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In this supplementary material, we first provide some details on the different confidence-aware loss
functions mentioned in Section |1|of the main paper. We then demonstrate some key mathemati-
cal properties of the SuperLoss in Section 2} Finally, we provide a more detailed version of the
experimental results in Section [3]

1 Confidence-aware Losses

In Section 2.1 of the main paper, we give several examples of existing confidence-aware loss functions.
We now detail their formula and provide some explanation on how they are represented in Figure 2 of
the main paper.

The introspection loss [15] was introduced in the context of keypoint matching between different
class instances. It can be rewritten from the original formulation [[15] in a more compact form as:

exp(o) —1
Eintrospection(sv Y, 0) = IOg <(O')> —0ys, (1)

where s € [0, 1] is the similarity score between two keypoints computed as a dot-product between
their representation, y € {—1, 1} is the ground-truth label for the pair and o > 0 is an input-dependent
prediction of the reliability of the two keypoints. In Figure 2 of the main paper, we plot ¢ on the
z-axis and the similarity score s on the y-axis, assuming a positive label y = 1. Note that this loss
hardly generalizes to other tasks as it is specially designed to handle similarity scores in the range
[0, 1] with binary labels.

Reliability loss from R2D2 [22]. Introduced in the context of robust patch detection and descrip-
tion, the reliability loss from R2D2 serves to jointly learn a patch representation along with its
reliability (i.e. a confidence score for the quality of the representation), which is also an input-
dependent output of the network [22]]. It is formulated as:

l1-0
2 b

where z represents a patch descriptor, y its label and o € [0, 1] its reliability [ﬂ The score for the

patch is computed in the loss in term of differentiable Average-Precision (AP). In Figure 2 of the

main paper, we plot o on the x-axis and AP(z,y) on the y-axis. We identify two shortcomings with
this formulation of a confidence-aware loss function. First, the reliability o is not an unconstrained

lropa(2,y,0) = o(1 — AP(z,y)) + 2)

"We give here the correct formula as there is a typo in the formula of the original paper.
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variable (it is bounded between 0 and 1), making it difficult to regress in practice. Second, due to
the lack of regularization, the optimal reliability is actually either O or 1, depending on whether
AP(z,y) < 0.5 or not. In other words, for a given fixed AP(z,y) < 0.5, the loss is minimized by
setting o = 0 and vice versa, i.e. it only encourages the reliability to take extreme values.

Modified cross-entropy loss [23]. Saxena et al. [23] have introduced for classification a tem-
pered version of the cross-entropy loss where a sample-dependent temperature scales logits before
computing the softmax:

exp(ozy)
l ataParams\<,Y, = -1 - | 3
patal (2:.0) o8 (Zj exp(ozj)> ©)
where z € R are the logits for a given sample (C' is the number of classes), y € {1,...,C}its

ground-truth class and o > 0 its confidence (i.e. inverse of the temperature in [23]ﬂ Interestingly,
this loss transforms into a robust 0-1 loss (i.e. step function) when the confidence tends to infinity:

“4)

hm EDataParams (Za Y, 0) =
o—+o0

0 if 2z, > max; z
+o00 otherwise.

Similarly to the SuperLoss, a regularization term equal to Alog(c)? is added to the loss to prevent
o to blow up. In Figure 2 of the main paper, we assume for the sake of representation a two-class
problem (hence z € R?) and y = 1 and plot o on the z-axis and Az = 2; — 2 on the y-axis. Because
this loss cannot be negative, we plot the log of the loss. While this loss handles well the case of
classification, we find that, similarly to previous confidence-aware losses, it hardly generalizes to
other tasks.

