
We thank the reviewers for their feedback and suggestions. Below we will clarify the points raised by the reviewers.1

Novelty. Our approach connects MDP homomorphisms with equivariant networks, introduces a novel way for2

constructing such networks and uses them to speed up learning in RL. We are encouraged by the positive feedback of3

the reviewers regarding the novelty and method.4

Scalability. To R1, R3 and R4: Scalability is not directly an issue, largely because the most expensive step, the5

equivariant basis construction, is performed only once, prior to training. To R3, regarding matrix inversions: The6

transformation matrices we used are orthogonal, so that we can take the cheap transpose. To R1: A truncated SVD7

could provide a reasonable approximation if the one-time cost of construction is prohibitive. To R1 and R4: We do not8

encounter issues within the transformation groups we consider. For large groups such as permutation groups we note9

that the number of filters scales linearly with the size of G, as does the number of input channels for the filters. For very10

large weight matrices, finding the SVD is computationally expensive.11

Data augmentation. We thank R3 and R4 for suggesting additional comparisons to data augmentation.12

0 100 200 300 400 500
Time steps (x 25000) 

20

15

10

5

0

5

10

15

20

Av
er

ag
e 

Re
tu

rn

This paper
Conv. baseline
Data aug. 1
Data aug. 2

Figure 1: Data augmentation baselines for Pong.

Per R3 and R4’s suggestion, we ran two data augmentation13

baselines. The first data augmentation is designed to be a di-14

rect port of supervised learning to RL, akin to R3’s suggestion:15

Each state image is randomly transformed or not. If it is trans-16

formed, the output is correspondingly transformed. The second17

data augmentation is an equivariant version of (Kostrikov 2020),18

where both state and transformed state are input to the network.19

The output of the transformed state is appropriately transformed,20

and both policies are averaged. We show results on 4 random21

seeds for Pong in Figure 1. While data augmentation is ben-22

eficial in RL, our approach outperforms both variants. This23

is consistent with other results in the equivariance literature24

(see e.g. Worrall 2017, Winkels 2018, Bekkers 2018, Weiler25

2018). Data augmentation can benefit RL because it encour-26

ages symmetries by increasing the dataset, on the other hand,27

equivariance enforces them, so the network does not need to28

learn the symmetries. We will incorporate the comparison and29

a discussion in the paper.30

Network construction. To R2, regarding ambiguity about network construction. We will improve the explanation in31

the appendix and add a short summary to the main paper, and examples will be included in the released code. To clarify,32

the representation of the group in the intermediate layers can be chosen arbitrarily. Our proposed solution works for any33

discrete group (as shown to work best in Weiler 2019), but other choices are definitely possible.34

Other environments. To R1, R2 and R4: We focus on CartPole, grid world and Pong, because these environments35

provide varying levels of complexity while still being compact enough to allow us to run a grid search and multiple36

baselines across environments with different observation spaces and symmetry groups. Our approach is in theory37

applicable to any RL problem that exhibits discrete group symmetry. Thus, this method is certainly applicable to more38

complex Atari games that exhibit symmetry. Based on the suggestion by R1, R2, R4, we are currently evaluating on39

Breakout, a more challenging Atari game. Experiments are currently running but exceed the length of the rebuttal40

period. To R1, our method is indeed also applicable to DM control for vision, as it exhibits flip symmetry.41

Clarifications. To R2: We use nullspace/random baselines to show that equivariance is key to improving performance.42

To R1: While nullspace/random perform similar to the regular baseline for the other two environments they perform43

better on Pong. We expect that this may be related to different gradient dynamics when using basis networks, which44

could influence learning. In all cases, equivariance performs best. To R2: The range we considered for Pong was45

chosen as the baseline performed much worse at other learning rate ranges. We therefore searched in only this range to46

optimize our own method. We use 6 learning rates in a larger range for grid world in Figure 5c. To R3: We think our47

approach can be useful for generalization, for example by learning in a state and directly generalizing to its transformed48

versions. To R2: The action transformation is a group representation, it therefore must have invertibility.49

We thank all reviewers for their time and efforts. We will incorporate the experiments and discussions, as well as typos,50

references and minor issues in the paper, and release all code.51


