
We thank the reviewers for providing helpful feedback and for pointing out typos, which we will fix in the final version.1

R2 and R4 note that it would be desirable to have equality of opportunity experiments and code available. While our2

paper is focused on algorithmically unifying and theoretically clarifying different notions of group fairness and their3

statistical guarantees, rather than an extensive empirical comparison of different algorithms, we agree these would be4

good to have and will provide them in the final version of the paper.5

Contributions of our framework. First of all, we highlight independent group fairness, which arises naturally6

from independently requiring fairness for each attribute. This is proposed in existing work e.g. [15], but to our7

knowledge, we are first to analyze it. A key algorithmic contribution in this case is a plugin approach that keeps track8

of a confusion matrix for each independent group instead of a confusion matrix for each intersectional group, as an9

appropriate extension of [20] would have. This is enabled by the inverse group probability weighting (2) and shows10

that the statistical dependence is linear instead of exponential in number of groups (which existing analyses suggest).11

Juxtaposing different notions of fairness also leads one to study relationships between them, e.g., what is the nature12

of intersectional fairness violations when independent fairness is enforced? We give an example in the appendix. For13

probabilistic results, we shed light on Bayes optimal predictors in Section 3 and in our plugin algorithm, which are14

new results. Finally, our framework has the benefit of generality, exactly capturing previous approaches as well as15

insufficiently explored multiclass problems (previously unexplored, and nontrivial to extend to).16

Addressing specific comments by reviewers.17

• (R1) Our framework is flexible and certainly allows one to use OR to define Gfair, or any other grouping depen-18

dent on the sensitive attributes (Assumption 2.1); we simply chose the most common cases in practice/previous19

work (unrestricted, intersectional, independent, gerrymandering) for examples and experiments.20

• (R1) We emphasize that our paper does focus on max-violation, as the fairness problem we state places a21

constraint on each subgroup. Indeed, as the reviewer notes, the discrepancy between average and max-violation22

is the source of fairness gerrymandering, and is one of the motivations for this paper. The reason we use the23

term “average fairness violation” in Proposition 4.1 is that when the Lagrangian is formed for some choice24

of dual weights, the objective contains an average of the violations; but in the actual algorithm we minimize25

many different Lagrangians and combine them to produce a classifier which is fair for each group. We will26

clarify this possible misunderstanding in the final version.27

• (R1) Thank you for noting issues with understanding notation; which we believe are partially due to a lack of28

space in combination with the generality we set out to achieve. In the appendix, section C: Estimators walks29

through explicitly applying the plugin and W-ERM framework to an instance of the fairness problem. This30

may help, but does not fit in the main paper. We will include a more intuitive description of these methods in31

the main paper.32

• (R1) You are right in pointing out that calibration constraints are not linear functions of the confusion matrix;33

we’ll make note of this in the final version.34

• (R1) The estimation error of eta appears in the middle term in the definition of κ in Theorem 5.1.35

• (R3) Yes, the converse claim of Proposition 3.2 was that fairness *does not* imply intersectional fairness in36

general. Remark 3.3 was stating that gerrymandering fairness *does* imply intersectional fairness.37

• (R3) Theorem 3.1 states that an optimally fair classifier can be constructed from a convex combination of just38

two weighted classifiers, determined by some weight matrices W1,W2. This theorem serves to characterize39

the ideal solution to our problem.40

• (R3) You are right: DP should be C0,1 + C1,1. The C0,0 + C1,1 is a typo; in our experiments (and in the41

supplement, section C: Estimators) we used the correct definition. Oops.42

• (R4) Separating the generalization and optimization claims is ideal; this is essentially what we have done with43

Theorem 5.1, which isolates the generalization claim for the W-ERM approach. We had to give a separate44

statement, Theorem 5.2, for the plugin algorithm, because the algorithm involves updating λ with empirical45

violations but minimizing the Lagrangian with respect to the distribution defined by η̂, which while learned46

from the empirical distribution is not quite the same. As a result, the proof has components that are hard to47

untangle.48

• (R4) Perhaps the discrepancy in times you have noticed is due to an old implementation of W-ERM based on49

the FairReduction code being used for the Independent experiments but not the Gerrymandering experiments.50

We will update this table in the final version.51

• (R4) The reason for the buffer ε is that we would like to compare the classifier we find to the optimally fair52

classifier, but the optimally fair classifier may violate empirical finite sample fairness constraints.53

• (R4) The ρ and ρg constants are essentially L1 norms, e.g. for DP all are between 2 and 4.54


