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Abstract

Algorithms are commonly used to predict outcomes under a particular decision or
intervention, such as predicting likelihood of default if a loan is approved. Gen-
erally, to learn such counterfactual prediction models from observational data on
historical decisions and corresponding outcomes, one must measure all factors that
jointly affect the outcome and the decision taken. Motivated by decision support
applications, we study the counterfactual prediction task in the setting where all
relevant factors are captured in the historical data, but it is infeasible, undesirable,
or impermissible to use some such factors in the prediction model. We refer to
this setting as runtime confounding. We propose a doubly-robust procedure for
learning counterfactual prediction models in this setting. Our theoretical analysis
and experimental results suggest that our method often outperforms competing
approaches. We also present a validation procedure for evaluating the performance
of counterfactual prediction methods.

1 Introduction

Algorithmic tools are increasingly prevalent in domains such as health care, education, lending,
criminal justice, and child welfare [4} [38| [18} 15, [9]. In many cases, the tools are not intended to
replace human decision-making, but rather to distill rich case information into a simpler form, such
as a risk score, to inform human decision makers [3}[11]]. The type of information that these tools
need to convey is often counterfactual in nature. Decision-makers need to know what is likely to
happen if they choose to take a particular action. For instance, an undergraduate program advisor
determining which students to recommend for a personalized case management program might wish
to know the likelihood that a given student will graduate if enrolled in the program. In child welfare,
case workers and their supervisors may wish to know the likelihood of positive outcomes for a family
under different possible types of supportive service offerings.

A common challenge to developing valid counterfactual prediction models is that all the data available
for training and evaluation is observational: the data reflects historical decisions and outcomes under
those decisions rather than randomized trials intended to assess outcomes under different policies. If
the data is confounded—that is, if there are factors not captured in the data that influenced both the
outcome of interest and historical decisions—valid counterfactual prediction may not be possible. In
this paper we consider the setting where all relevant factors are captured in the data, and so historical
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decisions and outcomes are unconfounded, but where it is infeasible, undesirable, or impermissible
to use some such factors in the prediction model. We refer to this setting as runtime confounding.

Runtime confounding naturally arises in a number of different settings. First, relevant factors may
not yet be available at the desired runtime. For instance, in child welfare screening, call workers
decide which allegations coming in to the child abuse hotline should be investigated based on the
information in the call and historical administrative data [9]. The call worker’s decision-making
process can be informed by a risk assessment if the call worker can access the risk score in real-
time. Since existing case management software cannot run speech/NLP models in realtime, the call
information (although recorded) is not available at runtime, thereby leading to runtime confounding.
Second, runtime confounding arises when historical decisions and outcomes have been affected by
sensitive or protected attributes which for legal or ethical reasons are deemed ineligible as inputs to
algorithmic predictions. We may for instance be concerned that call workers implicitly relied on race
in their decisions, but it would not be permissible to include race as a model input. Third, runtime
confounding may result from interpretability or simplicity requirements. For example, a university
may require algorithmic tools used for case management to be interpretable. While information
conveyed during student-advisor meetings is likely informative both of case management decisions
and student outcomes, natural language processing models are not classically interpretable, and thus
the university may wish instead to only use structured information like GPA in their tools.

In practice, when it is undesirable or impermissible to use particular features as model inputs at
runtime, it is common to discard the ineligible features from the training process. This can induce
considerable bias in the resulting prediction model when the discarded features are significant
confounders. To our knowledge, the problem of learning valid counterfactual prediction models under
runtime confounding has not been considered in the prior literature, leaving practitioners without the
tools to properly incorporate runtime-ineligible confounding features into the training process.

Contributions: Drawing upon techniques used in low-dimensional treatment effect estimation
[46, 152} 8], we propose a procedure for the full pipeline of learning and evaluating prediction models
under runtime confounding. We (1) formalize the problem of counterfactual prediction with runtime
confounding [§ [2l; (2) propose a solution based on doubly-robust techniques that has desirable
theoretical properties [§ [3.3]l; (3) theoretically and empirically compare this solution to an alternative
counterfactually valid approach as well as the standard practice, describing the conditions under
which we expect each to perform well [§[3|&[5]l; and (4) provide an evaluation procedure to assess
performance of the methods in the real-world [§ . Proofs, code and results of additional experiments
are presented in the Supplement.