Multi-task loss [7]. Not represented in Figure 2 of the main paper but following a similar idea,
a scheme to automatically learn the relative weight of each loss in a multi-task context has been
proposed by Kendall ef al. [7]]. The intuition is to model the network prediction as a probabilistic
function that depends on the network output and an uncontrolled homoscedastic uncertainty. Then,
the log likelihood of the model is maximized as in maximum likelihood inference. It leads to the

following minimization objective, defined according to several task losses {/1, ..., ¢, } with their
associated uncertainties {01, ..., 0, } (i.e. inverse confidences):
Emultitask:<£1a ce 7£n7 O1y--- 7Un) = Zl 2012 + log Oi, (5)
i=

In practice, the confidence is learned via an exponential mapping s = log o2 to ensure that o > 0.
Note that this approach makes the implicit assumption that task losses are positive with a minimum
min ¢; = 0 Vi, which is not guaranteed in general. In the case where one of the task loss would be
negative, nothing would indeed prevent the multi-task loss to blow up to —oo.

SuperLoss. For the sake of exhaustiveness, we recall the formula of the proposed SuperLoss:
SL;(f,0) = o(f — 7) + A (log 0)? (6)

where the loss ¢ and the confidence o corresponds to an individual training sample. Similarly to most
of the aforementioned confidence-aware losses, we use an exponential mapping ¢ = e to ensure that
o > 0 (see also Section 2] of this Supplementary). While we note that our loss is similar in principle
to the multi-task loss [7]], we point out some important differences. First, the SuperLoss is applied
individually for each sample at the lowest level; on the contrary it is applied at the highest multi-task
level in [7]. Second, the SuperLoss includes an additional regularization term A that allows to handle
losses of different amplitudes and different levels of noise in the training set (see Section 2 below).
Lastly, the SuperLoss makes no assumption on the range and minimum value of the loss, thereby
introducing a dynamic threshold 7 and a squared log of the confidence for the regularization.

2we only consider the case with instance parameters for simplicity
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Figure 1: We plot all confidence-aware losses described in Section on the first row. On the second
row, we show for each loss the absolute value of its gradient with respect to the parameter on the y
axis. This represents the impact of the loss on the network parameters at any given position on the
plot. At the exception of [23]] (locally), the gradient monotonously increases with the confidence in
all cases. Blue (yellow) is smaller (larger) and black lines correspond to lines of equal value.

Confidence-aware loss and sample weighting. The confidence directly corresponds to the weight-
ing of the sample losses in the SuperLoss, making it easily interpretable. However, the relation be-
tween confidence and sample weighting is not necessarily obvious for the other aforementioned losses.
Regardless of the manner the confidence intervenes in the formula, the key property for a confidence-
aware loss is that the gradient of the loss w.r.t. the network parameters should monotonously increase
with the confidence, all other parameters staying fixed. This is illustrated in the second row of
Figure[I] This implies that gradient updates towards the model parameters are smaller for samples
with lower confidence, which is effectively equivalent of down-weighting low-confidence samples
during training.

2 More details on the SuperLoss

2.1 Closed-form formula for the SuperLoss

To compute the closed-form SL*(¢) of the SuperLoss defined in Section 2.2 of the main paper, it
is necessary to find the confidence value o*(¢) that minimizes SL(¢, o) for a given loss £. We first
rewrite the equation using an exponential mapping for the confidence:

SL*(¢) = min o(¢ —7) + A(logo)?
= min e”({ — 1) + Az?
= min fe” + 22, @)

where

{—T
and o = e”.

A>0, =

The function to minimize admits a global minimum in the case where 5 > 0, as it is the sum of two
convex functions. Otherwise, due to the negative exponential term it diverges towards —oo when
2 — 400. However, in the case where 3y < 5 < 0 with 8y = —2/e, the function admits a single
local minimum, located in = € [0, 1] (see below), which corresponds to the value the confidence
would converge to assuming that it initially starts at 0 = 1 (x = 0) and move continuously by
infinitesimal displacements. In the case where it exists (i.e., when Sy < [3), the position of the
minimum is given by solving the root of the derivative:



%(6ez+x2)=()
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— g = —zexp(—x) (8)

This is an equation of the form z = ye¥ with = € R and y € R, a well-known problem having
y = W(z) for solution, where W stands for the Lambert W function. The closed form for x in the
case where 3y < [ is thus generally given by:

v =)

