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Abstract

A classic problem in machine learning and data analysis is to partition the vertices
of a network in such a way that vertices in the same set are densely connected and
vertices in different sets are loosely connected.
In practice, the most popular approaches rely on local search algorithms; not only
for the ease of implementation and the efficiency, but also because of the accuracy
of these methods on many real world graphs. For example, the Louvain algorithm
– a local search based algorithm – has quickly become the method of choice for
clustering in social networks. However, explaining the success of these methods
remains an open problem: in the worst-case, the runtime can be up to Ω(n2), much
worse than what is typically observed in practice, and no guarantee on the quality
of its output can be established.
The goal of this paper is to shed light on the inner-workings of Louvain; only
if we understand Louvain, can we rely on it and further improve it. To achieve
this goal, we study the behavior of Louvain in the famous two-bloc Stochastic
Block Model, which has a clear ground-truth and serves as the standard testbed
for graph clustering algorithms. We provide valuable tools for the analysis of
Louvain, but also for many other combinatorial algorithms. For example, we show
that the probability for a node to have more edges towards its own community is
1/2 + Ω(min(∆(p− q)/√np, 1)) in the SBM(n, p, q), where ∆ is the imbalance.
Note that this bound is asymptotically tight and useful for the analysis of a wide
range of algorithms (Louvain, Kernighan-Lin, Simulated Annealing etc).

1 Introduction

Local search algorithms are widely-used in machine learning and data analysis, to extract infor-
mation or optimize models. Among the most classic examples are Gradient Descent for tuning
neural networks, Lloyd’s method and Expectation-Maximization (EM) for clustering, unsupervised
learning and statistical inference. However, understanding the practical success of local search al-
gorithms through a theoretical analysis remains a major open problem. Proving guarantees on the
quality of the local optima found by the algorithm and the required running time remain notoriously
hard problems. For most of the above mentioned methods it is possible to construct adversarial ex-
amples that lead to highly sub-optimal local optima or induce very slow convergence. Nonetheless,
many of these worst-case examples are contrived and highly unlikely to arise in real-world scenarios.
Therefore, if one seeks to understand the success of local search algorithms, one must go beyond
the worst-case scenario. This path has been recently explored for various algorithms and numerous
papers have recently shown the power of gradient descent, EM, Lloyd’s method in various specific
contexts.
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An illustrative example of the discrepancy between the success of local search techniques versus
its theoretical understanding is the case of graph partitioning. Consider the problem where one is
given a graph G, and asked to partition it into subgraphs, each of which exhibiting a higher density
of edges within the subgraph than towards the rest of the graph. For this problem, the power of
local search algorithms was first materialized by simulated annealing heuristics. In the early 70s,
Kernighan and Lin [26] presented a simple local search procedure for computing a balanced cut1
of a graph of small size. The heuristic quickly became a standard tool for VLSI design and is still
part of various packages [32]. More recently, the success of the Louvain algorithm [7] for extracting
information from social networks, knowledge or similarity graphs has shown that despite a flurry
of new techniques, local search algorithms remain the most popular heuristics. However, from a
theoretical standpoint, designing approximation algorithms for graph partitioning objectives such as
modularity, sparsest cut, bisection, or multicut is a major challenge: under some popular complexity
assumptions such as the unique game conjecture or P 6= NP, there is no constant factor polynomial-
time approximation algorithms for the above problems.

Modularity and the Louvain algorithm. Introduced in 2008 and designed to detect communities
in social networks, the Louvain heuristic has received more than 11400 citations over the last 10
years [19] and is now the method of choice for clustering similarity graphs (see for example the
extensive analysis of Lancichinetti and Fortunato [27]). The algorithm is simply a slight refinement
of a local search algorithm which aims at optimizing the modularity of the current clustering (see
Equation 1 and a more detailed presentation of the Louvain algorithm in Section 2). More interest-
ingly, this algorithm is recognized to produce a good clustering very fast, outperforming most of the
other clustering methods.

Even though this heuristic is now widely used, it is known that it may output arbitrarily bad parti-
tions (in terms of modularity) for some adversarial examples. Even more surprising is the fact that
the worst-case running time of the algorithm is Ω(n2), a prohibitive running time in practice, but
experiments show that it often terminates after O(n polylog(n)) operations.