1.1 Related work

Our work builds upon a growing literature on counterfactual risk assessments for decision support
that proposes methods for the unconfounded prediction setting [35,[10]. Following this literature, our
goal is to predict outcomes under a proposed decision (interchageably referred to as ‘treatment’ or
‘intervention’) in order to inform human decision-makers about what is likely to happen under that
treatment. This prediction task is different from the common causal inference problem of treatment
effect estimation, which targets a contrast of outcomes under two different treatments [48], [37]].
Treatment effects are useful for describing responsiveness to treatment. While responsiveness is
relevant to some types of decisions, it is insufficient, or even irrelevant, to consider for others. For
instance, a doctor considering an invasive procedure may make a different recommendation for two
patients with the same responsiveness if one has a good probability of successful recovery without
the procedure and the other does not. In lending settings, the responsiveness to different loan terms is
irrelevant; all that matters is that the likelihood of default be sufficiently small under feasible terms.

Our proposed prediction (Contribution 2) and evaluation methods (Contribution 4) draw upon the
literature on double machine learning and doubly-robust estimation, which uses the efficient influence
function to produce estimators with reduced bias [46l 30, 29, [16} [7]. Of particular relevance are
methods for estimating treatment effects conditional on only a subset of confounders [46, 152, 8|36} [25]]
and for learning treatment assignment policies conditional on only a subset of confounders [50, 2} [19].
In our case, we are interested in predictions conditional on only those features that are permissible or
desirable to consider at runtime. Our methods are specifically designed for minimizing prediction
error, rather than providing inferential guarantees such as confidence intervals, as is common in the
treatment effect estimation setting.



Our work is also related to the literature on marginal structure models (MSMs) [31,128]]. An MSM is a
model for a marginal mean of a counterfactual, possibly conditional on a subset of baseline covariates.
The standard MSM approach is semiparametric, employing parametric assumptions for the marginal
mean but leaving other components of the data-generating process unspecified [45]. Nonparametric
variants were studied in the unconditional case for continuous treatments by Rubin and van der
Laan [32]. In contrast our setting can be viewed as a nonparametric MSM for a binary treatment,
conditional on a large subset of covariates. This is similar in spirit to partly-conditional treatment
effect estimation [44]; however we do not target a contrast since our interest is in predictions rather
than treatment effects. Our results are also less focused on model selection [43]], and more on error
rates for particular estimators. We draw on techniques for sample-splitting and cross-fitting, which
have been used in the regression setting for model selection and tuning [13} 146]] and in treatment
effect estimation [27, 151 16].

Our method is relevant to settings where the outcome is selectively observed. This selective labels
problem [21} 20] is common in settings like lending where the repayment/default outcome is only
observed for applicants whose loan is approved. Runtime confounding can arise in such settings if
some factors that are used for decision-making are unavailable for prediction.

Recent work has considered methods to accommodate confounding due to sources other than missing
confounders at runtime. A line of work has considered how to use causal techniques to correct runtime
dataset shift [40} 24, 39]]. In our case the runtime setting is different from the training setting not
because of distributional shift but because we can no longer access all confounders. These methods
also differ from ours in that they are not seeking to predict outcomes under specific decisions.

There is also a line of work that considers confounding in the training data [14,23]]. While confounded
training data is common in various applications, our work targets decision support settings where the
factors used by decision-makers are recorded in the training data but are not available for prediction.

Lastly, there are connections between runtime confounding and the literature on privileged learning
and algorithmic fairness that use features during training time that are not available for prediction.
Learning using Privileged Information (LUPI) has been proposed for settings in which the training
data contains additional features that are not available at runtime [47]. In algorithmic fairness,
disparate learning processes (DLPs) use the sensitive attribute during training to produce models
that achieve a target notion of parity without requiring access to the protected attribute at test time
[22]. LUPI and DLPs both make use of variables that are only available at train time, but if these
variables affect the decisions under which outcomes are observed, predictions from LUPI and DLPs
will be confounded because neither accounts for how these variables affect decisions. By contrast,
our method uses confounding variables during training to produce valid counterfactual predictions.