< logo* = —W(g)

— ot =e V(3 9)

Due to the fact that the Lambert W function is monotonously increasing, the minimum is located
inz € [—00,0] when 8 > 0 and in z € [0,1] when Sy < 8 < 0. Although the Lambert W
function cannot be expressed in term of elementary functions, it is implemented in most modern math
librariesﬂ In our case, we use a precomputed piece-wise approximation of the function, which can
be easily implemented on GPU in PyTorch using the grid_sample () function. In the case where
B < By, we cap the optimal confidence at ¢* = ¢~ (80/2) = ¢ In summary,

{—T

A

o (0) = e W(Emax(B0.8))  with g = (10)

2.2 Effect of large regularization

Lemma 1. The SuperLoss becomes equivalent to the original input loss when \ tends to infinity.

Proof. As a corollary of Equation (I0)), we obtain:

lim o}(f)=eV® =1 11
JJm ox(0) =e , (11)
hence
lim SLi(¢) = lim o}(0)(¢—7)+ A(logai(0)?, (12)
A—+4o0 A—+o0
(—7\?
= lim /- A
)\le+noo T+AW ( 2A )
L (—1)2
B )\ETOO b-1+ 4\
={—T.
Since 7 is considered constant, the SuperLoss is equivalent to the input loss ¢ at the limit. O

2.3 Homogeneity of the SuperLoss

One important property of the SuperLoss is its homogeneity, meaning that it can handle an input
loss of any given range and thus any kind of tasks. More specifically this means that the shape of
the SuperLoss stays exactly the same, up to a constant scaling factor v > 0, when the input loss and
the regularization parameter are both scaled by the same factor 7. In other words, it suffices to scale
accordingly the regularization parameter and the learning rate to accommodate for an input loss of
any given amplitude.

3For instance, it is available in python as scipy.special.lambertw



Table 1: Regression results in term of mean absolute error (MAE) aggregated over 5 runs (mean +
standard deviation) on the task of digit regression on the MNIST dataset [9]].

Proportion of noise
0% 20% 40% 60% 80%

Baseline 0.80 £0.87 0.84+0.17 1.49+£0.53 1.83+036 2.31+0.19
SuperLoss  0.18 +£0.01 0.23 £0.01 0.29 £0.02 0.49+0.06 1.43+0.17

Baseline 021 £0.02 035+0.01 0.62+£0.03 1.07+0.05 1.87=+0.06
SuperLoss  0.18 +£0.01 0.21 £0.01 0.28 £0.01 0.39 +0.01 1.04 £+ 0.02

Input Loss  Method

MSE (¢2)

smooth-¢;

Table 2: Regression results in term of mean absolute error (MAE) aggregated over 5 runs (mean +
standard deviation) on the task of human age regression on the UTKFace dataset [30].

Proportion of noise
0% 20% 40% 60% 80%

Baseline 7.60£0.16 10.05+0.41 1247+£0.73 1542+1.13 22.19+3.06
SuperLoss 7.24 =047 835+0.17 910+033 11.74+0.14 13.91+0.13

Baseline 698+0.19 740£0.18 838+0.08 11.624+0.08 17.56+0.33
SuperLoss  6.74 = 0.14 6.99 £0.09  7.65+0.06 9.86 +0.27 13.09 £+ 0.05

Input Loss Method

MSE (¢5)

smooth-¢;

Lemma 2. The SuperLoss is a homogeneous function, i.e. S\ (y£) = ySL}({), Vv > 0.

Proof. Due to the fact that o* only depends on the ratio (¢ — 7)/A (see Eq. and that 7 is
proportional to ¢ because it is computed as a running average of ¢, we have:

o33(16) = o3 (0).