Quite surprisingly, our understanding of the success of this heuristic is very poor: no guarantees on
the quality of the solution output by Louvain, even for some simple scenarios, have been established.
We thus ask: what is the structure of Louvain’s solution for real-world graphs?

A natural setting for providing a beyond-worst-case analysis of these local search algorithms is
through the classic Stochastic Block Model (see formal definition in SuppMat A) which exhibits
a clear ground-truth clustering and which has been used to provide a beyond-worst-case-analysis
framework in a large number of works.

1.1 Our Results

We focus on the classic Stochastic Block Model with two communities, namely the graph consists
of two communities, each consisting of n nodes, and the probability of observing an edge between
two nodes of the same (resp. different) community is p (resp. q). We refer the reader to Section 2
for formal definition of the above concepts and the Louvain algorithm. Our results are two-fold.
We show, for a large range of parameters, that Louvain recovers the hidden partition and that it
converges rapidly.

We first show that if Louvain is initialized properly, namely with an equal-size two-partition with im-
balance ∆, i.e.: where some part contains n/2 + ∆ vertices of a given community, then it converges
in O(n) steps to the correct clustering with high probability assuming p−q/√p ≥ c

√
n log n/∆, for

some constant c. Interestingly, this bound is near-optimal, namely close to the information theoretic
threshold p−q/√p ≥

√
logn/n up to constant factors, if ∆ ≥ n/c′ for some constant c′.

Theorem 1.1 (Warm Start). Let ∆ > 0. Consider a graph G ∼ SBM(n, p, q). Then, there exists
a constant c such that, with high probability, LOUVAIN initialized with a partition of imbalance ∆

recovers the partition {V1, V2} in O(n) rounds, if p−q√p ≥ 200
√

logn√
∆

max

(
1,

√
(n/2−∆)√

∆

)
.

1A balanced cut is a set of edges whose removal splits the graph into two components with equal number of
vertices.
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We then show that even when Louvain is initialized with a random equal-size two-partition, it
converges to the correct clustering with high probability after only O(n) steps, provided that
p−q/√p ≥ 100n−1/6+ε.

Theorem 1.2 (Cold Start). Consider a graph G ∼ SBM(n, p, q) and assume p−q√
p ≥ 200n−1/6+ε,

for some ε > 0. With hight probability, LOUVAIN algorithm recovers the partition {V1, V2} within
O(n) rounds.

To prove these theorems, we provide valuable tools for the analysis of Louvain, but also for a wide
range of combinatorial algorithms. For example, we show that the probability for a node to have
more edges towards its own community is 1/2 + Ω(min(∆(p − q)/√np, 1)) in the SBM(n, p, q),
where ∆ is the imbalance. Note that this bound is asymptotically tight and useful for the analysis of
other local-search based algorithm such as the aforementioned Kernighan-Lin, Simulated Annealing
etc.

As a side product of our techniques we also obtain bounds for MAJORITY, which is a simpler version
of Louvain, where a node simply moves to the part to which it has the most number of edges. We
can show that for p − q ≥ 1/n1/4, MAJORITY recovers the optimal partition in O(n2p) steps,
which is linear in the graph size. In comparison, the state-of-the-art, [9] showed that MAJORITY if
p − q ≥ 1/n1/4 in dense graphs, namely when the number of edges is Ω(n2). In contrast to their
techniques, ours does not have any requirement on the density of the graph. Another drawback of
their analysis is that it does not imply that the convergence time would be subquadratic. Here we
show that it is in fact linear.

1.2 Comparison to Previous Work

Understanding the power of local search for graph cut problems has always been of high interest
for the research community. The classic majority algorithm has been studied since the work of
Kernighan and Lin [26]: the algorithm maintains a two-partition of the graph and swap a node from
one side to the other if it has more neighbor in the latter. The research community has first taken an
important step towards understanding local search algorithms in the Stochastic Block Model through
the work of Jerrum and Sorkin [24, 25] on the metropolis algorithm for graph bisection. They
showed that in the Stochastic Block Model with 2 communities, the metropolis algorithm (simu-
lated annealing at some specific fixed temperature) recovers the optimal bisection if p− q ≥ 1/n1/6