2 Problem setting

Our goal is to predict outcomes under a proposed treatment A = a € {0, 1} based on runtime-
available predictors V' € V C RV ['l| Using the potential outcomes framework [33} 26]], our prediction
target is v, (v) := E[Y* | V = v] where Y* € Y C R is the potential outcome we would observe
under treatment A = a. We let Z € Z C R9% denote the runtime-hidden confounders, and we denote
the propensity to receive treatment a by 7, (v, z) :=P(A=a | V = v, Z = z). We also define the
outcome regression by p, (v, z) := E[Y* | V = v, Z = z|. For brevity, we will generally omit the
subscript, using notation v, 7 and u to denote the functions for a generic treatment a.

Definition 2.1. Formally, the task of counterfactual prediction under runtime-only confounding is
to estimate v(v) from iid training data (V, Z, A, Y") under the following two conditions:

Condition 2.1.1 (Training Ignorability). Decisions are unconfounded given V and Z: Y* 1 A |
V,Z.

Condition 2.1.2 (Runtime Confounding). Decisions are confounded given only V: Y* [ A | V;
equivalently, A Y Z |V andY* L Z |V

To ensure that the target quantity is identifiable, we require two further assumptions, which are
standard in causal inference and not specific to the runtime confounding setting.

"For exposition, we focus on making predictions for a single binary treatment a. To make predictions under
multiple discrete treatments, our method can be repeated for each treatment using a one-vs-all setup.



Algorithm 1 The plug-in (PL) approach

Stage 1: Learn fi(v, z) by regressingY ~ V, Z | A=a
Stage 2: Learn Dpr, (v) by regressing i(V, Z) ~ V'

Condition 2.1.3 (Consistency). A case that receives treatment a has outcome ¥ = Y*.
Condition 2.1.4 (Positivity). P(m,(V,Z) >e>0)=1 Va

Identifications. Under conditions 2.1.1-2.1.4, we can write the counterfactual regression functions
w1 and v in terms of observable quantities. We can identify p(v,2) =E[Y |V =v,Z = 2z, A = a]
and our target v(v) = E[E[Y |V =v,Z =2, A=aqa] |V =v] = E[u(V, Z) | V = v]. The iterated
expectation in the identification of v suggests a two-stage approach that we propose in § [3.2] after
reviewing current approaches.

Miscellaneous notation. Throughout the paper we let p(x) denote probability density functions; f
denote an estimate of f; L < R indicate that . < C' - R for some universal constant C'; I denote the

indicator function; and define || || := [(f(x))*p(z)dz.

3 Prediction methods

3.1 Standard practice: Treatment-conditional regression (TCR)

Standard counterfactual prediction methods train models on the cases that received treatment a
[35.[10], a procedure we will refer to as treatment-conditional regression (TCR). This procedure
estimates w(v) = E[Y | A = a, V = v]. This method works well given access to all the confounders
at runtime; if A 1 Y* | V, then w(v) = E[Y* | V = v] = v(v). However, under runtime confound-
ing, w(v) # E[Y* | V = v], so this method does not target the right counterfactual quantity, and
may produce misleading predictionsE] For instance, consider a risk assessment setting that his-
torically assigned risk-mitigating treatment to cases that have higher risk under the null treatment
(A = 0). Using TCR to predict outcomes under the null treatment will underestimate risk since
E[Y | V,A=0]=E[Y?|V,A=0] <E[Y?| V]. We can characterize the bias of this approach by
analyzing b(v) := w(v) — v(v), a quantity we term the pointwise confounding bias.