It naturally follows that

SLEA(70) = %A (70) (7€ — 7) + A (log 075 (v4))?
= o5 (0)(v€ —7) + A (log a5(¢))?
= (05(0)(£ — ) + Alog o5 (£))%)
= ySL;(0). O

3 Detailed results

3.1 Regression

Hyper-parameters. During cross-validation of the hyper-parameters, we found that it is important
to use a robust error metric to choose the best parameters, otherwise noisy predictions may have too
much influence on the results. We thus use a truncated absolute error min(¢, |y — ¢|) where y and §
are the true value and the prediction, respectively, and ¢ is a threshold set to 1 for MNIST and 10 for
UTKFace.

Detailed results. For the sake of comparison, we provide detailed experimental results for digit
regression and human age regression in Table [I|and Table 2] respectively.

3.2 Classification

Detailed results. In our experiments on the CIFAR-10 and CIFAR-100 datasets, we have compared
to the state of the art under different proportions of corrupted labels. More specifically, we used what
is commonly defined as symmetric noise, i.e. a certain proportion of the train labels are replaced by
other labels drawn from a uniform distribution. We now provide detailed results for the two following
cases: (a) the new (noisy) label can remain equal to the original (true) label; and (b) the new label
is drawn from a uniform distribution that exclude the true label. We report the results for each case
respectively in Table[3|and



Table 3: Detailed results on CIFAR-10 and CIFAR-100 for different proportions of symmetric noise
(original labels cannot be maintained).

CIFAR-10 CIFAR-100

Method 20% 40% 60% 20% 40% 60%
Self-paced [8] (2010) 89.0 85.0 - 70.0 55.0 -
Focal Loss [12] (2016) 79 .0 65.0 - 59.0 44.0 -
MentorNet DD [5] (2017) 91.23 88.64 - 72.64 67.51 -
Forgetting [1] (2017) 78.0 63.0 - 61.0 44.0 -
Co-Teaching [4] (2018) 87.26 82.80 - 64.40 57.42 -

L, [29] (2018)’ - 87.13 82.54 - 61.77 53.16
Trunc L, [29] (2018)’ - 87.62 82.70 - 62.64 54.04
Reweight [21] (2018) 86.9 - - 61.3 - -

D2L [14] (2018) 85.1 83.4 72.8 62.2 52.0 423
Forward T [17] (2019) - 83.25 74.96 - 31.05 19.12
SELF [2] (2019) - 93.70 93.15 - 71.98 66.21
Abstention [25] (2019) 93.4 90.9 87.6 75.8 68.2 59.4
CurriculumNet [24] (2019) 84.65 69.45 - 67.09 51.68 -
02U-net(10) [6] (2019) 92.57 90.33 - 74.12 69.21 -
02U-net(50) [6] (2019) 91.60 89.59 - 73.28 67.00 -
DivideMix [10] (2020) 96.2 94.9 94.3 712 75.2 72.0
CurriculumLoss [13] (2020) 89.49 83.24 66.2 64.88 56.34 44.49
SuperLoss, 7 = log C 9331+£0.19 9099+£0.19 8539+£046 7554+£026 69.90£024 61.01£0.25
SuperLoss, T=Avg 93.16 £0.17 91.05+0.18 8552+£0.53 75.02+£0.08 71.06+0.17 61.96=£0.11
SuperLoss, T=ExpAvg 9298 +£0.11 91.06 £0.23 8548 £0.13 74.34+£0.26 70.96+0.24 62.39£0.17

Table 4: Detailed results on CIFAR-10 and CIFAR-100 for different proportions of symmetric noise
(original labels can be maintained).