after O(n2) steps. This was later improved by Carson and Impagliazzo [9] who showed that the
standard local search algorithm also recovers the optimal partition if p − q ≥ 1/n1/4 in dense
graphs, namely when the number of edges is Ω(n2). However, this result is unsatisfactory in two
aspects: first, the proof critically relies on the number of edges being Ω(n2), which is for this type
of algorithms arguably a strong assumption since the information per node is much higher than in
a sparse regime. More importantly, the result did not address the running time of the algorithm
(i.e. the convergence time of the process). Thus, in addition to the first analysis of LOUVAIN, our
results also improve upon the work of Carson and Impagliazzo on the analysis of the Majority algo-
rithm by addressing sparser regimes, obtaining a strong bound on the running time. More recently,
Boumal [8] showed that simulated annealing at the “correct” temperature recovers the correct parti-
tion nearly-optimality (namely up a constant factor of the information theoretic threshold). However,
the temperature should be set as a function of the model parameters and so this algorithm remains
far from practical. More recently, Chin, Rao and Vu [10] and Yun and Proutière [34] have designed
local-search-based algorithms that aim at improving a solution obtained via spectral method. Both
proofs assume that the initial partition given to the local search algorithm only missclassifies a very
tiny fraction of the vertices (only O(1/p) vertices are misclassified in [34], O(n/10) in [10] – Note
also that [10] considers an algorithm that is designed to avoid most of the technical issues encoun-
tered when analysing local search methods since it at each step it works with ’fresh’ edges for which
the randomness has not been revealed). Those results are therefore far from addressing the cold
start setting, which is the most challenging and interesting for the analysis of local-search heuristics,
while our results on the warm start setting are strictly more general.

From a technical standpoint, an important challenge that our work addresses is handling the random-
ness of the graph through successive local search steps. This is a key step when analysing a local
search algorithm since it is particularly hard to deal with the dependencies created by the algorithm,
which considers every edge many times. To the best of our knowledge, previous work tackled this
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issue by carefully designing their algorithms. This is not possible to do when analyzing LOUVAIN,
and we therefore must develop new tools. On the one hand, the existing local-search algorithms of
[25, 11, 9] are designed such as to avoid this dependency issue, by using at every step ”fresh” edges,
for which the randomness has not been revealed until that step. On the other hand, the techniques
developed in the series of work dedicated to the Stochastic Block Model mentioned above relies
mostly on SDP or spectral graph theory, and do not seem to apply to local-search heuristic. From a
performance standpoint, those algorithms recover the partition when p−q/√p = O(

√
logn/n).

There is a large body of other work on the Stochastic Block Model and describing it is beyond
the scope of this paper. The interested reader may look into the survey of Abbe [1]. The precise
understanding of what can be recovered as a function of p and q in the Stochastic Block Model is due
to Abbe et al. [2] and Mossel et al. [30]. They prove that recovery is possible if and only if p−q/√p >
2
√

logn/n. Classic results encompass the fundamental result of McSherry [29], the augmentation
algorithm of Condon and Karp [11]. Iterative methods [16, 28, 35, 17], semi-definite programming
[20, 21, 5, 13, 14] and spectral algorithm [1] have been investigated under the Stochastic Block
Model. Perhaps, more closely related results are the recent advances on the analysis of the Belief
Propagation (BP) algorithm, a much more evolved message-passing than the standard MAJORITY.
Some algorithms, based on BP or variants of BP (such as the linearized acyclic BP) have been shown
to recover the ground-truth output in the Stochastic Block Model as well [4, 3, 12]. Nonetheless, we
believe that these works, while of high importance for the study of BP algorithms do not allow to
shed light on simpler heuristics, such as MAJORITY or LOUVAIN which are widely-used in practice
and also reasonable models of local-decision dynamics.

1.3 Roadmap

In Section 2 we introduce the algorithms. A formal definition of the Stochastic Block Model can be
found in SuppMat A together with some additional notations. In Section 3, we study the behaviour
of LOUVAIN when initialized with a large imbalance, and prove Theorem 1.1. In Section 4, we study
the algorithm initiated with a random cut, and show Theorem 1.2. All proofs can be found in the
supplementary material.

2 Preliminaries and Notations

The formal definition of the Stochastic Block Model can be found in SuppMat A. In short, there
are two communities each with n nodes. Two nodes from the same community are connected with
probability p and nodes from different communities are connected with probability q. The goal is to
recover the two communities.

