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Abstract

Wasserstein Distributionally Robust Optimization (DRO) is concerned with find-
ing decisions that perform well on data that are drawn from the worst-case proba-
bility distribution within a Wasserstein ball centered at a certain nominal distribu-
tion. In recent years, it has been shown that various DRO formulations of learning
models admit tractable convex reformulations. However, most existing works pro-
pose to solve these convex reformulations by general-purpose solvers, which are
not well-suited for tackling large-scale problems. In this paper, we focus on a
family of Wasserstein distributionally robust support vector machine (DRSVM)
problems and propose two novel epigraphical projection-based incremental algo-
rithms to solve them. The updates in each iteration of these algorithms can be
computed in a highly efficient manner. Moreover, we show that the DRSVM prob-
lems considered in this paper satisfy a Hölderian growth condition with explicitly
determined growth exponents. Consequently, we are able to establish the conver-
gence rates of the proposed incremental algorithms. Our numerical results indicate
that the proposed methods are orders of magnitude faster than the state-of-the-art,
and the performance gap grows considerably as the problem size increases.

1 Introduction

Wasserstein distance-based distributionally robust optimization (DRO) has recently received signif-
icant attention in the machine learning community. This can be attributed to its ability to improve
generalization performance by robustifying the learning model against unseen data [13, 22]. The
DRO approach offers a principled way to regularize empiricial risk minimization problems and pro-
vides a transparent probabilistic interpretation of a wide range of existing regularization techniques;
see, e.g., [4, 10, 22] and the references therein. Moreover, many representative distributionally
robust learning models admit equivalent reformulations as tractable convex programs via strong du-
ality [22, 12, 18, 27, 11]. Currently, a standard approach to solving these reformulations is to use
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off-the-shelf solvers such as YALMIP or CPLEX. However, these general-purpose solvers do not
scale well with the problem size. Such a state of affairs greatly limits the use of the DRO methodol-
ogy in machine learning applications and naturally motivates the study of the algorithmic aspects of
DRO.

In this paper, we aim to design fast iterative methods for solving a family of Wasserstein distribu-
tionally robust support vector machine (DRSVM) problems. The SVM is one of the most frequently
used classification methods and has enjoyed notable empirical successes in machine learning and
data analysis [25, 23]. However, even for this seemingly simple learning model, there are very few
works addressing the development of fast algorithms for its Wasserstein DRO formulation, which
takes the form inf

w
{ c2‖w‖

2
2 + sup

Q∈Bp
ϵ (P̂n)

E(x,y)∼Q[ℓw(x, y)]} and can be reformulated as

min
w,λ

λϵ+
1

n

n∑
i=1

max
{
1− wT zi, 1 + wT zi − λκ, 0

}
+

c

2
‖w‖22, s.t. ‖w‖q ≤ λ; (1)

see [12, Theorem 2] and [22, Theorem 3.11]. Problem (1) arises from the vanilla soft-margin SVM
model. Here, c

2‖w‖
2
2 is the regularization term with c ≥ 0; x ∈ Rd denotes a feature vector and

y ∈ {−1,+1} is the associated binary label; ℓw(x, y) = max{1 − ywTx, 0} is the hinge loss
w.r.t. the feature-label pair (x, y) and learning parameter w ∈ Rd; {(x̂i, ŷi)}ni=1 are n training
samples independently and identically drawn from an unknown distribution P∗ on the feature-label
space Z = Rd × {+1,−1} and zi = x̂i � ŷi; P̂n = 1

n

∑n
i=1 δ(x̂i,ŷi) is the empirical distribution

associated with the training samples; Bp
ϵ (P̂n) = {Q ∈ P(Z) : Wp(Q, P̂n) ≤ ϵ} is the ambiguity

set defined on the space of probability distributions P(Z) centered at the empirical distribution P̂n

and has radius ϵ ≥ 0 w.r.t. the ℓp norm-induced Wasserstein distance

Wp(Q, P̂n) = inf
Π∈P(Z×Z)

{∫
Z×Z

dp(ξ, ξ
′) Π(dξ,dξ′) : Π(dξ,Z) = Q(dξ), Π(Z,dξ′) = P̂n(dξ

′)

}
,

where ξ = (x, y) ∈ Z , 1
p+

1
q = 1, and dp(ξ, ξ

′) = ‖x−x′‖p+ κ
2 |y−y

′| is the transport cost between
two data points ξ, ξ′ ∈ Z with κ ≥ 0 representing the relative emphasis between feature mismatch
and label uncertainty. In particular, the larger the κ, the more reliable are the labels; see [22, 15]
for further details. Intuitively, if the ambiguity set Bp

ϵ (P̂n) contains the ground-truth distribution
P∗, then the estimator w∗ obtained from an optimal solution to (1) will be less sensitive to unseen
feature-label pairs.

