
A Implementation Optimization

A.1 Sequence Truncation for Separating [cls] trick

As discussed in Section 2.2, to avoid breaking the [cls] structure commonly used in pretraining,
we do not apply the pooling operation to the [cls] and keep the hidden state corresponding to
[cls] intact. While conceptually simple, a naive implementation could slow down the computation
by 15% due to the “irregular” sequence length caused by such an operation. Specifically, assume that
sequence length of an input sample is a power of two, i.e., 2p, which usually is 512 in the pretraining
phase. After one pooling operation with the [cls] intact, the length of the pooled sequence becomes
2p−1 + 1, which is not a power of 2 anymore. As a result, it can cause memory misalignment and the
waste of paralleled computation power in accelerators, leading to substantial speed loss.
To resolve this issue, we employ a simple strategy to truncate the last token after the pooling. Formally,
denoting the pooled hidden state as h = {h[cls] , h1, · · · , h2p−1}, the truncation can be expressed as

ĥ = truncate(h) = [h[cls] , h1, · · · , h2p−1−1] (6)

With this simple trick, we can always keep the sequence length a power of 2, hence avoiding the
slowdown caused by maintaining an independent [cls] hidden state.

A.2 Relative Positional Attention Implementation

In this work, we use the relative positional attention parameterization proposed in the Transformer-
XL [40]. To facilitate further discussion, we first review the details of this parameterization. Taking
the case of single head attention as the example head. Let T,D be the sequence length and hidden
dimension respectively. Then, the pre-softmax attention score Aij between a pair of positions i and j
consists of two terms:

Aij = (WQhi + v)>(WKhj)︸ ︷︷ ︸
content term

+(WQhi + u)>(WRri−j)︸ ︷︷ ︸
position term

. (7)

where v, u ∈ RD are two trainable bias vectors, WQ,WK ,WR ∈ RD×D are three trainable pro-
jection matrices, and ri−j ∈ RD is the sinusoidal positional encoding that represents the relative
distance i− j between the two positions.
To compute the entire attention score matrix A, the content term can easily be obtained via two head
projections and an outer product of complexity O(TD2 + T 2D):

Acontent = (HWQ + v)(HWK)>,

where H = [h1, · · · , hT] ∈ RT×D collects all hidden states into a matrix. However, we cannot
compute the position term in the same way as each Aposition

ij corresponds to a different ri−j . Hence, a
naive solution will be stacking T 2 pairs of position encodings into a tensor R̂ ∈ RT×T×D where
R̂ij = ri−j , and then perform the following tensor product:

Aposition = einsum("id,ijd->ij",HWQ + u, R̂WR).

Note that the head projection RWK now has a complexity of O(T 2D2) and a memory footprint of
O(T 2D), dominating all other computations.

A.2.1 Standard Solution: Gather / Shift
To resolve the computation burden above, a common technique is to instead collect a matrix R ∈
R2T−1×D, where

R = [rT−1, . . . , r0, · · · , r1−T]
which includes all possible position encodings arranged from the maximum possible distance value
T − 1 to the minimum one 1− T . Note that the full R̂ can be formed by gathering specific elements
from R with an index matrix I of shape [T × T], i.e.,

R̂ = gather(R, I), Iij = T + i− j.

Mathematically, this is equivalent to using a permutation tensor P ∈ RT×T×2T−1 to multiply R, i.e.,
R̂ = PR, where Pij ∈ R2T−1 is a one-hot vector used to select/gather a single position of R. As

13

the attention score computation only involves linear operations, we can rearrange the computation of
the position term as follows

Aposition = einsum("id,ijd->ij",HWQ + u, (PR)WR)

= einsum
(
"ijk,jk->ij",P,

[
(HWQ + v)(RWR)

>])
= gather

(
(HWQ + v)(RWR)

>, I
)

Note that, assuming gathering T 2 elements only has a complexity of O(T 2), which is true for
CPU/GPU, this trick reduces the computation complexity back to O(2TD2 + 2T 2D). In practice,
the gather operation can be implemented via a smart reshape operation, that is even cheaper.