The LOUVAIN Algorithm We now describe the local-search algorithm LOUVAIN ([7]). Although
this article focuses on the case with two communities, LOUVAIN is more general and we define it for
more communities here. It is a local search technique that aims at finding a partition of the vertices
of a given graph that maximizes the modularity. For any partition P = (P1, . . . , P`), the modularity
of P is defined as

M(P ) =
1

2m

∑̀
i=1

∑
u,v∈Pi

(
1(u,v) −

deg(u) · deg(v)

2m

)
, (1)

where 1(u,v) is 1 if and only if there is an edge between vertices u and v, deg(u) =
∑
v 1(u,v),

2m =
∑
u deg(u). For a vertex u, we let P (u) be its part in the partition P . The Louvain local

dynamic is defined as follows. Consider a partition P = (P1, . . . , P`). For each vertex u, define Pu,i
to be the partition where u is removed from P (u) and added to Pi. Define Qu,i as the modularity of
Pu,i minus the modularity of P and let i∗u be arg maxiQu,i, breaking ties arbitrarily. We say that
Qu,i is the swap value for u.

The Louvain algorithm consists of successive steps, where each step is performed as follows. Given
a partition P , the algorithm considers all the vertices u such that P (u) 6= Pi∗u , picking a pair u, v
such that P (u) = Pi∗v and P (v) = Pi∗u at random and then defining a new partition P ′ obtained by
removing u from P (u) and adding it to Pi∗u and removing v from P (v) and adding it to Pi∗v Then,
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(a) The figure depicts a graph generated by the Stochas-
tic Block Model. The nodes within the communities are
densely connected and nodes of different communities
are less densely connect.

(b) The points represent, for a given number of
points n, the smallest value of p−q/√p for which
Louvain (resp. Standard Louvain) succeeds. More
details are given in Section 5.

the algorithm performs the next step on partition P ′. The algorithm stops when the partition P is
such that P (u) = Pi∗u , for all u.

For k = 2 communities, this is very similar to the classic Hillclimbing procedure considered in [9]
and the Metropolis algorithm as temperature 0 considered in [24].

The algorithm we analyze, Balanced Louvain, is a slight modification of the algorithm above (which
we call Standard Louvain) in three ways.

1. First, Balanced Louvain starts with a random equi-sized partition P = (P1, P2), whereas Stan-
dard Louvain starts with 2n parts each containing one node.

2. Second, Standard Louvain moves only one node at a time, whereas Balanced Louvain swaps
nodes, to maintain balanced clusters. More precisely, Balanced Louvain select one node with posi-
tive swap value in each part, and moves it to the other part.

3. Third, once a local optimum is reached, Standard Louvain merges the nodes of a cluster together
and proceeds. Balanced Louvain simply stops when a local optimum is reached.

We now make a case for these adaptations are justified. 1) At the beginning Louvain will quickly
reduce clusters until there are only two left. Essentially, Louvain does not encounter any local optima
when the number of clusters is strictly larger than two. 2) We adopted this variant of Louvain to avoid
having to keep trace of the size imbalance between communities during the process. It can be shown
with random walk argument that, assuming 1), the size imbalance stays negligible: This is done in
SuppMat F. 3) By considering our simpler procedure, without any contraction, we actually show
that for the SBM, the hierarchy has a single level, and the algorithm does not need to escape local
optimum. Just like one would hope.

To further justify our adaptations, we show experimentally that our variant, Balanced Louvain, per-
forms just as well as Louvain (see Figure 1b and Section 5).

3 Warm Start
In this section we consider a graph G ∼ SBM(n, p, q) and a partition V = (P1, P2) with imbalance
∆. For any i ∈ {1, 2}, we refer to the part that contains the larger number of vertices of community
i as the home of i and we refer to this part as HOME i. Namely, HOME 1 = argmaxU∈{P1,P2}|U ∩V1|
and HOME 2 = argmaxU∈{P1,P2}|U ∩ V2|. We say that a vertex is good if it is of community i and
not in HOME i. A vertex is bad if it is of community i and in HOME i. This section is dedicated
to the proof of Theorem 1.1. The proof idea is built around showing the following property P . For
any given cut with large imbalance ∆, there is no large subset of nodes whose sum of swap values
is negative. If the sum of swap values is non-negative, this also means that among the good nodes,
there can only be very few with a negative swap value. Therefore, P implies that most of the good
nodes would move to their HOME if chosen. Similarly, we can show that most of the bad nodes
prefer to stay in their HOME. Putting both of these facts together, we get that the imbalance is likely
to increase after one round. We can show that the imbalance ’performs’ a biased random walk and
will therefore quickly increase to a size of n/2 implying convergence.
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One of the main technical challenges of proving P is the dependencies among the nodes: the swap
values of the nodes are correlated due to mutual edges. However, this dependency is weak and we
can use Theorem A.1 to obtain strong concentration bounds. So strong, that we can take a Union
bound over all cuts with large imbalance taking care of revealed randomness in previous steps. The
bulk of the proof is captured by the following lemma.
Lemma 3.1 (proved in SuppMat B). Consider a graph G ∼ SBM(n, p, q) on n vertices and let