In the works [12, 18], the authors proposed cutting surface-based methods to solve the ℓp-DRSVM
problem (1). However, in their implementation, they still need to invoke off-the-shelf solvers for
certain tasks. Recently, researchers have proposed to use stochastic (sub)gradient descent to tackle a
class of Wasserstein DRO problems [5, 24]. Nevertheless, the results in [5, 24] do not apply to the ℓp-
DRSVM problem (1), as they require κ =∞; i.e., the labels are error-free. Moreover, the transport
cost dp does not satisfy the strong convexity-type condition in [5, Assumption 1] or [24, Assump-
tion A]. On another front, the authors of [15] introduced an ADMM-based first-order algorithmic
framework to deal with the Wasserstein distributionally robust logistic regression problem. Though
the framework in [15] can be extended to handle the ℓp-DRSVM problem (1), it has two main draw-
backs. First, under the framework, the optimal λ∗ of problem (1) is found by an one-dimensional
search, where each update involves fixing λ to a given value and solving for the corresponding opti-
mal w∗(λ) (which we refer to as the w-subproblem). Since the number of w-subproblems that arise
during the search can be large, the framework is computationally rather demanding. Second, the
w-subproblem is solved by an ADMM-type algorithm, which involves both primal and dual updates.
In order to establish fast (e.g., linear) convergence rate guarantee for the algorithm, one typically
requires a regularity condition on the set of primal-dual optimal pairs of the problem at hand. Unfor-
tunately, it is not clear whether the ℓp-DRSVM problem (1) satisfies such a primal-dual regularity
condition.

To overcome these drawbacks, we propose two new epigraphical projection-based incremental al-
gorithms for solving the ℓp-DRSVM problem (1), which tackle the variables (w, λ) jointly. We
focus on the commonly used ℓ1, ℓ2, and ℓ∞ norm-induced transport costs, which correspond to
q ∈ {1, 2,∞}. Our first algorithm is the incremental projected subgradient descent (ISG) method,
whose efficiency inherits from that of the projection onto the epigraph {(w, λ) : ‖w‖q ≤ λ} of
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Table 1: Convergence rates of incremental algorithms for ℓp-DRSVM

q c Hölderian growth Step size scheme Convergence rate

q = 1,∞ c = 0 Sharp [8, Theorem 3.5] αk+1 = ραk, ρ ∈ (0, 1) O(ρk)
q = 1,∞ c > 0 QG [28, Proposition 6] αk = γ

nk , γ > 0 O( 1k )

q = 2 c = 0
Sharp (BLR) αk+1 = ραk, ρ ∈ (0, 1) O(ρk)
Not Known αk = γ

n
√
k

, γ > 0 O( 1√
k
)

q = 2 c > 0
QG (BLR) αk = γ

nk , γ > 0 O( 1k )
Not Known αk = γ

n
√
k

, γ > 0 O( 1√
k
)

BLR: The result holds under the assumption of bounded linear regularity (BLR) (see Defini-
tion 2).
Not Known: Without BLR, it is not known whether the Hölderian growth condition holds.

the ℓq norm (with q ∈ {1, 2,∞}). The second is the incremental proximal point algorithm (IPPA).
Although in general IPPA is less sensitive to the choice of initial step size and can achieve better ac-
curacy than ISG [16], in the context of the ℓp-DRSVM problem (1), each iteration of IPPA requires
solving the following subproblem, which we refer to as the single-sample proximal point update:

min
w,λ

max
{
1− wT zi, 1 + wT zi − λκ, 0

}
+

1

2α
(‖w − w̄‖22 + (λ− λ̄)2), s.t. ‖w‖q ≤ λ. (2)

Here, α > 0 is the step size, q ∈ {1, 2,∞}, and w̄, λ̄ are given. By carefully exploiting the problem
structure, we develop exceptionally efficient solutions to (2). Specifically, we show in Section 3
that the optimal solution to (2) admits an analytic form when q = 2 and can be computed by a fast
algorithm based on a parametric approach and a modified secant method (cf. [9]) when q = 1 or∞.

