Memory Based Trajectory-conditioned Policies
for Learning from Sparse Rewards

This supplementary material provides details of DTSIL algorithm in Appendix A & B. In Appendix C,
G, and H, we clarify the details for the experiments. We compare DTSIL with the previous work in
Appendix D. We also discuss how robust DTSIL is against the hyperparameter choices (Appendix E)
and different types of stochasticity of the environment (Appendix C and F).

Contents
A Detailed Description of DTSIL Algorithm 2
A.l1 DTSIL Full Algorithm 2
A.2 Algorithm of Sampling Demonstrations 2
A.3 Algorithm of Updating Trajectory Buffer. 3
A.4 DTSIL Algorithm on Environments with Highly Random Initial States 4
B Additional Implementation Details 6
B.1 Imitation Reward 6
B.2 Trajectory-Conditioned Policy 6
B.3 Buffer Organization 7
C Additional Experimental Details 8
C.1 Apple-Gold Domain with Random Initial States 8
C.2 Atari Montezuma’s Revenge with Random Initial Delay 8
C.3 Atari with Sticky Action L 9
C.4 Robotics Navigation Task with Highly Random Initial States 10
C.5 Robotics Manipulation Task with Highly Random Initial States 10
C.6 DeepSea 11
C.7 MujocoMaze e 12
C.8 Montezuma’s Revenge with Learned State Representation 13
C.9 Apple-Gold domain with Highly Random Structure 13
D Comparison with Learning Diverse Policies by SVPG 14
Effects of Hyperparameters 15
E.1 Hyperparameter At e e e 15
E.2 Hyperparameter & e e e e 16
Effect of Stochasticity in Environments 17
G Hyperparameters 18
H Environment Setting 19

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

A Detailed Description of DTSIL Algorithm

A.1 DTSIL Full Algorithm

In Algorithm 1, we describe the full algorithm of our proposed method DTSIL.

Algorithm 1 Diverse Self-Imitation Learning with Trajectory-Conditioned Policy (DTSIL)

Initialize parameter € for the trajectory-conditioned policy 7g (at|e<¢, 0t,)
Initialize the trajectory buffer D < () # Store diverse past trajectories
Initialize set of transitions in the current episode £ <— () # Store current episode trajectory
Initialize set of on-policy samples F < () # Store data for on-policy PPO update
Initialize demonstration trajectory g < ()
for each iteration ¢ from 1 to I do
for each step ¢ do
Observe s; = {o¢, e; } and choose an action a; ~ mg(atle<y, o, g)
Execute action a; in the environment to get 7+, 0¢41, €441
Store transition £ <— & U {(o¢, e¢, as,r¢)}
Positive reward if agent follows demonstration g
No reward after agent completes g and then takes random exploration
Determine 72> by comparing e<¢+1 With g (Eq. 1)
Store on-policy sample F < F U { (o, er, ar, g, 70> }
end for
if s¢41 is terminal then
D <+ UpdateBuffer(D, &) (Alg. 3)
Clear current episode trajectory £ < ()
g < SampleDemo(D, i, I) (Alg. 2)
end if
0 < 0 — Vo LR" # Perform PPO update using on-policy samples (Eq. 2)
Clear on-policy samples F + ()
0 < 0 — Vo L5" # Perform supervised learning updates using samples from D for J times (Eq. 3)
end for

A.2 Algorithm of Sampling Demonstrations

In Algorithm 2, we summarize how to sample the demonstrations from the trajectory buffer for
exploration or exploitation. Considering the current iteration ¢ and the total number of iterations I,
we set the probability of sampling demonstration for exploitation to learn good behavior as 7 and the

probability of sampling demonstration for exploration as 1 — 7.

Algorithm 2 Sample Demonstration Trajectories

Input: the trajectory buffer D = {1, 7(1) n()) () 7(2) n(2)) ...}
Input: current iteration ¢, total number of iterations I.
With probability %, run the exploitation mode; with probability 1 — %, run the exploration
mode
if random number ~ U0, 1] is smaller than £ then
sample one of the top-K trajectories reaching the near-optimal score in the buffer

g < {eo,e1, - ey} forall (o, e, ae, 1) € T
else
Calcula;e probability distribution p + [;(1) , im o]
b 2. P;
Sample (e, 7,n) ~ Categorical(D, p)
g < {eo,e1,- - ,eq) forall (o, er,as,7) €T
end if
return g

[\

A.3 Algorithm of Updating Trajectory Buffer

In Algorithm 3, we summarize how to process the newly collected episode and update the diverse
trajectories in the trajectory buffer.

