- We are grateful to the reviewers for their insightful reviews and feedback. We have incorporated fixes to simple issues
- such as typos and missing references and do not address those issues here.
- Reviewer 1 pointed out that some of the works on Massart noise get to error $OPT + \epsilon$, under Massart Noise. We thank 3
- the reviewer for this correction and will update the introduction as the reviewer suggested, as well as add citations to the 4
- earlier works in the Massart noise model.
- We thank the Reviewer 2 for pointing out the issue with defining subderivative without convexity. We will address this
- and change it to a suitable generalized subdifferential.
- Reviewer 2 is correct in pointing out that using the validation set to validate the pancake property is subtle. We were 8
- indeed imagining access to a clean validation set, and will clarify this in the revision.
- Reviewer 3 points out that the margin separable assumption may be limiting. We will discuss this more in the revised 10
- version: the margin is needed only for the inliers, and one can treat all points violating the margin assumption as outliers 11
- from the point of view of the analysis. In particular, this implies that the results hold as long as the fraction of (true 12
- outliers + inliers violating the margin assumption) is suitably small. 13
- Reviewer 3 asked for intuition on the HerSumNorm in Theorem 13. We will add more intuition in the full version on 14
- how it shows up in the proof. Our goal for Theorem 13 was to use the weakest condition under which we could give a 15
- simple proof. For specific noise and data models, we can bound the HerSumNorm using standard techniques, as we do 16
- in the Supplementary material. 17
- Reviwer 3's question on Kernel methods is a very interesting one. While our Theorem 13 would extend to Kernel spaces,
- our current approach to proving that for a random sample D, the pair (D, μ) satisfies the dense pancakes condition (in 19
- the Supplementary material) requires $\Theta(d)$ samples. While we can use random projections to $\Theta(1/\gamma^2)$ dimensions and 20
- apply the algorithm and the Theorem there, extending these results to the usual SVM with Kernels is a very compelling 21
- open question. 22
- Reviewer 3 asks if the Dense Pancakes condition is novel. To our knowledge, this condition has not explicitly appeared 23 in any previous work, though it has likely shown up implicitly as a step in similar results under strong distributional 24
- assumptions. We thank the reviewer for their other suggestions for improvement and will revise the paper accordingly. 25
- Reviewer 4 asks if assumption 4 is necessary or can be relaxed to accommodate smooth losses such as the logistic 26
- loss. This is a very interesting suggestion, to which we can give two responses. The first is that one can define 27
- a (huberized version of the) loss $\max(f(y\mathbf{w}^{\top}\mathbf{x}), f(1))$ for f being the logistic loss. Such a loss will satisfy the 28
- conditions and be close enough to the logistic loss for many purposes. The second response is that the proof can 29
- likely be extended to the actual logistic loss by adding an additional assumption on the HerSumNorm of the inliers. 30
- The place where we use assumption 4 is to derive the bound on the contribution from I_2 in (8). Suppose instead of condition (4) we had an upper bound, say $\frac{L}{(1+e)} < \frac{L}{3}$ on |f'(x)| for $x \ge 1$. Then we could prove an upper bound of 31
- 32
- 33
- $\frac{L}{3} \cdot LinSumNorm(I_2) \leq \frac{L}{3} \cdot HerSumNorm(I)$ instead of 0 in equation (8). This would allow us to prove a variant of Thm 13 with an additional condition. This version will still imply a version of Thm 1 with slightly worse constants 34
- but now holding also for the logistic loss. We believe this additional complexity does not belong in the main theorem, 35
- but given the importance of the logistic loss, it would make sense to add such a statement in the Supplementary material,
- and we will do so in the revision. We thank the reviewer for this insightful question.