Next, we investigate the convergence behavior of the proposed ISG and IPPA when applied to prob-
lem (1). Our main tool is the following regularity notion:

Definition 1 (Hölderian growth condition [6]) A function f : Rm → R is said to satisfy a Hölde-
rian growth condition on the domain Ω ⊆ Rm if there exist constants θ ∈ [0, 1] and σ > 0 such that

dist(x,X ) ≤ σ−1(f(x)− f∗)θ, ∀x ∈ Ω, (3)

where X denotes the optimal set of minx∈Ω f(x) and f∗ is the optimal value. The condition (3) is
known as sharpness when θ = 1 and quadratic growth (QG) when θ = 1

2 ; see, e.g., [7].

We show that for different choices of q ∈ {1, 2,∞} and c ≥ 0, the DRSVM problem (1) satisfies
either the sharpness condition or QG condition; see Table 1. With the exception of the case q ∈
{1,∞}, where the sharpness (resp. QG) of (1) when c = 0 (resp. c > 0) essentially follows from [8,
Theorem 3.5] (resp. [28, Proposition 6]), the results on the Hölderian growth of problem (1) are new.
Consequently, by choosing step sizes that decay at a suitable rate, we establish, for the first time,
the fast sublinear (i.e., O( 1k )) or linear (i.e., O(ρk)) convergence rate of the proposed incremental
algorithms when applied to the DRSVM problem (1); see Table 1.

Lastly, we demonstrate the efficiency of our proposed methods through extensive numerical experi-
ments on both synthetic and real data sets. It is worth mentioning that our proposed algorithms can
be easily extended to an asynchronous decentralized parallel setting and thus can further meet the
requirements of large-scale applications.

2 Epigraphical Projection-based Incremental Algorithms

In this section, we present our incremental algorithms for solving the ℓp-DRSVM problem. For
simplicity, we focus on the case c = 0 in what follows. Our technical development can be extended
to handle the general case c ≥ 0 by noting that the subproblems corresponding to the cases c = 0
and c > 0 share the same structure.
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To begin, observe that the ℓp-DRSVM problem (1) with c = 0 can be written compactly as

min
∥w∥q≤λ

1

n

n∑
i=1

fi(w, λ), (4)

where fi(w, λ) = λϵ + max
{
1− wT zi, 1 + wT zi − λκ, 0

}
is a piecewise affine function. Since

problem (4) possesses the vanilla finite-sum structure with a single epigraphical projection con-
straint, a natural and widely adopted approach to tackling it is to use incremental algorithms.
Roughly speaking, such algorithms select one mini-batch of component functions from the objective
in (4) at a time based on a certain cyclic order and use the selected functions to update the current
iterate. We shall focus on the following two incremental algorithms for solving the DRSVM prob-
lem (1). Here, k is the epoch index (i.e., the k-th time going through the cyclic order) and αk > 0 is
the step size in the k-th epoch.

Incremental Mini-batch Projected Subgradient Algorithm (ISG)

(wk
i+1, λ

k
i+1) = proj{∥w∥q≤λ}

[
(wk

i , λ
k
i )− αkg

k
i

]
, (5)

where gki is a subgradient of 1
|Bi|

∑
j∈Bi

fj at (wk
i , λ

k
i ) and Bi ⊆ {1, . . . , n} is the i-th mini-batch.

Incremental Proximal Point Algorithm (IPPA)

(wk
i+1, λ

k
i+1) = argmin

∥w∥q≤λ

{
fi(w, λ) +

1

2αk

(
‖w − wk

i ‖22 + (λ− λk
i )

2
)}

, (6)

where (wk
n, λ

k
n) = (wk+1

0 , λk+1
0 ).

Now, a natural question is how to solve the subproblems (5) and (6) efficiently. As it turns out, the
key lies in an efficient implementation of the ℓq norm epigraphical projection (with q ∈ {1, 2,∞}).
Indeed, such a projection appears explicitly in the ISG update (5) and, as we shall see later, plays a
vital role in the design of fast iterative algorithms for the single-sample proximal point update (6).
To begin, we note that the ℓ2 norm epigraphical projection proj{∥w∥2≤λ} has a well-known analytic
solution; see [1, Theorem 3.3.6]. Next, the ℓ1 norm epigraphical projection proj{∥w∥1≤λ} can be
found in linear time using the quick-select algorithm; see [26]. Lastly, the ℓ∞ norm epigraphical
projection proj{∥w∥∞≤λ} can be computed in linear time via the Moreau decomposition

proj{∥w∥∞≤λ}(x, s) = (x, s) + proj{∥w∥1≤λ}(−x,−s).
From the above discussion, we see that the ISG update (5) can be computed efficiently. In the next
section, we discuss how these epigraphical projections can be used to perform the single-sample
proximal point update (6) in an efficient manner.