Proposition 3.1. Under runtime confounding, w(v) has pointwise confounding bias
b(v):/u(v7z)(p(z|V:v,A:a)—p(z|V:v))dz £ 0 (1)
z

By Condition [2.1.2] this confounding bias will be non-zero. Nonetheless we might expect the TCR
method to perform well if b(v) is small enough. We can formalize this intuition by decomposing the
error of a TCR predictive model D¢ into estimation error and confounding bias:

Proposition 3.2. The pointwise regression error of the TCR method can be bounded as follows:
E[(v(v) - prcr(v))?] S El(w(v) — drer(v))?] + b(v)?

3.2 A simple proposal: Plug-in (PL) approach

We can avoid the confounding bias of TCR through a simple two-stage procedure we call the plug-in
approach that targets the proper counterfactual quantity. This approach, described in Algorithm
first estimates 4 and then uses p to construct a pseudo-outcome which is regressed on V' to yield
prediction Upy,. Cross-fitting techniques (Alg. |2)) can be applied to prevent issues that may arise due
to potential overfitting when learning both /i and Zpy, on the same training data. Sample-splitting (or
cross-fitting) also enables us to get the following upper bound on the error of the PL approach.

Proposition 3.3. Under sample-splitting for stages 1 and 2 and stability conditions on the 2nd stage
estimators (appendix, [[17]), the PL method has pointwise regression error bounded by

E|(p1(0) - v(v)"] SE[(2(0) = v(0)"] + B[ (Vv 2) - u(V, 2))" | V =]

Runtime imputation of Z will not eliminate this bias since E[Y | A = a,V = v, f(v)] = w(v).




Algorithm 2 The plug-in (PL) approach with cross-fitting

Randomly divide training data into two partitions Wt and W2.

for (p,q) € {(1,2), (2, 1)} do
Stage 1: On partition WP, learn iP (v, z) by regressingY ~ V, Z | A =a
Stage 2: On partition W1, learn D3} (v) by regressing P (V, Z) ~ V.

PL prediction: opr,(v) = 1 322, oh; (v)

Algorithm 3 The proposed doubly-robust (DR) approach

Stage I: Learn i(v, z) by regressingY ~ V, Z | A = a.
Learn # (v, z) by regressing I[{A = a} ~ V, Z

Stage 2: Learn Dpg (v) by regressing (Ti(szgg' Y — (v, 2)) + (v, Z)) ~V

where the oracle-quantity (v) describes the function we would get in the second-stage if we had
oracle access to Y°.

This simple approach can consistently estimate our target v(v). However, it solves a harder problem
(estimation of 1(v, z)) than what our lower-dimensional target v requires. Notably the bound depends
linearly on the MSE of ji. We next propose an approach that avoids such strong dependence.

3.3 Our main proposal: Doubly-robust (DR) approach

Our main proposed method is what we call the doubly-robust (DR) approach, which improves upon
the PL procedure by using a bias-corrected pseudo-outcome in the second stage (Alg.[d). The DR
approach estimates both i and 7, which enables the method to perform well in situations in which 7 is
easier to estimate than ;.. We propose a cross-fitting (Alg. [3) variant that satisfies the sample-splitting
requirements of Theorem [3.1]

Theorem 3.1. Under sample-splitting to learn ji, 7, and Upg and stability conditions on the 2nd
stage estimators (appendix, [[17]), the DR method has pointwise error bounded by:

E| (Por(v) = v(1)°’] SE[(#(0) — v(v))’]
+E[(#(V,2) = 7(V, 2))* | V = o|E[ (V. 2) = u(V, 2))* | V = v

This implies a similar bound on the integrated MSE (given in appendix).

The DR error is bounded by the error of an oracle with access to Y* and a product of nuisance
function errorsE] This product can be substantially smaller than the error of [ in the PL bound. When
this product is less than the oracle error, the DR approach is oracle-efficient, in the sense that it
achieves (up to a constant factor) the same error rate as an oracle. This model-free result provides
bounds that hold for any regression method. It is nonetheless instructive to consider the form of these
bounds in a specific context. The next result is specialized to the sparse high-dimensional settingﬂ

Corollary 3.1. Assume stability conditions on the 2nd stage regression estimator (appendix, [17])

and that a k-sparse model can be estimated with squared error k2 % (e.g. [5). With k,,-sparse w,
the pointwise error for the TCR method is

E[(bron(v) —v())”] £ Ky 222 + buy?

