
We thank the reviewers for lending their expertise and time to provide feedback on our efforts. We are glad that all the1

reviewers found our insight that action transformation can be seen as an IfO problem novel and interesting. We respond2

to the biggest questions and comments below and will address all feedback in the paper.3

[R2 , R3 , R4 ] The reviewers are correct in pointing out that, despite the title, we do not include a real robot experiment.4

Our work is motivated by sim-to-real, but we were unable to conduct real robot experiments due to the current pandemic5

as R1 and R4 pointed out. If accepted, we will make several changes to moderate the claims as R4 suggested. In6

particular, we will change the terminology in the paper to align with more general transfer learning, using source7

and target domains as opposed to sim and “real.” Also, we will change the title to “Towards Sim-to-Real Transfer:8

An Imitation from Observation Approach.” Please note that our formulation remains very relevant to the sim-to-real9

community. We would like to highlight that one of our experiments is indeed an excellent proxy for the sim-to-real10

problem: In the Minitaur domain (Figure 2), Tan et al. [38] found that while their existing simulator (our source domain)11

inaccurately represented their robot, the new simulator they crafted (our target domain) did enable direct policy transfer12

from sim to real.13

[R2 , R3 ] Both manipulation domains [7, 24, 26, 39, 40, R2 ’s suggestions] and locomotion domains [9, 10, 11, 14,14

18, 27, 38, 46] are prevalent in the sim-to-real literature. Both are important—but different—problems: manipulation15

domains are more likely to exhibit observation mismatch, whereas locomotion domains are more typically associated16

with dynamics mismatch. The scope of our work here is mainly dynamics mismatch, and therefore we focus our17

experiments on locomotion problems. GARAT solely addresses dynamics mismatch. For locomotion, the observations18

are usually joint angles and velocities, so observation mismatch is negligible. If accepted, we will make this scope more19

clear in the camera-ready version of our paper and include the references R2 suggested. Note that in our problem setting,20

the state spaces are the same in the source and target domains, as is commonly the case in sim-to-real. Specifically, we21

consider dealing with embodiment mismatch to be beyond the scope of this paper.22

[R2 ] Most domain randomization techniques, and all the papers suggested by R2 , require a modifiable simulator and23

substantial domain expertise [7]. In this paper we focus on the case where the simulator cannot be modified (black box),24

and hence it is not appropriate to compare with methods that can adjust the simulator itself. We compare to ANE [20]25

which is an action randomization technique.26

[R2 ] Respectfully, we strongly disagree with the reviewer’s assertion that our approach does not offer significant27

technical novelty. In this work, we show how tools developed in the imitation learning community can be successfully28

adapted to sim-to-real problems. Moreover, our adaptation of one such tool actually leads to better performance29

than alternative applicable approaches. To the best of our knowledge, this is the first time this has been studied30

in the literature, and therefore our work represents a novel and important connection between two largely separate31

communities.32

[R1 ] Concerning why GAT was not as effective as GARAT on transfer, perhaps it would be useful to compare the two33

techniques to their imitation learning equivalents, behavioral cloning (BC) and using inverse RL (IRL). BC suffers34

from distribution shift while IRL methods are able to learn how to recover from such shifts; likewise, GAT is unable to35

recover from the shift introduced by an imperfect action transformation while GARAT can correct for such deviations.36

GAT is myopic, trying to match single transitions, while GARAT matches the whole trajectory (Figure 1b).37

[R2 , R3 ] The curve for GAT cuts off early in Figure 1b. In the InvertedPendulum domain, the episode terminates if38

the angle of the pendulum exceeds ±0.2 radians. In the environment with GAT, the action transformation learns to39

keep close to the target domain’s dynamics early on, but this causes instability later in the episode, leading to early40

termination. GARAT sacrifices initial accuracy to keep the overall trajectory as realistic as possible. We will edit the41

caption for Figure 1b to make it clear in the camera ready version of the paper.42

[R3 ] We use the loss derived in Section 4.3 in our main results. Our algorithm is agnostic to the RL algorithms used43

for training. We chose PPO and TRPO for the action transformation function and the agent respectively because that44

combination worked best in preliminary experiments on the InvertedPendulum domain.45

[R3 ] GARAT should implicitly address process noise due to its adversarial learning procedure. The discriminator in46

GARAT encourages the action transformation function to learn a distribution of transitions that are similar to the target47

domain, including any noisy transitions. Moreover, GAT [14] has been shown to be useful in sim-to-real transfer on a48

real legged humanoid robot, showing that impact dynamics and operational noise do not prevent learning.49

[R2 , R3 ] Figure 3 was normalized in order to compare the performance of different algorithms across different50

domains. It does not represent the maximum and minimum returns possible. We train πreal in the target domain for 151

million time-steps, enough to reach a reasonable policy. These policies may take more training to converge completely52

(HalfCheetah is usually trained for 10 million timesteps). GARAT manages to learn a policy that does better than the53

policies trained directly in the target domain for some of these environments.54