0 ≤ ∆ < n/2. Assume p−q√
p ≥ 200

√
logn√

∆
max

(
1,

√
(n/2−∆)√

∆

)
.

Fix a partition (S, V \ S) with imbalance ∆ < n/2, the following holds with probability at least
1 − 3 exp(−5(n/2 −∆) log n): The number of good vertices with positive swap values is at least
(2/3)(n/2−∆) and the number of bad vertices with positive swap values is at most (n/2−∆)/3.

Assuming this lemma, we can prove the main proposition in SuppMat B. Briefly, Lemma 3.1 is used
to show that with probability 1 − O(1/n2) all cuts are improving, i.e. the probability of increasing
the imbalance is at least 2/3. The imbalance is therefore a random walk on N, with probability 2/3
of increasing: the time to reach n is thus O(n) with probability 1− O(1/n2), which concludes the
lemma.

The rest of this section is dedicated to the proof of Lemma 3.1. Our strategy is to consider the sum
of swap values of a big enough set of vertices S0. Since this is in expectation way larger than the
swap value of a single vertex – it is |S0|∆(p−q) for a set of good vertices – Chernoff bounds allows
to show concentration with way higher probability. The first part of Lemma 3.2 shows that the sum
of swaps values of at least 1

3 (n/2 −∆) bad vertices must be negative. This is used as follows: let
S0 be the set of bad vertices with positive swap value. If S0 had size bigger than 1

3 (n/2 − ∆), it
would contradict Lemma 3.2. Hence, the number of bad vertices with positive swap value is at most
1
3 (n/2−∆).

Similarly, the second statement of the lemma shows that a big enough group of good vertices must
have positive total swap value. This implies as well that, if S0 is the set of good vertices with
negative swap value, S0 must have size smaller than 1

3 (n/2−∆). Hence, since there are n/2−∆

good vertices, there must be at least 2
3 (n/2−∆) good vertices with positive swap value.

Lemma 3.2 (proved in SuppMat B). Consider a graphG ∼ SBM(n, p, q) on n vertices and assume

that p−q√p ≥ 200
√

logn√
∆

max

(
1,

√
(n/2−∆)√

∆

)
.

Fix a partition (S, V \ S) with imbalance ∆ < n/2, and let S0 ⊆ S be a set of vertices of size
1
3 (n/2−∆).

• If S0 consists only of bad vertices, then the sum of swap values of the vertices in S0 is at
most −|S0|∆(p− q)/2 with probability at least 1− 3 exp(−5(n/2−∆) log n).

• If S0 consists only of good vertices, then the sum of swap values of the vertices in S0 is at
least |S0|∆(p− q)/2 with probability at least 1− 3 exp(−5(n/2−∆) log n).

The proof of Lemma 3.1, presented in SuppMat B simply uses the previous lemma as explained
previously.

4 Cold Start
We start by giving the intuition. The proof has two parts. In the first part (Section 4.1), we assume
that we start with a graph with fresh randomness (i.e.: nothing about the random process generating
the edges has been revealed so far), and a random partition into 2 parts having imbalance at least ∆.
That is, we assume that we have n/2+∆ nodes of community 1 and n/2−∆ nodes of community 2
in the first part of the partition, and that we draw edges in the graph according to the Stochastic Block
Model. Then, we show that the probability of a node u having more edges to its HOME is at least
p′ = 1/2 + 0.018 ·min {∆(p−q)/

√
np(1−p), 1}. Note that this term is up to constants in the second-

order term tight and improves on the result of [11] that did not have the factor 1/
√
p(1− p) in the

second-order term. For our results, which allows p to be very small, this term is vital. To obtain
it, we use Esseen’s inequality together with coupling arguments. From this, we deduce that a large
fraction of the node have more edges to their HOMEthan to the other part; which in turn implies that
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Louvain has a good probability of moving one node to its HOMEand improve the imbalance. When
the imbalance is Ω(n/ log2(n)) we can appeal to the warm start result. The challenge is thus to
show that the following property P holds: The fraction of nodes that has more edges to its HOME

than to the other community is at least 1/2 + Ω
(

min
{

∆(p− q)/
√
np(1− p), 1

})
.