With k,,-sparse . and k, -sparse v, the pointwise error for the PL method is

E|:(ZA/PL(’U) — V(v))ﬂ < k’%\/@"‘ki\/@

Additionally with k-sparse 7, the pointwise error for the DR method is

B[ (o (o) —v0)?] 5 42/ B 4 g4z 28

3The term nuisance refers to functions y and 7.
“We use the sparsity parameter k to indicate k covariates have non-zero coefficients in the model.




Algorithm 4 The proposed doubly-robust (DR) approach with cross fitting

Randomly divide training data into three partitions wl w2 wa,
for (p,q,7) € {(1,2,3),(3,1,2),(2,3,1)} do
Stage 1: On WP learn iP (v, z) by regressingY ~ V, Z | A = a.
On W1, learn 7t (v, z) by regressing [{A = a} ~ V, Z

Stage 2: On W', learn D ”DR by regressing (WQ(;'IZ}) (Y — aP(V, Z)) + pP(V, Z)) ~V

DR prediction: opgr(v) = >3 Phr(v)

Algorithm 5 Cross-fitting approach to evaluation of counterfactual prediction methods

Input: Test samples {(V;, Z;, A;,Y; )}2"1 and prediction models {21, ...0p }

0 _ (/0 70 A0 yO0yin 1 _ vl 71 g1 yiyn
Randomly divide test data into two partitions VW {(V;,Z;, A}, Y)Y and W™ = {(V;, Z;, A, Y ) Yoy
for (p, ¢) € {(0,1),(1,0)} do

On WP, learn #P (v, z) by regressing [{A = a} ~ V, Z.
form € {1,....,h} do )
On WP, learn 7, (v, z) by regressing (Y — D, (V ))2 ~V,Z|A=a
.. {A%=a} . N N
On W1, forj € {1,...,n} compute ¢p¢ . = W((Y — o (V) =, (V2 ZD) + 05, (VE, Z3)

m,j

Output error estlmate confidence intervals: for m € {1, . h}:

MSEn = (2n Zz(bnl j) +1 96\/ 7\'3‘1’((/5771)

i=0j=1

2
The DR approach is therefore oracle efficient when (k‘;cﬁ) < (7%1)‘;%‘1").

Note that the PL approach cannot achieve oracle efficiency because k, > k, and d, < d. For
exposition, consider the simple case where k, ~ k,, ~ k. Corollaryindicates that when dy ~ d,
the DR and PL methods will perform similarly. When dy < d, we expect the DR to outperform the
PL method because the second term of the PL bound dominates the error whereas the first term of the
DR bound dominates in high-dimensional settings. When dy < d and the amount of confounding is
small, we expect the TCR to perform well. This theoretical analysis helps us understand when we
expect the prediction methods to perform well. However, in practice, these upper bounds may not
be tight and the degree of confounding is typically unknown. To compare the prediction methods in
practice, we require a method for counterfactual model evaluation.

4 Evaluation method

We describe an approach for evaluating the prediction methods using observed data.
In our problem setting (§ the prediction error of a model 7 is identified as
E[(Y* —2(V))?] =E[E[(Y — 1/( ))2 | V,Z, A = a]]. We propose a doubly-robust procedure to
estimate the prediction error that follows the approach in [[10], which focused on classification metrics
and therefore did not consider MSE. Defining the error regression 1(v, 2) = E[(Y® — 2(V))?|V =
v,Z = z|, which is identified as E[(Y — 2(V))? | V = v,Z = 2, A = a], the doubly-robust
estimate of the MSE of v is

*Z

The doubly-robust estimation of MSE is \/n-consistent under sample-splitting and n'/* convergence
in the nuisance function error terms, enabling us to get estimates with confidence intervals. Algo-
rithmdescribes this procedureE] This evaluation method can also be used to select the regression
estimators for the first and second stages.