A.2.2 Optimization for TPU: factorized relative positional attention

However, on TPUs, the assumption that gathering T 2 elements only has a complexity of O(T 2) does
not hold. Instead, we found that such a gather operation is dramatically slower on TPU. Hence, we
here consider another implementation which is significantly faster on TPU.
Firstly, let’s rewrite the position term as follows

Aposition
ij = (WQhi + u)>(WRri−j)

=
[
W>R (WQhi + u)︸ ︷︷ ︸

qi

]>
ri−j

= q>i ri−j . (8)

For easier derivation, we have introduced a notation of qi. Then, recall the ri−j is the sinusoidal
encoding that consists of the sine and the cosine components ri−j = cat(sini−j , cosi−j), where

sint =
[
sin
(
t/100002/D

)
, sin

(
t/100004/D

)
, · · · , sin

(
t/10000D/D

)]
∈ RD/2,

cost =
[
cos
(
t/100002/D

)
, cos

(
t/100004/D

)
, · · · , cos

(
t/10000D/D

)]
∈ RD/2.

Hence, we similarly divide qi defined above into two parts, i.e.,

qi = cat(qsini , qcosi).

Given the definitions, we can further break Eqn. (8) into two terms:

Aposition
ij = q>i ri−j = qsini

>
sini−j +q

cos
i
> cosi−j .

Now, using the trigonometric identities sin(a− b) = sin(a) cos(b)− cos(a) sin(b) and cos(a− b) =
cos(a) cos(b) + sin(a) sin(b), the two terms can be respectively reformulated into

qsini
>
sini−j = qsini

>
[sini� cosj − cosi� sinj]

= qsini
>
(sini� cosj)− qsini

>
(cosi� sinj)

=
[
qsini � sini

]>
cosj +

[
qsini � (− cosi)

]>
sinj

and

qcosi
> cosi−j = qcosi

>[cosi� cosj +sini� sinj]

= qcosi
>(cosi� cosj) + qcosi

>(sini� sinj)

= [qcosi � cosi]
>
cosj +[qcosi � sini]

>
sinj

14

Hence, combining these two parts together, it follows that

q>i ri−j = qsini
>
sini−j +q

cos
i
> cosi−j

=
[
qsini � sini

]>
cosj +

[
qsini � (− cosi)

]>
sinj +[qcosi � cosi]

>
cosj +[qcosi � sini]

>
sinj

=
{[
qsini � sini

]>
cosj +[qcosi � cosi]

>
cosj

}
+
{[
qsini � (− cosi)

]>
sinj +[qcosi � sini]

>
sinj

}
=

[
cat(qsini , qcosi)︸ ︷︷ ︸

=qi

� cat(sini, cosi)︸ ︷︷ ︸
:=φi

]>
cat(cosj , cosj)︸ ︷︷ ︸

:=ψj

+

[
cat(qsini , qcosi)︸ ︷︷ ︸

=qi

� cat(− cosi, sini)︸ ︷︷ ︸
:=πi

]>
cat(sinj , sinj)︸ ︷︷ ︸

:=ωj

= [qi � φi]>ψj + [qi � πi]>ωj ,

where φi, ψj , πi, ωj above are simply 4 positional encodings formed by concatenating the cosine
and sine vectors of the corresponding i and j in different ways. Note that, each term of the last line
has a factorized form that can be computed via an outer product, just like the standard content term.
Therefore, by stacking φi, ψj , πi, ωj of all positions (i.e. i = 1, . . . , T and j = 1, . . . , T) into the
corresponding Φ,Ψ,Π,Ω ∈ RT×D respectively, the full position term can be expressed in a simple
form

Aposition =
{[

(HWQ + u)W>R
]
�Φ

}
Ψ> +

{[
(HWQ + u)W>R

]
�Π

}
Ω>

which leads to the complexity of O(2TD2 + 4T 2D), which is comparable to the content term.

A.3 Potential Model Extensions

In this section, we discuss some potential model extensions of Funnel-Transformer. As described in
section 2, Funnel-Transformer can be divided into an encoder with a compression functionality and
a decoder that recovers the full-length token-level representations. To further extend the proposed
model, first note that the encoder-decoder framework can be formulated into a more general form:

henc = Encoder(xenc),

hdec = Decoder(henc,xdec),

where xenc and xdec are the encoder input sequence and the optional and problem-specific decoder
input, respectively. The goal of encoder is to compressing the input sequence xenc into the hidden
representations henc with a reduced length. Then, conditioned on the decoder input henc if any, the
decoder will extract relevant information/representations from henc to solve the specific NLP problem
at hand. Next, we will how the general form of Funnel-Transformer can be instantiated into specific
forms to solve corresponding NLP problems.

Sequence-level prediction This is essentially the case we consider in most of our experiments
where we want to obtain a vectorial representation of the input sequence such as text classification.
In this case, we don’t really need the decoder xdec (i.e. xdec = ∅) and the decoder simply extracts the
hidden representation corresponding to the [cls] token from henc and feeds it into the task-specific
structure (e.g. classifier).