Algorithm 3 Update Trajectory Buffer

Input: the trajectory buffer D = {(e), 7(1) n(M) (&) (2 pn(2) .1
Input: the current episode £ = {(0g, €o, ap, 7o), (01,€1,01,71), - , (or,er,ar,r7)}
Input: the threshold § for high level state embedding
Consider all the states in £
for each step t do
Consider state s, and partial episode T<, = {(00, €0, G0, 70), - , (01, €1, a1, 7¢)}
if there exists (e®), 7(F) n(®)) € D where [|e(*) — ¢;|| < & then
Compare partial episode <, with stored trajectory (k)
if 7<, has higher total reward or reaches the same total reward with less steps then
) T<t = {(00,€0,a0,70), (01, €1,a1,71), "+ , (04, €4, a1,7¢) }
e(k) — €
end if
n®)) 41
else
D+DU (et7 T<t,]-) where T<t = {(OOa €0, @, TO)v (017 €1,0a1, Tl)? R (Otv €t, Qt, Tt)}
end if
end for
return D

A.4 DTSIL Algorithm on Environments with Highly Random Initial States

DTSIL can successfully deal with the moderate degree of stochasticity such as the random initial
delay and the sticky action on Atari games. In the environments with a highly random initial state
distribution, such as the robotics navigation task where the agent is randomly placed in the house,
we modify DTSIL algorithm to store the trajectories not only considering the ending state but also
considering the start state. The modification of DTSIL method is summarized in Algorithm 5 and 4.

For each episode, we sample the demonstration with a start state similar to the current episode, so
that the demonstration could appropriately lead the agent to the state of interest.

Algorithm 4 Sample Demonstration Trajectories for DTSIL in Environments with Highly Random
Initial State Distribution
Input: the trajectory buffer D = {(e}) , e+ nM) (&) o2 22) p2)) ...}

. . . start) “end’, start’ “end’ .
Input: current iteration ¢, total number of iterations I, the state state of the current episode e.

With probability %, run the exploitation mode; with probability 1 — %, run the exploration
mode
if random number ~ U0, 1] is smaller than £ then
sample one of the top-K trajectories reaching the near-optimal score in the buffer, with a
similar start state as e

g < {eo,e1,--- e} forall (of, e, ar,7¢) € 70" where |leg — €| < &
else
sample one of the less frequently visited trajectories in the buffer, with a similar start state
ase
Calculate probability distribgtion P+ 71(1) , i(z) o]
for each stored trajectory 7(*) do
if [|elysrs —]| > & then
pi <0
end if
end for
D
b Ej b
Sample (€start, €end, T,) ~ Categorical(D, p)
g < {eo,e1, -+ ,eq) forall (os, e, as,7) €T
end if
return g

7
4

/
/ Concatenated

\ trajectory

€T
K
€o
(). NONN () - trai) ()
€siart - Start state. €,.,q - end state. 71 trajectory starting with €44,
and ending with (25,7,3,, . v: trajectory. @ : state.

Figure 1: A diagram showing how to organize the buffer on environments with a highly random initial state
distribution.

Additionally, we update the buffer considering trajectory concatenation to help exploration and
exploitation of the good experiences. As illustrated in Figure 1, the agent occasionally collects a

good trajectory from eg to eq, where er is a good state with positive reward. We can concatenate the
stored trajectory from efjtﬂm to eéjn) , and the trajectory from e; to e if e,z ;;nd eijn) ((i‘;clre similar with
J J

start to eend

each other. Therefore, the new concatenated trajectory 7 (i.e. trajectory e
(4)

star

and trajectory

et to er) could roughly lead the agent starting from e, ,., to er achieving positive reward.

Algorithm 5 Update Trajectory Buffer for DTSIL in Environments with Highly Random Initial State
Distribution

Input: the trajectory buffer D = {(egzm, eSL)d, 7D nM), (egi)m, egb)d, 72 @) ..