T (0 ) = 00V ) + (Vi )

S Experiments

We evaluate our methods against ground truth by performing experiments on simulated data, where
we can vary the amount of confounding in order to assess the effect on predictive performance. While

The appendix describes a cross-fitting approach to jointly learn and evaluate the three prediction methods.



our theoretical results for PL and DR are obtained under sample splitting, in practice there may be
a reluctance to perform sample splitting in training predictive models due to the potential loss in
efficiency. In this section we present results where we use the full training data to learn the 1st-stage
nuisance functions and 2nd-stage regressions for DR and PL and we use the full training data for the
one-stage TCRE] This allows us to examine performance in a setting outside what our theory covers.

We first analyze how the methods perform in a sparse linear model. This simple setup enables us to
explore how properties like correlation between V' and Z impact performance. We simulate data as

Vi ~N(0,1) i 1<i<dy
Ziwj\/(pVZ—,l— P 1<i<dy
a_ . € 2
uV.2) = (ZV+ZZ) Y= (V. Z) e e N(o,% W,Z)ng)

V)= o +pk (Zv —I—pZV)
AV, Z)=1— 0<\/1<:1W(Zlv + Zl Zi)> A ~ Bernoulli(n(V, 2))

where o(z) = We normalize 7 (v, z) by \/W to satisfy Condition and use the

1+e Eh
coefficient k, /(k, + pk.) to facilitate a fair comparison as we vary p. For all experiments, we report
test MSE for 300 simulations where each simulation generates n = 2000 data points split randomly
and evenly into train and test setsﬂ In the first set of experiments, for fixed d = dy + dz = 500, we
vary dy (and correspondingly dz). We also vary k., which governs the runtime confounding. Larger
values of k. correspond to more confounding variables. The theoretical analysis (§ [3)) suggests that
when confounding (k) is small, then the TCR and DR methods will perform well. More confounding
(larger k) should increase error for all methods, and we expect this increase to be significantly larger
for the TCR method that has confounding bias. We expect the TCR and DR methods to perform better
at smaller values of dy; by contrast, we expect the PL performance to vary less with dy since the
PL method suffers from the full d-dimensionality in the first stage regardless of dy,. For large values
of dv, we expect the PL method to perform similarly to the DR method. Fig.|l|plots the MSE in
estimating v for p = 0 and k, = 25 using LASSO and random forests. The LASSO plots in Fig.
and[Tp show the expected trends. Random forests have much higher error than the LASSO (compare
Fig.[lh to[Ik) and we only see a small increase in error as we increase confounding (Fig. [Tk) because
the random forest estimation error dominates the confounding error. In this setting, the TCR method
may outperform the other methods, and in fact the TCR performs best at low levels of confounding.

We next consider the case were V' and Z are correlated. If V and Z are perfectly correlated, there is no
confounding. For our data where higher values of V' and Z both decrease 7 and increase i, a positive
correlation should reduce confounding, and a negative correlation may exacerbate confounding by
increasing the probability that Z is small given A = ¢ and V is large and therefore increasing the
gap E[Y* |V =v] —E[Y* |V = v, A = a]. Fig.]2] gives MSE for correlated V and Z. As expected,
error overall decreases with p (Fig. [2). Relative to the uncorrelated setting (Fig. [I), the weak positive
correlation reduces MSE for all methods, particularly for large k, and dy,. The DR method achieves
the lowest error for settings with confounding, performing on par with the TCR when dy = 50.

Experiments with Second-Stage Misspecification Next, we explore a more complex data gener-
ating process through the lens of model interpretability. Interpretability requirements allow for a
complex training process as long as the final model outputs interpretable predictions [41} 149 [34].
Since the PL and DR first stage regressions are only a part of the training process, we can use
any flexible model to learn the first stage functions as accurately as possible without impacting
interpretability. Constraining the second-stage learning class to interpretable models (e.g. linear
classifiers) may cause misspecification since the interpretable class may not contain the true model.

SWe report error metrics on a random heldout test set.
"Source code is in the appendix and will be available at https://github.com/
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Figure 1: (a) MSE as we vary k. using cross-validated LASSO to learn 7, fi, 7cR, VpL, VDR for
p =0, dy =400 and k, = 25. At low levels of confounding (%), the TCR method does well but
performance degrades with k,. For any non-zero confounding, our DR method performs best.