Token-level prediction In the token-level prediction tasks such as the MLM pretraining, SQuAD
and sequence labeling, we need a decoder to recover the token-level representations from the
compressed sequence henc. In many cases, xdec could simply be the original sequence or a token-level
hidden representation of it to provide fine grained low-level information of each token and hence ease
the optimization. In this paper, we utilize the last-layer hidden states of the 1st block (before the first
pooling operation) as the additional decoder input.
But for problems that utilize additional input signals, such as the permutation order used for permuted
language modeling in XLNet [3]. This additional information can be injected into Funnel-Transformer
via the decoder input xdec to (approximately) recover some more complex control of attention
mechanism.

15

Sequence-to-sequence problems Another important category of NLP task is sequence-to-sequence
problems, including machine translation, text summarization, and dialog generation, whose state-of-
the-art solution is the conventional encoder-decoder framework. Hence, Funnel-Transformer naturally
fits these tasks, where the decoder input xdec corresponds to the target text sequence and the encoder
input xenc the source text sequence. This way, the key difference compared to conventional models is
the source side compression Funnel-Transformer provides.
Overall, we summarize some potential directions to extend Funnel-Transformer presented in section
2.2 to NLP problems. Finally, although we focus on discussion on the NLP tasks in this paper,
Funnel-Transformer could be applied to any tasks dealing with sequential data, such as time series
and video stream analysis.

B Experiment Setting and Hyper-parameters

B.1 Preprocessing & Tokenization

For all experiments conducted in this work, we simply adapt the “uncased” word piece model
originally used by BERT [2], where the vocabulary size is about 30K. Other than lower case and
the default preprocessing included in the word piece tokenizer, the only additional preprocessing we
perform is to remove some http symbols (e.g.) in the 7 text classification tasks.

B.2 Pretraining

Hparam Base Scale Large Scale
Hidden dropout 0.1
GeLU dropout 0.0
Attention dropout 0.1
Max sequence length 512
Batch size 256 8192
Learning rate 1e-4 2e-4
Number of steps 1M 500K
Warmup steps 10K 30K
Optimizer Adam Weight Decay
Learning rate decay Linear
Adam epsilon 1e-6
Weight decay 0.01

Table 7: Hyper-parameters for pretraining.

The hyper-parameters used for the two different pretraining settings are summarized in Table 7. One
exception is the learning rate used for B10-10-10H1024 at the base scale. Specifically, we find the
training can be unstable when the depth goes beyond 24 layers (in the case of B10-10-10H1024)
at base scale, especially for the MLM objective. Hence, we reduce the learning to 8e-5 for the
B10-10-10H1024 F-TFM during base-scale pretraining. This has a side effect of a slower training
pace and potentially a slightly worse finetuning performance. However, we does not observe such
instability when the batch size is increased such as in the large-scale setting.
For ELECTRA, there are two additional important hyper-parameters, i.e., the discriminator loss
coefficient and the relative size multiplier of the generator. In this work, we does not tune these two
hyper-parameters at all and simply use the numbers from the original paper, i.e., the discriminator loss
coefficient of 50 and size multiplier of 1/4 for all architectures trained with ELECTRA. In addition,
in ELECTRA training, whenever F-TFM is used as the discriminator, the generator also uses the
F-TFM.
In additional, in the all experiments, we only annotate the size of hidden states the rest of model sizes
can be derived from on it:

• The embedding size = hidden size

• The size of inner states of P-FFN is “4× hidden size”.

• The attention head dimension is always 64.

• The number of attention heads is “hidden size/64”.

16

Finally, another important element in pretraining is the mask sampling strategy. For MLM training,
following previous work, we always complete word span (up to 5 complete words) sampling.
However, for ELECTRA training, we notice a weird phenomenon that under the base-scale setting,
the performance of both the Transformer and the F-TFM drops significantly if we use word span
sampling rather than the single-token sampling. On the other hand, under the large-scale setting,
using word span sampling works fine. Hence, we use single-token sampling for base-scale ELECTRA
training, and word span sampling for large-scale ELECTRA training.

B.3 Finetuning

Hparam RTE MRPC STS-B CoLA SST-2 QNLI MNLI QQP
Hidden dropout 0.1
GeLU dropout 0.0
Attention dropout 0.1
Max sequence length 128
Batch size 16 16 16 16 32 32 64 64
Number of epochs 10 10 10 10 5 3 3 5
Learning rate decay Linear
Weight decay 0.01
Warmup proportion 0.1
Adam epsilon 1e-6

Hparam IMDB AG DBpedia Yelp-2 Yelp-5 Amazon-2 Amazon-5
Hidden dropout 0.1
GeLU dropout 0.0
Attention dropout 0.1
Max sequence length 512 128 128 512 512 512 512
Batch size 32 32 64 128 128 128 128
Number of epochs 5 3 3 3 3 3 3
Learning rate decay Linear
Weight decay 0.01
Warmup proportion 0.1
Adam epsilon 1e-6

Table 8: Hyper-parameters for finetuning on the GLUE benchmark and 7 text classification datasets.