Input: the current episode £ = {(0o, €9, ao,70), (01,€1,01,71), -+ , (o, er,ap,rr)}

Input: the threshold § for high level state embedding

Consider all the states in £
for each step ¢ do
Consider state s, and partial episode T<, = {(00, €9, G0, 70), - , (0¢, €1, at,7¢)}
if there exists (), e¥) 7(8) n(8)) € D where |lel) , —eo|| < 5 and [|e*) —e,]| < & then
Compare partial episode <, with stored trajectory 7(k)

if 7<; has higher total reward or reaches the same total reward with less steps then

k) T<t = {(00760,00,7“0% (01,617a177"1)7 T ,(Omet,at,?“t)}
(k)

€end S €t

e

egl;)m < €o
end if
n®) — k) 41
else
D+ DU (607 €1, T<t, 1) where T<t = {(007 €0, @0, TO); (017 €1, a1, rl)v) (Ot7 €t, A, Tt)}
end if
end for
If the current episode is with positive reward (which we rarely encounter in the long-horizon,
sparse reward tasks), we consider concatenating the partial trajectory Ti.7 of the current
episode with trajectories from other start states

if ZZ'T:O r; > 0 then
for each start state eg{)m different from e do
if there exists (/) e(])d, (), n@) € D where [|e), — ¢,|| < § then

startr “en end .

Consider a new trajectory T concatenating ™) and .7 with ez qrs = egjt?”,t
€end = €T
if the new concatenated trajectory 7 is novel or it’s better that the stored trajectory with
start state egzrt and end state er then

add the concatenated trajectory T into the buffer

end if
end if
end for

end if

return D

and

Experiments on the robotics tasks in Section 4.3.3 in the main text and Appendix C.4 & C.5 show the
advantage of our method over the baselines in such challenging environments.

Agent’s Trajectory t=3u=4 :
3 W =5>u (e ~ed)

‘ t:()’u:—l ;
u' =1>u (Cip1 N 8?)

@ Demonstrati

Figure 2: An example showing the updates of u, given At = 4. At each step ¢, we check the state embedding
et+1 to find similar state embedding e, satisfying e;y1 ~ €7, (i.e. |le;r1 — €, || < &) and determine the
reward according to Eq. 1. After completing the demonstration, the policy would perform random exploration

until the episode terminates because the reward is always 0 (e¢).

wW=T>u (e~ e?)

. i=%wm=1 :
. oy — i ~ o9
on Trajectory % =4>u (" ewp ~ei)

B Additional Implementation Details

B.1 Imitation Reward

Given a demonstration trajectory g = {e, e, - ,ef |}, we provide reward signals for imitating
g and train the policy to maximize rewards. At the %eginning of an episode, the index u of the
lastly visited state embedding in the demonstration is initialized as v = —1. At each step ¢, if
the agent’s new state s;1 has an embedding e; 1 and it is the similar enough to any of the next
At state embeddings starting from the last visited state embedding e¢ in the demonstration (i.e.,
llets1 — €?,]] < & where u < u’ < u + At), then it receives a positive imitation reward 7™, and the
index of the last visited state embedding in the demonstration is updated as u < u’. This encourages
the agent to visit the state embeddings in the demonstration in a soft-order so that the agent could
possibly edit or augment the demonstration when executing a new trajectory. The demonstration
plays a role to guide the agent to the region of interest in the state embedding space. In summary, the
agent receives a reward rPTSIL defined as

DTSIL _ {f(rt) +rmif 3/ u < o < u+ At, such that |lef, — epq]| <6 0

¢ 0 otherwise

where f(-) is a monotonically increasing function (e.g., clipping [7]). Figure 2 illustrates the updates
of u during an episode when the agent visits a state whose embedding is close to state embeddings in
the trajectory g.

To investigate how well the trajectory-conditioned policy imitates the diverse demonstrations, we
define the success ratio as ﬁ to measure the portion of demonstration imitated, where w is the index

of the last visited state embedding in g when the agent’s current episode terminates. We report the
success ratio for the experiments in the following section C. On Apple-Gold domain, the average
success ratio of the imitation increases as training goes on and eventually becomes close to 1.0, which
indicates the trajectory-conditioned policy could successfully follow any given demonstration from
the buffer.

B.2 Trajectory-Conditioned Policy

In the trajectory-conditioned policy (Figure 3), we first encode the input state e; (or e/) with a
fully-connected layer with 64 units. Next, a RNN with gated recurrent units (GRU) computes the
feature h; (or hY) with 128 units. The attention weight o is calculated based on the Bahdanau
attention mechanism [1]. The concatenation of the attention readout c;, the hidden feature of agent’s
current state h;, and the feature from the observation ¢, is used to predict 7(a;|e<y, 0¢, g) with a
linear layer.