In the second part (Section 4.2), we aim at proving that the probability that property P holds for
all the cuts encountered by the algorithm is indeed high. To do so, we proceed as follows. From
Section 4.1 we know that property holds for a random cut of a fresh graph with at least constant
probability but this is not good enough because after one iteration of Louvain (i.e.: swapping one
vertex from one side to the other) some of the randomness of the graph has been revealed. Hence,
the cut reached after one iteration cannot be considered to be on a fresh graph, preventing us from
directly applying the above result. We then argue that P has exponentially small probability of not
happening and 2 applying a counting argument, we show in lemma Lemma 4.7 that the property
P holds w.h.p. for all of the partitions encountered by Louvain during the first n/ log2(n) steps.
The counting argument is arguable simple and essentially states that the number of partitions that
can possibly be encountered after t steps is at most 2t logn but the probability of a random cut to be
problematic is exponentially smaller than that number. Hence, the probability that the initial random
cut could lead to a cut for which property P does not hold is exponentially small. From there on
we can use Markov chain theory to argue that the behavior of the imbalance ∆ can be modeled by
a biased random walk and will quickly increase to a size that is covered by the warm start regime
(Section 3). From thereon, the process quickly converges and we obtain the hidden partition.

4.1 The probability of Improving the Cut

The goal of this section is to prove Lemma 4.1, which in substance states that for a graph with
imbalance ∆ and fresh randomness, the probability of a node u having more edges to its HOME is at
least p′ = 1/2 + 0.018 ·min

{
∆(p− q)/

√
np(1− p), 1

}
(simplified).

To this end we introduce some notation. Let Xi(u) denote the number of edges from u to part i, for
i ∈ {1, 2}. Each Xi(u) decomposes as the sum of two binomials with different parameters. These
variables encapsulate the movement of u: u goes to community i such that Xi(u) = max{X1(u) +
L1, X2(u) +L2}, where L1 and L2 are the Louvain terms. We seek to calculate the probability that
a given X1(u) is larger than X2(u), by at least |L1|+ |L2| (note that L1 can be negative). To do this
we use Esseen’s inequality to show that X1(u) and X2(u) are distributed very similarly to Y1(u)
and Y2(u), where Yi(u), i ∈ {1, 2} is the Gaussian equivalent of Xi(u) (see Lemma 4.2). We then
introduce ideal Gaussians {Zi(u)}i∈{1,2} coupled with {Yi(u) + Li}i∈{1,2}. The ideal Gaussians
{Zi(u)}i∈{1,2} allow us to use some symmetry properties enabling us to bound the probability that
node u goes to the other part) tightly up to a constant in the second-order term (Lemma 4.1).

We now give the formal definitions. For a given vertex u with COMMUNITY(u) = 1, we define the
following random variables corresponding to the number of edges u has to part 1

X1(u) ∼ B(n/2 + ∆, p) +B(n/2−∆, q) and X2(u) ∼ B(n/2−∆, p) +B(n/2 + ∆, q)

As mentioned before, the goal of this section is to prove the following lemma, which gives a lower
bound on the probability of improving the cut. We will use L* which will be a bound on the Louvain
terms, that is |L1|+ |L2| ≤ L*.

Lemma 4.1. Assume |L1|+ |L2| ≤ L*. Then, P
[
X1 ≥ X2 + L*

]
is at least

1/2 + 0.018 ·min

{
∆(p− q)√
np(1− p)

, 1

}
− 1

2∆(p− q)
− L*

2
√

(n/2−∆)p(1− p)
− 4

√
2

np(1− p)

In order to prove the lemma, we define the normally distributed random variables corresponding to
X1(u) and X2(u).