For all the finetuning experiments, we essentially inherit the hyper-parameters used by XLNet [3].
All the performance numbers reported are obtained on TPUs with TensorFlow 2.2.

B.3.1 GLUE & Text Classification

For GLUE and text classification datasets, we first fix the values of most hyper-parameters shown in
Table 8. Then, we only search the learning rates from the set [1e-5, 2e-5, 3e-5], and choose the best
one according to the validation set.
Following previous work [3, 4, 5], all GLUE performances correspond to the median result of 5 runs
from different random seeds in the base setting and 15 runs in the large setting, respectively.
For the text classification, the base-scale results are the median performance among 5 runs with
different random seeds. However, for the large-scale experiments, to be compatible with previous
work [42, 3], the results are the best performance among 5 random runs.

B.3.2 Reading Comprehension

Again, following XLNet [3], the hyper-parameters used for finetuning on the RACE and SQuAD
datasets are summarized in Table 9. “Layer-wise decay” means exponentially decaying the learning
rates of individual layers in a top-down manner. For example, suppose the 24-th layer uses a learning
rate l, and the Layer-wise decay rate is α, then the learning rate of layer m is lα24−m. In addition,
for the two versions of SQuAD, we simply reuse the model trained on SQuAD v2.0 when evaluated
on SQuAD v1.1.

17

Hparam RACE SQuAD
Dropout 0.1
Attention dropout 0.1
Max sequence length 512 512
Training epochs/steps 5 epochs 8000 steps
Warmup proportion/steps 0.1 1000 steps
Batch size [16, 32] 48
Learning rate [1e-5, 2e-5] 3e-5
Learning rate decay linear
Weight decay 0.01
Adam epsilon 1e-6
Layer-wise lr decay 1.0 0.75

Table 9: Hyper-parameters for RACE and SQuAD.

C Additional Experimental Results
C.1 Text Classification at Large Scale

Model IMDB AG DBpedia Yelp-2 Yelp-5 Amazon-2 Amazon-5
BERT-Large 4.51 - 0.64 1.89 29.32 2.63 34.17
ROBERTA-Large 3.50 - - - - - -
XLNet-Large 3.20 4.45 0.64 1.37 27.05 2.11 31.67
B10-10-10H1024 3.36 4.66 0.60 1.33 27.14 2.10 31.64
B8-8-8H1024 3.42 4.96 0.63 1.39 27.20 2.14 31.74

MPNet 4.40 - - - - - -
B6-6-6H768 3.72 5.00 0.64 1.50 27.73 2.27 32.11
B6-3x2-3x2H768 3.82 5.12 0.64 1.58 27.96 2.32 32.23
B4-4-4H768 4.12 5.09 0.67 1.70 28.40 2.35 32.46

Table 10: Text classification performance comparison under the large-scale pretraining.

Table 10 includes the performance comparison on 7 text classification tasks under the large-scale
training setting. Similar to the GLUE benchmark results, compared with the previous result based on
Transformer, with fewer FLOPs, the proposed F-TFM achieves comparable results.

C.2 Training Cost Comparison

In this section, we test the pretraining and finetuning speed of the F-TFM in comparison to the
standard Transformer on the TPU and GPU platform. For the pretraining speed evaluation, we test
F-TFM on TPU v3-16 (16 cores x 16Gb) with TensorFlow. For the finetuning speed evaluation,
we test F-TFM on TPU v2-8 (8 cores x 8Gb) with TensorFlow and on Nvidia-V100 (16Gb) GPU
with the PyTorch. The TensorFlow version is 2.2.0, and the PyTorch version is 1.5.0. For the GPU
experiments, we use an 8-GPU node on the Google Cloud Platform. All running speeds are reported
with the FP16 optimizer. In the PyTorch implementation, we use “O2” options of AMP manager
in the apex3 package to handle the FP16 optimization. For finetuning, we consider three different
sequence lengths, namely 128, 256 and 512. For pretraining, we only consider the sequence length
512. In each case, we choose the maximum possible batch size allowed by the memory size of the
device(s). We measure the actual model running time by performing 1000 steps gradient descent with
random input sequences with the fixed length.
Firstly, we compare the model speed in the finetuning stage. Note that the decoder is not used in this
setting. Table 11 and 12 summarize the finetuning running time comparison on GPUs and TPUs,
respectively.