(b) MSE against dy using cross-validated LASSO and p = 0, k,, = 25 and k., = 20. The DR method
performs the best across the range of dv,. When dy is small, the TCR method also does well since its
estimation error is small. The PL method has higher error since it suffers from the full d-dimensional
estimating error in the first stage. (¢) MSE as we vary k, using random forests and p = 0, dv = 400
and k,, = 25. Compared to LASSO in (a), there is a relatively small increase in error as we increase
k., suggesting that estimation error dominates the confounding error. The TCR method performs
best at lower levels of confounding and on par with the DR method for larger values of k..

Error bars denote 95% confidence intervals.
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Figure 2: (a) MSE against correlation py; z, for k, = 20, k,, = 25, and dy = 400. Error decreases
with p for all methods. Our DR method achieves the lowest error under confounding (p < 1). (b)
MSE as we increase k, for p = 0.25, k, = 25, and dy = 400. Compare to Figure ; the weak
positive correlation reduces MSE, particularly for k, < ¢ < k, when V; is only a correlate for the
confounder Z; but not a confounder itself. (¢) MSE against dvy for p = 0.25, k, = 20, and k,, = 25.
The DR method is among the best-performing for all dy. As with the uncorrelated setting (Ib), the
DR and TCR methods are better able to take advantage of low dy than the PL method.

Error bars denote 95% confidence intervals.



We simulate such a setting by modifying the setup (for p = 0):

d d d
Vi ~N(0,1) for 1§¢g7v ; V= V2 for 7\/<i§dv, j:i—%

ky/2 kv /2

v, 2) =3 (Vi+( (zmod2—1V2)+ZZ sv(V) =3 (Vi+ (20 mod 2) - )V?)

i=1 i=1

We restrict our second stage models and the TCR model to predictors V; for 1 < ¢ < %V to simulate
a real-world setting where we are constrained to linear classifiers using only V" at runtime. We allow
the first stage models access to the full V and Z since the first stage is not constrained by variables or
model class. We use cross-validated LASSO models for both stages and compare this setup to the
setting where the model is correctly specified. The DR method achieves the lowest error for both
settings (Table[I]), although the error is significantly higher for all methods under misspecification.

Method Correct specification  2nd-stage misspecification

TCR  16.64 (16.28, 17.00) 35.52 (35.18, 35.85)
PL  12.32(12.03, 12.61) 32.09 (31.82, 32.36)
DR (ours) 11.10 (10.84, 11.37) 31.33 (31.06, 31.59)

Table 1: MSE E[(v(V) — f/(V))Q} under correct specification vs misspecification in the 2nd stage
for d = 500, dyv = 400, k, = 24, k, = 20 and n = 3000 (with 95% confidence intervals). Our DR
method has the lowest error in both settings. Errors are larger for all methods under misspecification.

5.1 Experiments on real-world child welfare data

In the US, each year over 4 million calls are made to child welfare screening hotlines with allegations
of child neglect or abuse [42]]. Call workers must decide which allegations coming in to the child
abuse hotline should be investigated. In agencies that have adopted risk assessment tools, the worker
relies on (immediate risk) information communicated during the call and an algorithmic risk score
that summarizes (longer term) risk based on historical administrative data [9]. The call is recorded
but is not used as a predictor for three reasons: (1) the inadequacy of existing case management
software to run speech/NLP models on calls in realtime; (2) model interpretability requirements; and
(3) the need to maintain distinction between immediate risk (as may be conveyed during the call)
and longer-term risk the model seeks to estimate. Since it is not possible to use call information
as a predictor, we encounter runtime confounding. Additionally, we would like to account for the
disproportionate involvement of families of color in the child welfare system [12], but due to its
sensitivity, we do not want to use race in the prediction model.

