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Scope: Our main objective has been to provide insights on current limitations of the Neural ODE framework, and to2

design novel solutions backed by theory. Although evaluations for specific use cases e.g. CNF was not in within our3

primary scope, we include additional results to address requests and provide further evidence of practical usefulness.4

Further augmentation evaluations [R2, R3]: We obtained improved results on all variants by means of a similar5

architecture equipped with a pooling layer (closer to standard image class. approaches) and tolerances 104. The neural6

ODEs learn richer dynamics (higher NFEs), boosting performance across all models and clarifying the relative ranking7

of aug. approaches. This also leads to improved parameter efficiency (≈ 8x less parameters). Tab. 1 includes results8

on both MNIST as well as CIFAR10 (R1). The parameter efficiency of 2nd–order models (R2, R3) is now more9

pronounced. We also report that they converge faster, often several epochs ahead of the alternatives.10

Discussion on CNFs [R1, R2, R4]: We further showcase data-control (DC) strategies in the context CNFs as a more11

complex task. Compared to regular CNFs, DC–CNFs do not require changes to the formulation and converge faster12

with simpler flows as shown in Fig. 1, effectively reducing NFEs. Adaptive–depth models are also compatible with13

CNFs and would allow the model to allocate more depth to data further away from their target destination.14

Depth-variance techniques [R2]: We agree that the choice of basis in Galërkin neural ODEs is important and worthy15

of several standalone investigations. However, regarding the sinusoids example, periodicity of the weights (inferred by16

the choice of the Fourier eigenbasis) does not imply periodicity of the Neural ODE and hence does not constitute a17

strong inductive bias. To confirm this, we tested with different signals and eigenbasis (Chebychev poly., RBFs). Fig. 218

shows a more complex experiment for time–varying nonlinear system.19

Signal tracking [R2]: Here, depth–variance is not needed to actually learn the trajectory, generated by ẍ =20

x, [x0, ẋ0] = [1, 0] which does not contain any depth-varying harmonics. Rather, it ensures that for any initial21

condition of the neural ODE, sampled from N ([1, 0], σ), the solution converges to the signal. The same result can be22

obtained for nonlinear systems whose solution does not admit a finite spectral decomposition as shown above.23

Related work [R3]: We agree that these important references belong to Section 6 and have made the suggested changes.24

The approach of latent neural SDEs (and ODEs) is different compared to data-control, which does not require variational25

inference. It is correct to state that, however, both approaches condition the vector field on data.26

Relation to PMP [R3]: We agree that Th.m 1 is directly derived via classic optimal control theory (PMP) and should27

be more appropriately referred to as "Proposition". However, including it was necessary for two main reasons: to extend28

vanilla adjoints to integral loss functions (used in practice for CNFs or signal tracking but not yet implemented) and to29

set the stage for Th.m 2. We note that Th.m 2 is a non–trivial generalization to infinite dimensional spaces.30

Relation to COD [R3]: We agree on COD and clarified the statements in Sec. 5. The phenomenon we want to highlight31

is that dimension of the state–space also drastically affects the behavior of dynamical systems in general.32

Guidelines on choosing correct variants [R3]: In general, we observe data–control to be beneficial in all settings. We33

agree that additional guidelines on model choice could be useful to the reader; we will add more information.34

Given Sec. 5.2, state–space crossing might be possible if each traj. could travel for different amounts of time.35

[R2]:In 5.2 we argue that adaptive–depth models can learn the reflection map without crossing flows (as they still36

cannot cross), consistently to what is stated in rest of Sec. 5. This is in fact the main leitmotiv of adaptive-depth models.37

Clarifications: Figure 1 [R2]: The blue curves are learned flows of test init. cond., which converge to the signal38

to track (hence the decreasing variance across depth). Figure 2 [R2, R3]: Each traj. represents the evolution of a39

single parameter. Training details [R2] On the signal tracking task, we train on 102 initial conditions, full batch. The40

GalNODE architecture has a hidden layer of 64. On depth-varying classification, the architectures have two hidden41

layers of 32 with a dataset of 104 points (dense, to approx. connected annuli). Why s instead of t? [R1]: We chose s42

against t as a more general formulation for the (continuous) depth, to avoid confusion in static settings or whenever43

time is not directly related to depth–propagation dimension. "This approach" refers to hypernetworks? [R2]: Yes.44

Typos details [R1, R2, R3] : We addressed all the remaining typos.45