3 Fast Algorithms for Single-Sample Proximal Point Update (6)

Analytic solution for q = 2. We begin with the case q = 2. By combining the terms λϵ and
1

2αk
(λ− λk

i )
2 in (6), we see that the single-sample proximal point update takes the form (cf. (2))

min
w,λ

max
{
1− wT zi, 1 + wT zi − λκ, 0

}︸ ︷︷ ︸
hi(w,λ)

+
1

2α
(‖w − w̄‖22 + (λ− λ̄)2), s.t. ‖w‖2 ≤ λ. (7)

The main difficulty of (7) lies in the piecewise affine term hi. To handle this term, let hi,1(w, λ) =
1−wT zi, hi,2(w, λ) = 1+wT zi−λκ, and hi,3(w, λ) = 0, so that hi = maxj∈{1,2,3} hi,j . Observe
that if (w∗, λ∗) is an optimal solution to (7), then there could only be one, two, or three affine pieces
in hi that are active at (w∗, λ∗); i.e., Γ = |{j : hi(w

∗, λ∗) = hi,j(w
∗, λ∗)}| ∈ {1, 2, 3}. This

suggests that we can find (w∗, λ∗) by exhausting these possibilities. Due to space limitation, we
only give an outline of our strategy here. The details can be found in the Appendix.

We start with the case Γ = 1. For j = 1, 2, 3, consider the following problem, which corresponds to
the subcase where hi,j is the only active affine piece:

min
w,λ

hi,j(w, λ) +
1

2α
(‖w − w̄‖22 + (λ− λ̄)2), s.t. ‖w‖2 ≤ λ. (8)
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Since hi,j is affine in (w, λ), it is easy to verify that problem (8) reduces to an ℓ2 norm epigraphical
projection, which admits an analytic solution, say (ŵj , λ̂j). If there exists a j′ ∈ {1, 2, 3} such
that hi,j′(ŵj′ , λ̂j′) > hi,j(ŵj′ , λ̂j′) for j 6= j′, then we know that (ŵj′ , λ̂j′) is optimal for (7) and
hence we can terminate the process. Otherwise, we proceed to the case Γ = 2 and consider, for
1 ≤ j < j′ ≤ 3, the following problem, which corresponds to the subcase where hi,j and hi,j′ are
the only two active affine pieces:

min
w,λ

hi,j(w, λ) +
1

2α
(‖w − w̄‖22 + (λ− λ̄)2), s.t. hi,j(w, λ) = hi,j′(w, λ), ‖w‖2 ≤ λ. (9)

As shown in the Appendix (Proposition 6.2), the optimal solution to (9) can be found by solving
a univariate quartic equation, which can be done efficiently. Now, let (ŵ(j,j′), λ̂(j,j′)) be the op-
timal solution to (9). If there exist j, j′ with 1 ≤ j < j′ ≤ 3 such that hi,j(ŵ(j,j′), λ̂(j,j′)) =

hi,j′(ŵ(j,j′), λ̂(j,j′)) > hi,j′′(ŵ(j,j′), λ̂(j,j′)) with j′′ ∈ {1, 2, 3} \ {j, j′}, then (ŵ(j,j′), λ̂(j,j′)) is
optimal for (7) and we can terminate the process. Otherwise, we proceed to the case Γ = 3. In this
case, we consider the problem

min
w,λ

1

2α
(‖w − w̄‖22 + (λ− λ̄)2), s.t. hi,1(w, λ) = hi,2(w, λ) = hi,3(w, λ), ‖w‖2 ≤ λ,

which reduces to
min
w

1

2α
‖w − w̄‖22, s.t. wT zi = 1, ‖w‖2 ≤

2

κ
. (10)

It can be shown that problem (10) admits an analytic solution ŵ; see the Appendix (Proposition 6.4).
Then, the pair (ŵ, 2

κ ) is an optimal solution to (7).