During training, our algorithm begins with an empty buffer D. We initialize the demonstration as a
list of zero vectors. With such an input demonstration, the agent performs the random exploration
to collect trajectories to fill the buffer D. In practice, when we accumulate more and more diverse
trajectories in the buffer, the sampled demonstration trajectory g = {ed,ef, - ,ef } could be

- . . p 1o g| .
lengthy. We present a part of the demonstration as the input into the policy, similarly to translating

m(as | e<t, 04, 9)

| Attention ¢ |-—
! f !
ng = 8 |- [M

Demonstration Trajectory g ~ D
oL [k

6 o

Agent’s Trajectory Observation

V(€§t7 0t79)

Figure 3: Architecture of the trajectory-conditioned policy (Repeat of Figure 2 Right in the main text.)

a paragraph sentence by sentence. Specifically, we first input {eJ,ef,--- ,e2 } (m < |g|) into the
policy. When the index of the agent’s last visited state embedding in the demonstration u belongs
to{m — At +1,--- ,m}, we think that the agent has accomplished this part of the demonstration,
and switch to the next part {eJ,e? ,,--- el }. We repeat this process until the last part of the
demonstration. If the last part {eg, ? FETRRRI elgg|} is less than m + 1 steps long, we pad the sequence
with zero vectors.

B.3 Buffer Organization

In DTSIL algorithm, we set a threshold § to cluster similar state embeddings. In our experiments, the
state embeddings mostly include the agent’s location information and cumulative positive reward.
If the /., distance between two state embeddings is smaller than the threshold §, we consider
these two state embeddings are similar enough. Such a condition is considered when updating
the buffer with a new trajectory and providing the imitation reward to encourage following the
demonstration. Across different environments, the agent moves in the state embedding space with
different ranges. On the Apple-Gold domain, the agent moves within a 17 x 13 discrete grid. On
Atari games, the agent navigates around many rooms, and each room is shown in an 84 x 84 screen.
On robotics navigation task, the agent may walk around a floor with coordinate z, y, z in the ranges
[-7.5,0.5] x [—2,2.5] x [0,1]. To make it easier to set a proper value of ¢ for various environments,
we normalize the ranges so that each dimension of the agent’s location coordinate has a range [0, 1],
so we can set the hyper-parameter § around 0.1 for all environments. The specific value of § for
each experiment is described in the following sections and the ablative study about ¢ is discussed in
Appendix E.2.

We do not limit the size of buffer D, but the memory cost of DTSIL algorithm is still control-
lable in practice. For each entry (e(?,7() n()) ¢ D, the most memory consuming part is
7@ = {(0g, €0, a0,70), (01, €1,a1,71), - - }. We notice that in the stored trajectory 7(?), the state
embedding e; (e.g. agent’s location and cumulative reward) only needs small memory size, while
the raw observation o; (e.g. RGB screen frame) is more expensive to store. Fortunately, o; in the
demonstration trajectory is only useful in the supervised learning part. Therefore, we only store the
0, in trajectory 7(?), if the ending state e(¥) is rarely visited. In such cases, supervised learning is
greatly helpful to train the agent to imitate the demonstration trajectory 7(*) and explore around the
rarely visited state e(*). Otherwise, we do not store o, in the trajectory 7(*), if the ending state e
has a high number of visitation count. The state e() could be frequently visited by the policy, so
we do not need to leverage supervised learning objective to push the agent to e(*) and thus we can
save the memory by not storing o, in the trajectory 7(). We report the memory cost for each of our
experiments in the following sections.

C Additional Experimental Details

C.1 Apple-Gold Domain with Random Initial States

The Apple-Gold domain is a simple maze with a 17x13 grid. The observation at each step ¢ is the
agent’s location (2, y;) and binary variables indicating whether the apple or gold has been collected.
The action space is discrete with 5 possible actions: up, down, left, right and noop. The reward of
getting an apple, collecting the gold and taking a step in the rocky region is +1, +10, -0.05 respectively.
The high-level state representation (zy, ¥y, 22:1 max(0,7;)) is the agent’s location and cumulative
positive reward at step ¢, indicating the collected objects. At the start of each episode, the agent is
randomly placed in the left bottom part in the maze, i.e. the pink rectangle in Figure 4a. The time
limit for each episode is 45 steps. An episode terminates when the agent reaches the time limit or
finds the gold. Therefore, the optimal path within the time limit is to walk through the rocky region
and collect the gold, achieving the highest episode reward 8.5.