The task is to predict which cases are likely to be offered services under the decision a = “screened in
for investigation” using historical administrative data as predictors (V') and accounting for confounders
race and allegations in the call (). Our dataset consists of over 30,000 calls to the hotline in Allegheny
County, PA. We use random forests in the first stage for flexibility and LASSO in the second stage
for interpretability. Table [2] I presents the MSE using our evaluation method (§ 'E] The PL and
DR methods achieve a statistically significant lower MSE than the TCR approach, suggesting these
approaches could help workers better identify at-risk children than standard practice.

TCR  0.290 (0.287, 0.293)
PL  0.249 (0.246, 0.251)
DR (ours) 0.248 (0.245, 0.250)
Table 2: MSE estimated via our evaluation procedure (§ |4} for child welfare screening task. The PL
and DR approaches achieve lower MSE than the TCR approach. 95% confidence intervals given.

6 Conclusion

We propose a generic procedure for learning counterfactual predictions under runtime confounding
that can be used with any parametric or nonparametric learning algorithm. Our theoretical and
empirical analysis suggests this procedure will often outperform other methods, particularly when
the level of runtime confounding is significant.

8We report error metrics on a random heldout test set.



Broader Impact

Real-world adoption of our proposed methodology may have a number of ethical and societal
consequences. Our method is well-suited to decision support settings, including high-stakes decisions
such as public assistance, parole and bail decisions in criminal justice, and treatment prioritization
in healthcare. Our proposed method has the potential to improve decision-making in settings with
runtime confounding where, as demonstrated in this paper, standard methods produce biased results.
Beyond the statistical bias of simply failing to target the right counterfactual quantity, if decisions are
made based on such predictions, it may disadvantage certain demographic groups in cases such as
where group membership is a confounding factor in observed decisions [[10]. This is a significant
concern because group membership is often an impermissible input to decision-support tools at
runtime, while also being a factor that influences discriminatory decision-making in observed data.
Using our methods in these settings can improve predictions and the decisions they ultimately inform.

However, our proposed approach is valid only in the setting where our assumed Conditions [2.T]hold,
and is not offered as a panacea for generally confounded data. The assumption that training data
is unconfounded (§ [2.1.1) deserves considerable scrutiny any time the methods are applied. This
assumption cannot be verified empirically and must instead be evaluated by domain experts who
have detailed knowledge of the historical decision-making process. We encourage practitioners to
carefully consider the validity of this assumption for their setting. Further data collection may be
required to ensure that the data available for training does contain all factors that may have been
relevant to historical decision-making, even if it is not information that is desirable or permissible to
be used at runtime.

To illustrate the potential benefits as well as possible misuses of our method, we consider how our
method could inform parole decisions. Parole boards determine whether and under what conditions
to release a person from incarceration. Recidivism risk assessment models are widely adopted by
probation and parole departments around the US. It is often of interest to assess the likelihood of
success under different possible supervision conditions. Runtime confounding occurs in the setting
when, for instance, the parole board makes a recommendation after reviewing documents and hearing
spoken testimony, but the board would like to see the predictions of a risk and needs assessment
tool prior to the hearing. The testimony may provide information that both influences the board’s
decision and reveals drivers of the offender’s likelihood to succeed if released, but this information
is unavailable at prediction time, leading to runtime confounding. Moreover, we may be concerned
that parole boards implicitly used race to make decisions and would like to account for this without
requiring the use of race as a model input. Our method would allow us to do so. Our method can
handle some of the challenging aspects of this setting, but there may be other problems that are not
addressed by our method. For instance, while our method can help account for racial bias in historical
parole decisions, it cannot correct for racial bias in the downstream outcomes. Since research suggests
that people of color are disproportionately arrested relative to true crime rates [1]], one should be wary
of using these outcomes. Predictive models trained on such outcomes could perpetuate or exacerbate
racial disparities in criminal justice. Additionally, if Conditions [2.1]do not hold because e.g. the
spoken testimony is not accurately recorded, then our method may lead to unreliable predictions.

The appropriate use of our method in high-stakes real-world settings would include careful consider-
ation of the validity of Conditions[2.T]as well as other potential biases in the data used for model
training. If deployed in the appropriate setting, our method has the potential to help decision-makers
make better decisions that can improve efficiency and fairness.
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