CIFAR-10 CIFAR-100

Method 20% 40% 50% 80% 20% 40% 50% 80%
Bootstrap [20] (2015) 86.8 - 79.8 63.3 62.1 - 46.6 19.9
F-correction [16] (2017) 86.8 - 79.8 63.3 61.5 - 46.6 19.9
Mixup (28] (2018) 95.6 - 87.1 71.6 67.8 - 57.3 30.8
Co-teaching+ [27] (2019) 89.5 - 85.7 67.4 65.6 - 51.8 279
P-correction [26] (2019) 924 - 89.1 71.5 69.4 - 57.5 31.1
Meta-Learning [LL! (2019) 929 - 89.3 774 68.5 - 59.2 42.4
Data Parameters [23] (2019) - 91.10 £ 0.70 - - - 70.93 £ 0.15 - -
DivideMix [10] (2020) 96.1 - 94.6 93.2 773 - 74.6 60.2
SuperLoss, 7 = log C' 93.39 £0.12 91.73+£0.17 90.11 £0.18 77.42+0.29 7476 +0.06 69.89 +£0.07 66.67 £0.60 37.91+0.93
SuperLoss, T=Avg 93.16 £0.17 91.55+£0.18 90.21 £0.22 76.69 £0.60 74.73 £0.17 71.05+0.08 67.84 £0.25 36.40+0.09
SuperLoss, T=ExpAvg 93.03 £0.12 91.70 £0.33 89.98 +0.18 77.49+029 74.65+0.31 7098 +0.26 67.21 +£0.33 36.45+0.80

As mentioned in the paper, the SuperLoss performs on par or better than most of the recent state-of-
the-art approaches, including ones specifically designed for classification and requiring dedicated
training procedure. We find that SELF [2] and DivideMix [10] are nevertheless outperforming our
SuperLoss. Yet we note that they share the aforementioned limitations as both rely on ensembles of
networks to strongly resist memorization. In contrast, our approach uses a single network trained
with a baseline procedure without any special trick.

Impact of the regularization. We show in Figure [2|the impact of the regularization parameter A on
CIFAR-10 and CIFAR-100 for different proportions of label corruption. We observe that, overall, the
regularization has a moderate impact on the classification performance. At the exception of very high
level of noise (80%), the performance plateaus for a relatively large range of regularization values.
Importantly, the optimal value of )\ is approximately the same for all noise levels, indicating that our
method can cope well with the potential variance of training sets in real use-cases.

3.3 Object Detection

Hyper-parameters. For the baseline, we have used the default parameters from detectron2. For
the SuperLoss, we have used A = 1 for clean data and A\ = 0.25 for any other level of noise, in all
experiments, for both Faster R-CNN and RetinaNet.

Detailed results. In the main paper, we report the AP50 metric on Pascal VOC for the baseline, the
SuperLoss and the state of the art, with varying level of label noise. In Table[5of this supplementary,
we report also the AP75 metric (i.e. the mean average precision (mAP) at a higher intersection-over-
union (IoU) threshold of 0.75 instead of 0.5, as well as the AP metric, which is the average of mAP



CIFAR-10 CIFAR-100

0.9 0.7 1
0.6
0.8
§ 0.5 - — 40% no?se
5 60% noise
8 0 7 T o, .
< 0.4 1 —— 80% noise
0.6 —— 40% noise
60% noise 0.3 1
—— 80% noise
0.5 - : : : 0.2 T T
107! 10° 10t 107! 10°
Regularisation A Regularisation A

Figure 2: Impact of the regularization parameter for different proportions of noise (we used T=ExpAvg
in all experiments).

Table 5: Comparison of our SuperLoss with the baseline and the state of the art for object detection
using the AP, AP50 and AP75 metrics on Pascal VOC. AP50 was already reported in the main paper
(without the standard deviation). For the baseline and the Superloss, we report the mean and standard
deviation over 3 runs. T denotes numbers reported from CA-BBC.

AP AP50 AP75
label noise 0% 20% 40% 60% 0% 20% 40% 60% 0% 20% 40% 60%
2 baseline 549+05 51.0x02 48.7x03 34.9x06 | 80.6x0.2 77.5+07 74.6+0.6 52.0+33 | 59.7+05 55.6+07 51.8+05 36.8+2.4
£ SuperLoss 7=ExpAvg | 54.8+0.6 52.1x0.4 49.8+01 39303 | 80.5+04 78102  753+00 59.6+02 | 59.8+07 56.6+0.5 54303 42.7+04
% SuperLoss T=Avg 55.3+01 52.3+t04 49.8+03 393110 | 80.7+0.2 78.0+0.1  75.2+0.8 59.7+1.6 | 60.6+0.2 56.9+0.3 54.1+t04 42.8+13
baseline 53.2+02 473x03 44503 41.5z05 | 81.4x00 769 x01 73.6+02 69.5+04 | 582+02 50.4+os 46.8+01 43.2+0.7