For experiments on the Apple-Gold domain, we simplify the architecture of our trajectory-conditioned
policy, i.e. the features from o; are not used for the policy. We set the reward function f(r;) = r4,
learning rate = 2.5e — 4, length of demonstration input into the policy m = 10, At = 10, threshold
for clustering the state embedding § = 0.1 after normalizing the range of the agent’s location
coordinate. The number of supervised learning update J = 10 if the action accuracy in supervised
learning is less than 0.75. Otherwise, the number of supervised learning update J = 1. In exploitation
mode, we imitate the top-1 best trajectory with the highest total reward. In this experiment setting,
there could only be a single trajectory avoiding the myopic behavior and getting the optimal episode
reward in the buffer. If we imitate top-K best trajectories (K > 1), it’s impossible to train an agent to
always walk towards the gold.

For the baseline method PPO+SIL, we search the hyper-parameter M (number of SIL updates for
each PPO update) among {0.5,1,2,4}, and show the best result we achieved. For the baseline
method PPO+EXP, we search the weight of count-based exploration bonus A € {5, 10, 20,50} and
report the best result we achieved. For the baseline method DTRA, there is not policy learning. We
use the same hyper-parameters as DTSIL to update the buffer and sample demonstrations.

—
o Y
prossiL H
208 8
oA 7 ¢ &0
orsi. g H
oo B0
£ £ a0
204 4
£ Zso
£

o o am 2w mm aom o B 1M 2am M aom oM e 1M 2am 3m a0m oM oM lem 2am 3w 4o
@ :apple (+1) &F:gold (+10) dh:rock (70.05] Steps. Steps Steps Steps.

(a) The map (b) Average reward (c) Best reward (d) Success ratio (e) Number of state

Best Reward

Figure 4: (a) The map of Apple-Gold domain. (b)-(e) Learning curves of the average episode reward, the best
episode reward, the average success ratio and the number of different states found, where the curves in dark
colors are average over 5 curves in light colors. The x-axis and y-axis correspond to the number of steps and
statistics about the performance, respectively. The average reward and average imitation success ratio are the
mean values over 40 recent episodes. The number of found state is the number of entries we collected in the
buffer, where each entry represents a cluster of states in the state embedding space.

Figure 4 summarized our results comparing DTSIL with baseline methods. As we discussed in
Section 4.1 in the main text, DTSIL outperforms the baselines obtaining higher average reward and
discovering more states in the environment. Empirically, for DTSIL algorithm, there are around 400
different trajectories stored in the buffer and the memory cost is about 10MB.

C.2 Atari Montezuma’s Revenge with Random Initial Delay

On the Atari games, we set the environment MontezumaRevengeNoFrameskip-v4 with a random
number (between 0 and 30) of noop action before each episode starts [7]. The observation oy is the last
four gray frames stacked. So the observation has shape 84 x 84 x 4. The action space is discrete with
18 possible actions. On Montezuma’s Revenge, the reward is mostly 0 and it’s positive when the agent
collects objects. The high-level state representation at step ¢ is (roomy, x4, y¢, 22:1 max(r;,0))
where (2, y;) is in 84 x 84 grid and the cumulative positive reward indicates the objects have been
collected by the agent. The time limit for one episode is 4500 steps.

On the Atari games, with DTSIL algorithm, it is necessary to take the raw observation o; as input into
the trajectory-conditioned policy because the location information in e<; solely could not make the
agent take temporal context into account (e.g. avoiding moving skulls and passing laser gates). We
input the raw observation o, with shape 84 x 84 x 4. Three convolutional layers are used to encode
o; and then the convolutional feature ¢ is flattened and concatenated with other features.

The reward function is f(r;) = 2 - clip(r¢,0,1). The learning rate is 2.5¢ — 4. The length of
demonstration input into the policy is m = 20. At is 20. The threshold for clustering the state
embedding is 6 = 0.1, so the state embedding in each room is roughly divided into 10x10 clusters if
the cumulative reward is the same and 10x10 discretization is used in previous work [3]. The number
of supervised learning update J = 10 if the action accuracy in supervised learning is less than 0.75.
Otherwise, the number of supervised learning update .J = 1. In exploitation mode, we imitate the
top-10 best trajectories with the highest total rewards.