Fast iterative algorithm for q = 1. The high-level idea is similar to that for the case q = 2;
i.e., we systematically go through all valid subcollections of the affine pieces in hi and test whether
they can be active at the optimal solution to the single-sample proximal point update. The main
difference here is that the subproblems arising from the subcollections do not necessarily admit
analytic solutions. To overcome this difficulty, we propose a modified secant algorithm (cf. [9]) to
search for the optimal dual multiplier of the subproblem and use it to recover the optimal solution
to the original subproblem via ℓ1 norm epigraphical projection. Again, we give an outline of our
strategy here and relegate the details to the Appendix.

To begin, we rewrite the single-sample proximal point update (6) for the case q = 1 as

min
w,λ,µ

µ+
1

2α

(
‖w − w̄‖22 + (λ− λ̄)2

)
s.t. hi,j(w, λ) ≤ µ, j = 1, 2, 3; ‖w‖1 ≤ λ.

(11)

For reason that would become clear in a moment, we shall not go through the cases Γ = 1, 2, 3 as
before. Instead, consider first the case where hi,3 is inactive. If hi,1 is also inactive, then we consider
the problem minw,λ hi,2(w, λ)+

1
2α

(
‖w − w̄‖22 + (λ− λ̄)2

)
, which, by the affine nature of hi,2, is

equivalent to an ℓ1 norm epigraphical projection. If hi,1 is active, then we consider the problem

min
w,λ

hi,1(w, λ) +
1

2α
(‖w − w̄‖22 + (λ− λ̄)2), s.t. hi,2(w, λ) ≤ hi,1(w, λ), ‖w‖1 ≤ λ. (12)

Note that hi,2 can be active or inactive, and the constraint hi,2(w, λ) ≤ hi,1(w, λ) allows us to treat
both possibilities simultaneously. Hence, we do not need to tackle them separately as we did in the
case q = 2. Observe that problem (12) can be cast into the form

min
w,λ

1

2α
(‖w − w̄‖22 + (λ− λ̄)2), s.t. wT z ≤ aλ+ b (← σ ≥ 0), ‖w‖1 ≤ λ, (13)

where, with an abuse of notation, we use w̄ ∈ Rd, λ̄ ∈ R here again and caution the reader that they
are different from those in (12), and z = zi, a = κ

2 , b = 0. Before we discuss how to solve the
subproblem (13), let us note that it arises in the case where hi,3 is active as well. Indeed, if hi,3 is
active and hi,1 is inactive, then we have z = zi, a = κ, b = −1, which corresponds to the constraint
hi,2(w, λ) ≤ hi,3(w, λ) and covers the possibilities that hi,2 is active and inactive. On the other
hand, if hi,3 is active and hi,2 is inactive, then we have z = −zi, a = 0, b = −1, which corresponds
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to the constraint hi,1(w, λ) ≤ hi,3(w, λ) and covers the possibilities that hi,1 is active and inactive.
The only remaining case is when hi,1, hi,2, hi,3 are all active. In this case, we consider problem (10)
with ‖w‖2 ≤ 2

κ replaced by ‖w‖1 ≤ 2
κ . As shown in the Appendix, such a problem can be tackled

using the technique for solving (13). We go through the above cases sequentially and terminate the
process if the solution to the subproblem in any one of the cases satisfies the optimality conditions
of (11).

Now, let us return to the issue of solving (13). The main idea is to perform an one-dimensional search
on the dual variable σ to find the optimal dual multiplier σ∗. Specifically, consider the problem

min
∥w∥1≤λ

1

2α

(
‖w − w̄‖22 + (λ− λ̄)2

)
+ σ(wT z − aκ− b). (14)

Let (ŵ(σ), λ̂(σ)) be the optimal solution to (14) and define the function p : R+ → R by p(σ) =
ŵ(σ)T z − aκ − b. Inspired by [17], we establish the following monotonicity property of p, which
will be crucial to our development of an extremely efficient algorithm for solving (13) later.

Proposition 3.1 If σ satisfies (i) σ = 0 and p(σ) ≤ 0, or (ii) p(σ) = 0, then (ŵ(σ), λ̂(σ)) is the
optimal solution to (13). Moreover, p is continuous and monotonically non-increasing on R+.

In view of Proposition 3.1, we first check if p(0) ≤ 0 via an ℓ1 norm epigraphical projection. If
not, then we search for the σ∗ ≥ 0 that satisfies p(σ∗) = 0 by the secant method, with some special
modifications designed to speed up its convergence [9]. Let us now give a high-level description of
our modified secant method. We refer the reader to the Appendix (Algorithm 1) for details.