2Clearly, there are dependencies between the nodes due to the shared edges and one can’t apply a standard
Chernoff bound to derive the probability of P to be satisfied. However, we argue that the dependencies are
weak, allowing us to use Theorem A.1 to obtain concentration bounds on the probability of the the above
mentioned propertyP being true. The obtained probability ofP not holding is exponentially small in ∆(p−q).
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Y1(u) ∼ N ((
n

2
+ ∆)p+ (

n

2
−∆)q, σ1) and Y2(u) ∼ N ((

n

2
−∆)p+ (

n

2
+ ∆)q, σ2) (2)

where σ1 = (n/2+∆)p(1−p)+(n/2−∆)q(1−q) and σ2 = (n/2−∆)p(1−p)+(n/2+∆)q(1−q).
We will define two normally distributed random variables Z1(u) and Z2(u) which we will use to
argue that the Louvain term does not influence the outcome. We will assume they have the same law
as Yj . Define Zj

d
= Yj for j ∈ {1, 2} .3

In the following, we will focus on a particular vertex u, assuming w.l.o.g that COMMUNITY(u) = 1.
Hence, we drop the parenthesis from the variables X,Y and Z. We show that the binomials X
behave very similarly to their Gaussian counterparts Y , which, together with the Louvain term, we
will couple with Z. We then use these similarity between X and Z to prove Lemma 4.1.

In a first step, we relate the Binomials Xj and the Gaussians Yj .

Lemma 4.2 (proved in SuppMat C). Assume |L1| + |L2| ≤ L*. We have for all i, j∣∣P [X1 ≥ X2 + L*
]
− P

[
Y1 ≥ Y2 + L*

]∣∣ ≤ 4
√

2
np(1−p) .

Note that X1 and X2 are Binomial random variables, i.e., the sums of Bernoulli random variables.
In the proof, we use Esseen’s inequality (Theorem E.1) to convert the Binomials to Gaussians.

In a second step, we relate between the Gaussians Yj and Zj .

Lemma 4.3 (proved in SuppMat C). Assume |L1| + |L2| ≤ L*. We have∣∣P [Y1 > Y2 + L*
]
− P [Z1 > Z2 ]

∣∣ ≤ L*

2
√

Var[Y2 ]
.

In the proof, we show that there exists a coupling such that ∀j, L ≤ L* : P [Yj + L = Zj ] ≥
1− L

2σ2
. We do this by bounding the total variation distance between the distributions Yj and Zj .

Carefully analyzing Gaussians allows us prove the following lemma which gives bounds that are
tight up the constant in the second-order term.

Lemma 4.4 (proved in SuppMat C). We have P [Z1 > Z2 ] ≥ 1/2 + 0.018 ·min

{
∆(p−q)√
np(1−p)

, 1

}
−

1
2∆(p−q) .

We now have all parts required to prove Lemma 4.1, which we do in the supplementary material.
Note that choosing L* = 1 provides the same guarantees we get for Louvain for MAJORITY. The
proof can be found in SuppMat C.

4.2 From Imbalance
√
n to Ω(n/ log2 n)

We now use Lemma 4.1 to show that the imbalance rapidly grows. For this, we start with a random
cut, which can be assumed to have imbalance

√
n. This, together with Lemma 4.5 that bounds L*,

allows us to compute the probability that a random positive swap improves the cut. We conclude the
section in Lemma 4.7, comparing the imbalance with a random walk to show its growth.

The first step stems from the fact that, with constant probability, the imbalance of a random cut is
more than

√
n. The probability can be boosted by repetition, since no randomness of the edges is

revealed. The next step is to bound the term L*.4 This is captured in the following lemma.
Lemma 4.5. [proved in SuppMat C] Given a random cut with imbalance ∆, there exists a constant
c such that, with probability 1 − 2 exp(−∆2(p−q)2

cp ), it holds that for all vertex u, |L(u)| ≤ ∆(p −
q)/100.

We now combine Lemma 4.5 with Lemma 4.1 to get the probability that a swap vertex chosen by
the algorithm is good – and note good this event. We note positive the event that the vertex chosen

3In principle, we could avoid introducing the random variables Zj and only work with Yj , but to avoid some
dependency issues, we chose to introduce the fresh variables Zjs.