7z SuperLoss 7=logC 52.7+0.1 50.8+0.1 49.3:0.1 46.6x0.2 | 81.4+01 79.5+03 78.1+0.1  T49+0.1 | 57.8+02 554+02 53.6+02 50.0+0.3
LZ) SuperLoss T=ExpAvg | 52.5+0.2 49.0+0.2 48.5+03 46.4+03 | 81.0+02 784+0.1 77.0+0.3 73.840.4 | 574403 529+03 52.3+t02 50.2+0.5
& Co-teaching’ 783 76.5 74.1 69.9
5 SD-LocNet! 78.0 75.3 73.0 66.2
£ Note RCNNN' 78.6 753 749 69.9

CA-BBC! 80.1 79.1 71.7 74.1

at varying IoU thresholds. We report both the mean and the standard deviation over 3 runs. With both
Faster R-CNN and RetinaNet object detection frameworks, we observe that the SuperLoss allows
to significantly increase the performance of the baseline in the presence of noise for all metrics.
Interestingly, the SuperLoss also significantly reduces the variance of the model, which is pretty high
in the presence of noise, in particular with RetinaNet.

3.4 Image Retrieval

Hyper-parameters. As mentioned in the main paper, we use a ResNet-50 with Generalized-Mean
(GeM) pooling [19] and a contrastive loss [3]['} When training on Landmarks-clean, we use the
default hyper-parameters from [[18] for the optimizer and hard-negative mining. Specifically, we train
for 100 epochs using the Adam optimizer with a learning rate and weight decay both set to 1e-6. The
learning rate is exponentially decayed by exp(—1) overall. At each epoch, 2000 tuples are fed to the
network in batches of 5 tuples. Each tuple is composed of 1 query, 1 positive and 5 negatives (i.e. 1
positive pair and 5 negative pairs, mined from a pool of 20K hard-negative samples).

Detailed results. When trained on the noisy Landmarks-full dataset using the same settings, the
baseline has trouble to converge and performs poorly, see Figure[3] We believe that this is due to the
fact that hard-negative mining systematically finds wrongly labeled negative pairs that prevent the
model to properly learn. For this reason, we tune again the learning rate and the hard-negative mining
parameters of the baseline on the validation set of Landmarks-full. We find that reducing the size of
the negative pool indeed improves the situation as it makes it less likely that noisy negative images
are found. The new learning rate, number of tuples and size of the negative pool are respectively le-5,
200 and 500. Since the network sees less tuples per epoch (and hence less pairs), we choose to train
twice longer (200 epochs instead of 100) with the same overall exponential decay of the learning rate.
For the SuperLoss, we use global averaging to compute 7 and validate A = 0.05 on the validation set.

*https://github.com/filipradenovic/cnnimageretrieval-pytorch
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Figure 3: Model convergence during training on the noisy Landmarks-full dataset.

The convergence of the re-tuned baseline and the SuperLoss are shown in Figure [3] Even though the
baseline drastically improves and now converges properly, its is still outperformed by a large martgin
by the SuperLoss at all stages of the training.

Evaluation metrics. We have evaluated our approach using the Revisited Oxford and Paris bench-
mark [18]. It is composed of two datasets, Oxford and Paris, that consist of respectively 5,063 and
6,392 high-resolution images. Each dataset contains 70 queries from 11 landmarks. For each query,
positive images are labelled as easy or hard positives. For each dataset, we evaluate in term of mean
Average-Precision (mAP) using the medium (M) and hard (H) protocols which consist in respectively
considering all positive images or only hard ones (i.e. ignoring easy ones). We refer the reader to [18]]
for a more detailed explanation on the benchmark and the evaluation metrics.
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