At the beginning of a generic iteration of the method, we have an interval [σl, σu] that contains σ∗,
with rl = −p(σl) < 0 and ru = −p(σu) > 0. The initial interval can be found by considering the
optimality conditions of (11) (i.e., σ∗ ∈ [0, 1]). We then take a secant step to get a new point σ with
r = −p(σ) and perform the update on σl, σu as follows.

Suppose that r > 0. If σ lies in the left-half of the interval (i.e.,
σ < σl+σu

2 ), then we update σu to σ. Otherwise, we take an auxil-
iary secant step based on σ and σu to get a point σ′, and we update
σu to max{σ′, 0.6σl + 0.4σ}. Such a choice ensures that the in-
terval length is reduced by a factor of 0.6 or less. The case where
r < 0 is similar, except that σl is updated. If r = 0, then by Propo-
sition 3.1 we have found the optimal dual multiplier σ∗ and hence
can terminate.

σl+σu
2

r > 0

10 σuσl σ

(σu, ru)

(σl, rl)

−p(σ)

σ

Finally, for the case q = ∞, we can follow the same procedure as the case q = 1. The details can
be found in the Appendix.

4 Convergence Rate Analysis of Incremental Algorithms

In this section, we study the convergence behavior of our proposed incremental methods ISG and
IPPA. Our starting point is to understand the conditons under which the ℓp-DRSVM problem (1) pos-
sesses the Hölderian growth condition (3). Then, by determining the value of the growth exponent θ
and using it to choose step sizes that decay at a suitable rate, we can establish the convergence rates
of ISG and IPPA. To begin, let us consider problem (1) with q ∈ {1,∞}. If c = 0, then problem (1)
satisfies the sharpness (i.e., θ = 1) condition. This follows essentially from [8, Theorem 3.5], as
the objective of (1) has polyhedral epigraph and the constraint is polyhedral. On the other hand, if
c > 0, then since the piecewise affine term in (1) has a polyhedral epigraph and the constraint is
polyhedral, we can invoke [28, Proposition 6] and conclude that problem (1) satisfies the QG (i.e.,
θ = 1

2 ) condition.

Next, let us consider the case q = 2. From the above discussion, one may expect that similar
conclusions hold for this case. However, as the following example shows, this case is more subtle
and requires a more careful treatment.

Example 4.1 Consider the problem minw,λ 0.1λ + |1 − w1|, s.t.
√
w2

1 + w2
2 ≤ λ, which is an

instance of (1) with q = 2, c = 0. It is easy to verify that the optimal solution is w∗ = (1, 0), λ∗ = 1.
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Consider feasible points of the form (w1, w2, λ) = (w1,
√
1− w2

1, 1), which tend to (w∗, λ∗) as w1

tends to 1. A simple calculation yields dist((w1, w2, λ), (w
∗, λ∗)) =

√
2|1− w1| = ω(|1 − w1|),

which shows that the instance cannot satisfy the sharpness condition.

As it turns out, it is still possible to establish the sharpness or QG condition for problem (1) with
q = 2 under a well-known sufficient condition called bounded linear regularity. Let us begin with
the definition.

Definition 2 (Bounded linear regularity [2, Definition 5.6]) Let C1, . . . , CN be closed convex
subsets of Rd with a non-empty intersection C. We say that the collection {C1, . . . , CN} is bounded
linearly regular (BLR) if for every bounded subset B of Rd, there exists a constant κ > 0 such that

dist(x,C) ≤ κ max
i∈{1,...,N}

dist(x,Ci), for all x ∈ B.

Using the above definition, we can establish the following result; see the Appendix for the proof.

Proposition 4.2 Consider problem (1) with q = 2. Let X be the set of optimal solutions and
Ld
2 = {(w, λ) ∈ Rd × R : ‖w‖2 ≤ λ} be the constraint set. Suppose that X ∩ ri(Ld

2) 6= ∅.
Consequently, problem (1) satisfies the sharpness condition when c = 0 and the QG condition when
c > 0.

By combining Proposition 4.2 with an appropriate choice of step sizes, we obtain the following
convergence rate guarantees for ISG and IPPA. The proof can be found in the Appendix.

Theorem 4.3 Let {xk = (wk
0 , λ

k
0)} be the sequence of iterates generated by ISG or IPPA.

