the commonalities and difference between OOD-MAML and MetaGAN.

Both methods attempt to generate adversarial samples. In MetaGAN, the adversarial samples

provide a sharper decision boundary for the adapted classifier with respect to N classes. MetaGAN

forces the classifier to learn how to classify among N classes and also how to classify the real and

fake samples. In order to implement this, the classifier must extract correct features for N known

classes and the OOD class (for fake samples). The use of correct features make the decision

boundary stricter. The OOD-MAML is also intended to have this effect and adapted fake samples

induce a tight decision boundary for seen classes. This is desirable because Di
train only contains

seen class samples, and it is thus highly possible for the classifier to be biased towards seen classes

after the adaptation, i.e., classifier has a broad decision boundary for seen classes. This is the most

important issue that is required to be solved for the OOD detection task. In our work, this can be

solved by using adapted fake samples.

One difference between OOD-MAML and MetaGAN is the method of generating adversarial

samples. OOD-MAML generates adversarial samples by updating the fake-sample parameter via

gradient descent, while MetaGAN uses GAN. Herein, we claim that our work is more efficient than

MetaGAN in terms of the training. GAN requires a large amount of parameters, and MetaGAN

makes use of neural networks having a ResNet-like architecture that involves as many parameters as

over 100 times the input sample dimension. In contrast, the dimension of θfake is the same as that
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of the input samples, which is significantly less than that of the parameter of GAN. Moreover, GAN

presents the risk of significant information loss. MetaGAN comprises the use of the conditional

GAN, which takes its input as the vector of the representatives of Di
train concatenated with random

noise. MetaGAN introduces the instance-encoder module, which extracts features for each example

in Di
train. Therefore, after extracting the features, MetaGAN treats the average pooled vector of

all the features as the representative of Di
train. Here, if N (number of classes) is larger, a severe

loss of information about Di
train would occur, because it is difficult for one vector to contain the

information of N complex manifolds. In contrast, OOD-MAML results in less information loss than

MetaGAN because it generates adversarial samples with respect to just one class.

Second, OOD-MAML and MetaGAN have different objectives in optimizing the meta-training.

OOD-MAML is designed to optimize the same objective across tasks to train both θ and θfake

(see Eq.(4)). In contrast, MetaGAN uses the adversarial meta-training objective, and thus, fθ and

GAN are optimized according to different objectives. Moreover, in the K-shot N -way classification

problem, MetaGAN assigns adversarial samples to the label (N+1), and thus, the base model fθ is

designed to be the output of (N+1) logits. In MetaGAN, it can be interpreted that θ is optimized

for the K-shot N -way problem across tasks, while the parameters for GAN are optimized to mimic

an arbitrary Di
train. In contrast, in OOD-MAML, θ and θfake are interactively trained to minimize

the same loss across tasks and collaboratively updated in each adaptation phase. In this way,

OOD-MAML generates adversarial samples that are helpful for OOD detection, in contrast to

GAN generating arbitrary adversarial samples.

Finally, OOD-MAML has the advantage of flexibility in terms of task changes, while MetaGAN

does not. When the target tasks are changed from K-shot N -way to K-shot M -way, MetaGAN

is required to re-train the model because the outputs of the base model depend on the number of

classes, which affects the training of the GAN (Note that for K-shot N -way, MetaGAN assigns

the N + 1th label to adversarial samples). Not only MetaGAN but also general meta-learning

methods require re-training in this situation (Finn et al., 2017; Santoro et al., 2016). In contrast,

OOD-MAML does not require re-training; only the number of sub-tasks is required to be changed

from N to M because this change does not affect the training in our method.
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