• In the base model (L12H768) group, we observe that the speed of B6-6-6H768 is similar or faster
than the base Transformer model, despite the fact that B6-6-6 is deeper, has more parameters.
3https://github.com/NVIDIA/apex

18

https://github.com/NVIDIA/apex

Sequence length 128 256 512

Metrics Run time Mem Run time Mem Run time Mem GLUE1 GPU 8 GPUs 1 GPU 8 GPUs 8 GPUs

Batch size / GPU 64 32 16

L12H768 1.00x 1.00x 9.2G 1.00x 1.00x 11.0G 1.00x 14.3G 84.40
B6-6-6 0.97x 0.99x 9.1G 0.95x 0.97x 10.3G 0.94x 12.5G 85.37
B6-3x2-3x2 0.93x 0.93x 8.4G 0.91x 0.92x 9.5G 0.90x 11.8G 84.78
B4-4-4 0.67x 0.67x 6.6G 0.65x 0.66x 7.5G 0.64x 9.0G 83.99

Batch size / GPU 32 12 4

L24H1024 1.00x 1.00x 14.8G 1.00x 1.00x 14.4G 1.00x 13.9G 86.62
B10-10-10 0.87x 0.92x 14.0G 0.90x 0.93x 13.0G 0.96x 12.7G 87.03
B8-8-8 0.70x 0.73x 11.6G 0.73x 0.75x 10.8G 0.78x 10.5G 86.70
Table 11: Running time and memory consumption comparison between F-TFMs and the standard
Transformer on the GPU. In each model group, the standard Transformer (first model) is used as the
benchmark for the rest of F-TFM models. Note that, given the same batch size per GPU, the memory
consumption is roughly the same for 1 GPU and 8 GPUs.

Sequence length 128 256 512

Metrics Run time on 8 TPU cores (TPUv2-8) GLUE

Batch size / TPU core 64 32 16

L12H768 1.00x 1.00x 1.00x 84.40
B6-6-6 0.99x 0.88x 0.81x 85.37
B6-3x2-3x2 0.97x 0.87x 0.77x 84.78
B4-4-4 0.69x 0.62x 0.55x 83.99

Batch size / TPU core 16 8 4

L24H1024 1.00x 1.00x 1.00x 86.62
B10-10-10 0.89x 0.81x 0.73x 87.03
B8-8-8 0.66x 0.60x 0.56x 86.70

Table 12: Running time between F-TFMs and the standard Transformer on the TPU v2-8. In each
model group, the standard Transformer (first model) is used as the benchmark for the rest of F-TFM
models.

Moreover, B6-6-6H768 achieves better results compared with the base Transformer model. The
similar conclusion applies to the B6-3x2-3x2 model, which has the same amount of parameters as
the base model. The B4-4-4 model, which has the same depth and model parameters as the base
model, is able to provide 30%-50% speedup without losing too much performance.

• In the large model (L24H1024) group, the conclusion is similar. The speed of the larger model
B10-10-10 is almost the same as the large model, and the speed of B8-8-8 is significantly faster
than the large model. In addition, when sequence length equals 512, the acceleration of F-TFM on
the TPU is more obvious than the GPU.

• In the both groups, all the tested F-TFM variants have smaller memory footprint compared with
the standard TFM models, showing the memory efficiency of F-TFM.

Next, we compare the model speed during pretraining under the MLM objective in table 13, which has
an additional cost due to the decoder. The results show that the proposed method can still substantially
improve the pretraining speed compared to the standard Transformer, though the speed gain is slightly
smaller than the finetuning stage. In summary, this study demonstrates that the proposed method is
more efficient in both the finetuning and pretraining stages in modern parallel computing platforms.

19

Sequence Length 512

Running Time FLOPs

#TPU cores / Total bsz 16 / 512

L12H768 1.00x 1.00x
B6-6-6H768D2 0.99x 1.04x
B6-3x2-3x2H768D2 0.97x 1.04x
B4-4-4H768D2 0.79x 0.75x

#TPU cores / Total bsz 16 / 128

L24H1024 1.00x 1.00x
B10-10-10H1024D2 0.83x 0.81x
B8-8-8H1024D2 0.71x 0.66x

Table 13: TPU pretraining speed comparison. The suffix “D2” means that the F-TFM model has 2
decoder layers.

20