(1) If problem (1) satisfies the sharpness condition, then by choosing the geometrically diminishing

step sizes αk = α0ρ
k with α0 ≥ σ dist(x0,X )

2L2n and
√
1− σ2

2L2 ≤ ρ < 1, the sequence {xk}
converges linearly to an optimal solution to (1); i.e., dist(xk,X ) ≤ O(ρk) for all k ≥ 0.

(2) If problem (1) satisfies the quadratic growth condition, then by choosing the polynomially decay-
ing step sizes αk = γ

nk with γ > 1
2σ , the sequence {xk} converges to an optimal solution to (1)

at the rate O( 1√
k
) and {f(xk)− f∗} converges to zero at the rate O( 1k ).

(3) (See [20, Proposition 2.10]) For the general convex problem (1), by choosing the step sizes
αk = γ

n
√
k

with γ > 0, the sequence { min
0≤k≤K

f(xk)−f∗} converges to zero at the rateO( 1√
K
).

5 Experiment Results

In this section, we present numerical results to demonstrate the efficiency of our proposed incre-
mental methods. All simulations are implemented using MATLAB R2019b on a computer running
Windows 10 with a 3.20 GHz, the Intel(R) Core(TM) i7-8700 processor, and 16 GB of RAM. To
begin, we evaluate our two proposed incremental methods ISG and IPPA in different settings to
corroborate our theoretical results in Section 4 and to better understand their empirical strengths and
weaknesses. Based on this, we develop a hybrid algorithm that combines the advantages of both
ISG and IPPA to further speed up the convergence in practice. Next, we compare the wall-clock
time of our algorithms with GS-ADMM [15] and YALMIP (i.e., IPOPT) solver on real datasets.
For sake of fairness, we only extend the first-order algorithmic framework (referred to as GS-
ADMM) to tackle the ℓ∞-DRSVM problem. In fact, the faster inner solver conjugate gradient
with an active set method can only tackle the ℓ∞ case in [15]. The implementation details to re-
produce all numerical results in this section are given in the Appendix. Our code is available at
https://github.com/gerrili1996/Incremental_DRSVM.

5.1 Synthetic data: Different regularity conditions and their step size schemes

Our setup for the synthetic experiments is as follows. First, we generate the learning parameter w∗

and feature vectors {xi}ni=1 independently and identically (i.i.d) from the standard normal distribu-
tion N (0, Id) and the noisy measurements {ξi}ni=1 i.i.d from N (0, σ2Id) (e.g., σ = 0.5). Then, we
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Figure 1: (a)–(d): Comparison between ISG and IPPA on both BLR and non-BLR instances gener-
ated from synthetic datasets. (e)–(f): Performance of ISG on different mini-batch sizes and perfor-
mance of the hybrid algorithm on the a1a dataset.

compute the ground-truth labels {yi}ni=1 by yi = sign(〈w∗, xi〉 + ξi). Here, the model parameters
are n = 1000, d = 100, κ = 1, ϵ = 0.1. All the algorithmic parameters of ISG and IPPA have
been fine-tuned via grid search for optimal performance. Recall from Theorem 4.3 that for instances
satisfying the sharpness condition, the smaller shrinking rate ρ the algorithm can adopt, the faster
its linear rate of convergence. The experiments results in Fig. 1(a–c) indicate that IPPA allows us
to choose a more aggressive ρ when compared with ISG over all instances satisfying the sharpness
condition. A similar phenomenon has also been observed in previous works; see, e.g., [16, Fig. 1].
Even for instances that do not satisfy the sharpness condition, IPPA performs better than ISG; see
Fig. 1(d).

Nevertheless, IPPA can only handle one sample at a time. Thus, we are motivated to develop an
approach that can combine the best features of both ISG and IPPA. Towards that end, observe from
Fig.1(e) that there is a tradeoff between the mini-batch size and the shrinking rate ρ, which means
that there is an optimal mini-batch size for achieving the fastest convergence speed. Inspired by this,
we propose to first apply the mini-batch ISG to obtain an initial point and then use IPPA in a local
region around the optimal point to gain further speedup and get a more accurate solution. As shown
in Fig. 1(f), such a hybrid algorithm is effective, thus confirming our intuition.