4For the analysis of MAJORITY we obtain the better bound (p− q)/
√
p = Ω(1/n1/4) since we can simply

use L∗ = 1.
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by the algorithm has positive swap value. Recall that a good vertex is a vertex that is not in its home,
so that we would like to swap to the other side.
Lemma 4.6. [proved in SuppMat C] Assume p−q√

p ≥ 200n−1/6+ε. Fix some imbalance ∆ ∈
[
√
n, n/ log2 n]. Depending on the size of ∆ the following holds. There exists constants c1, c2

such that:

1. For ∆(p − q)/
√
n ≤ 1, we have w.p. 1 − exp

(
−∆2(p−q)2

100

)
that P [ good | positive ] =

1/2 + c1
∆(p−q)

n , for some constant c1.

2. For ∆(p−q)/
√
n > 1, we have w.p. 1−exp

(
− c

2
2n
4

)
that P [ good | positive ] = 1/2+c2,

for some constant c2.

Now that we know that the algorithm has a good probability to increase the imbalance, we can
formalize the convergence with a random walk argument:
Lemma 4.7 (proved in SuppMat C). Assume p−q√

p ≥ 100n−1/6+ε. Then, after O(n/ log n) steps of

the algorithm, we have that ∆ = Ω(n/ log2 n) with probability 1− 1/n.

4.3 From Imbalance Ω(n/ log2 n) to convergence

We can finally conclude the proof of Theorem 1.2, combining Lemma 4.7 and the results of Sec-
tion 3, Theorem 1.1. The proof can be found in the supplementary material.

5 Experiments

We experimentally evaluated the performances of Louvain in the SBM. For the experiment we used
the standard Louvain and the vertex-swapping version that we analyze. Our implementations builds
on the Louvain implementation of Guillaume [23]. In order to generate the graphs efficiently, we
devised a method that draws the the edges from the correct probability distribution in O(m)-time
instead of O(n2) time, where m is the number of expected edges ≈ n2(p+ q).

In our experiments, we set q = p/2. The plotted curve is the smallest value of p−q/√p =
√
p/2 for

which the algorithm recovers the ground truth at least 8 times out of 15 trials on different random
graphs. We use a log-log scale for plots. We added to them the curve 2.068 log n/n0.493, found with
non-linear least squares to fit Louvain’s performances curve.

We make the two following observations. First, the exponent in our analysis (1/6) does not seem
tight. It is worth noting that 0.5 is optimal, as it is known that p and q must verify p−q/√p =

Ω(
√

logn/n) since otherwise at least one node will have more edges towards the other community
(see [2, 30]). The fitted curve has a better asymptotic because of the variance of our experiments.
Second, the two experimental curves of Louvain and our slight modification essentially coincide:
making the assumption that Louvain uses swap is therefore a fair assumption to make as it simplifies
the proof greatly.

6 Broader Impact

We give the first theoretical explanation of Louvain’s success. We show that Louvain not only
recovers the hidden partition in the stochastic block model successfully, but also does so in linear
time and so for a large range of parameters. Interestingly, if Louvain is properly seeded it can recover
the parameters nearly up to the information theoretic threshold.

As explained in the introduction, the goal of this paper is to cast a new light on the success of a
popular heuristic for clustering, namely LOUVAIN. With more than 10 000 citations, LOUVAIN is
the method of choice for graph clustering. Thus, explaining its power and limitation is of primary
importance for a large variety of research areas (see for instance Hoffman et al. [22], analyzing the
Bible with LOUVAIN, or Wu et al. [33] for drug repositioning). Our work shows that for graphs
exhibiting a clear but noisy clustering structure, then Louvain quickly converges to a global opti-
mum (w.r.t. the modularity objective). Therefore, when the clusters maximizing modularity align

9



with the ground-truth clusters, Louvain is indeed a powerful clustering algorithms with a reliable
performance.

Finally, our work also improves the theoretical analysis and provides tools for a wide-range of
other algorithms including Kernighan-Lin, Majorty and other combinatorial algorithms that rely
on moving nodes to communities to which they have the most number of edges. Concretely,
we show that the probability for a node to have more edges towards its own community is
1/2 + Ω(min(∆(p − q)/√np, 1)) in the SBM(2n, p, q), where ∆ is the imbalance. Note that this
bound is asymptotically tight. In addition, we also develop strong combinatorial methods that de-
spite dependent variables (read − 2) allow us to analyze a vast amount of cuts. These insights are
important for many combinatorial algorithms.
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