5.2 Efficiency of our incremental algorithms

Next, we demonstrate the efficiency of our proposed methods on the real datasets a1a-a9a,ijcnn1
downloaded from the LIBSVM2. The results for ℓ1-DRSVM, which satisfies the sharpness condition,
are shown in Table 2. Apparently, IPPA is slower than mini-batch ISG (i.e., M-ISG) in general but
can obtain more accurate solutions. More importantly, the hybrid algorithm, which combines the
advantages of both M-ISG and IPPA, has an excellent performance and achieves a well-balanced
tradeoff between accuracy and efficiency. All of them are much faster than YALMIP. The results
for ℓ2-DRSVM are reported in Table 3. As ISG is sensitive to hyper-parameters and has difficulty
achieving the desired accuracy, we only present the results for IPPA. From the table, the superiority
of IPPA over the solver is obvious.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 2: Wall-clock Time Comparison on UCI Real Dataset: ℓ1-DRSVM, c = 0, κ = 1, ϵ = 0.1

Dataset Objective Value Wall-clock time (sec)

M-ISG IPPA Hybrid YALMIP M-ISG IPPA Hybrid YALMIP

a1a 0.651090 0.651091 0.651090 0.651102 0.706 6.1242 1.560 12.221
a2a 0.670640 0.670640 0.670640 0.670652 0.717 7.040 1.720 9.695
a3a 0.662962 0.663093 0.662962 0.663060 1.800 21.242 3.740 11.854
a4a 0.674274 0.674274 0.674273 0.674274 3.764 25.980 4.664 16.638
a5a 0.660867 0.660867 0.660867 0.660869 2.026 24.752 24.752 24.207
a6a 0.654189 0.654189 0.654189 0.654194 2.277 26.127 2.509 39.311
a7a 0.656274 0.656274 0.656273 0.656411 2.528 33.094 2.799 60.046
a8a 0.650036 0.650036 0.650035 0.650081 3.004 41.249 3.729 94.377
a9a 0.642186 0.642186 0.642185 0.642596 2.285 35.554 3.063 155.980

Table 3: Wall-clock Time Comparison on UCI Real Dataset: ℓ2-DRSVM, c = 0, κ = 1, ϵ = 0.1

Dataset Objective Value Wall-clock time (sec) Regularity Condition
IPPA YALMIP IPPA YALMIP

a1a 0.6339472 0.6338819 5.517 8.557 Not Known
a2a 0.6599856 0.6599099 9.355 11.989 Not Known
a3a 0.6443777 0.6442762 7.096 15.335 Not Known
a4a 0.6513987 0.6513899 14.162 23.122 Not Known
a5a 0.6484421 0.6484147 10.515 32.663 Not Known
a6a 0.6428831 0.6428806 15.195 67.695 Not Known
a7a 0.6459271 0.6462302 6.454 118.740 Not Known
a8a 0.6441057 0.6441057 27.242 161.000 Not Known
a9a 0.6389162 0.6437767 13.129 215.387 Sharpness

ijcnn 0.4781876 0.4781897 20.567 379.943 Sharpness

To further demonstrate the efficiency of our proposed hybrid algorithm, we compare it with GS-
ADMM [15] and YALMIP on ℓ∞-DRSVM, which again satisfies the sharpness condition. The
results are shown in Table 4. The overall performance of our hybrid method dominates both GS-
ADMM and YALMIP. Due to space limitation, we only present the results for the case q ∈ {1, 2,∞},
c = 0. More numerical results can be found in the Appendix.

Table 4: Wall-clock Time Comparison on UCI Real Dataset: ℓ∞-DRSVM, c = 0, κ = 1, ϵ = 0.1

Dataset Hybrid GS-ADMM YALMIP Dataset Hybrid GS-ADMM YALMIP

a1a 4.789 5.939 7.832 a6a 8.273 8.273 42.714
a2a 5.098 7.069 9.100 a7a 6.115 6.115 60.743
a3a 16.252 9.638 11.375 a8a 11.065 11.065 99.355
a4a 5.498 10.446 17.542 a9a 5.717 5.717 172.07
a5a 7.363 13.993 22.969 ijcnn 4.301 4.301 319.379

6 Conclusion and Future Work

In this paper, we developed two new and highly efficient epigraphical projection-based incremen-
tal algorithms to solve the Wasserstein DRSVM problem with ℓp norm-induced transport cost
(p ∈ {1, 2,∞}) and established their convergence rates. A natural future direction is to develop a
mini-batch version of IPPA and extend our algorithms to the asynchronous decentralized parallel set-
ting. Inspired by our paper, it would also be interesting to develop some new incremental/stochastic
algorithms to tackle more general Wasserstein DRO problems; see, e.g., problem (11) in [19].
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