For the baseline method PPO+EXP, we search the weight of count-based exploration bonus A among
{0.5,1,2, 4} and report the best average reward we achieved. Figure 5 shows the advantage of DTSIL
over the baselines. The buffer on Montezuma’s Revenge costs around 6GB of memory.

Montezuma's Revenge Montezuma's Revenge Montezuma's Revenge Montezuma's Revenge
50000

250001 — pposexp 100000

DTRA+EXp
20000 DTSIL+Exp

s
3

40000
80000

w
8

30000
15000 60000

=

10000 40000
o] ,J-’
//m 20000] 10000 /f’_’_’
D ———— .
o{ 0 0 0
OM 160M 320M 480M 640M 80OM OM 160M 320M 480M 640M 80OM OM 160M 320M 480M 640M 800M OM 160M 320M 480M 640M 80OM

Figure 5: Leéﬁling curves of the averagsgpsepisode reward, the best tefgi)isode: reward, the number of different
rooms and the number of different states found on Montezuma’s Revenge and Pitfall, where the curves in dark
colors are average over 3 curves in light colors. The x-axis and y-axis correspond to the number of steps and
statistics about the performance, respectively. The average reward is the mean values over 40 recent episodes.
On Montezuma’s Revenge, DTSIL+EXP discovers around 40 rooms on average, and it usually clears the first
level and move on to the next level. In contrast, PPO+EXP never finds a path to clear the first level.

N
S

20000

Average Reward
Best Reward
Number of Found Room
Number of Found State

@
3
3
3
S

C.3 Atari with Sticky Action

Montezuma's Revenge Montezuma's Revenge Montezuma's Revenge Montezuma's Revenge
25
300001 —— PPO+EXP 250000
DTRA+Exp £] @ 40000
25000 DTSIL+EXP g2 B
B 200000 < a
5]
£ 20000 2 2 2 30000
< £ 150000 3 3
© 15000 & & -
g % 200000 5101 5 20000
§ 10000 3 g | 8
K ™ £
50000 Es £ 10000 -
5000 3 2 /
0 04 o o
OM 160M 320M 480M 64OM 8OOM OM 160M 320M 480M 640M 8OOM OM 160M 320 480M 640M 80OM OM 160M 320M 480M G64OM 8OOM
Steps Steps Steps Steps
Pitfall Pitfall Pitfall Pitfall
17500
—— PPO+Exp 0
15000 DT:A+Exp 25000 £ et
DTSIL+EXP S]
p 12500 20000 e bl
2 2 ° o 6000
= 10000 5 240 2
g £ 15000 3 3
g 7500 3 = 30 = 4000
g & 10000 e 4
2 5000 g 820 é
[ERLL e 2
o]
o o oy’
OM 160M 320M 480M 640M BOOM OM 160M 320M 480M 640M 80OM OM 160M 320 480M 640M 80OM OM 160M 320M 480M 640M 80OM
Steps Steps Steps Steps
Venture Venture Venture Venture
2000 1 prorerp 1500 5 250
DTRA+Exp 5 £ I I
DTSIL+EXP e — 8 a4l 2200
T 1500 5 2000 2 @
H s 2 2
& H 53 3150
4 1500 ° 2
Fy 1000 & £ ©
g $ 1000 °2 ° 100
2 s00 © H 2
<
500 E1 E 50
z z
0 0 0 0
OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M OM 50M 100M 150M 200M 250M
Steps Steps Steps Steps

Figure 6: Learning curves of the average episode reward, the best episode reward, the number of different rooms
and the number of different states found on Montezuma’s Revenge Pitfall, and Venture. where the curves in dark
colors are average over 3 curves in light colors. The x-axis and y-axis correspond to the number of steps and
statistics about the performance, respectively. The average reward is the mean values over 40 recent episodes.
On Montezuma’s Revenge, DTSIL+EXP discovers 24 rooms on average. So it clears the first level. In contrast,
PPO+EXP never finds a path to clear the first level.

We further set the environment on Atari games with the sticky action [6]. At each step, the agent
randomly takes the previous action with a probability of 0.25. The other details for environment setup
and hyper-parameters are the same as Appendix C.2. Figure 6 shows the performance of DTSIL
and baselines in this setup. On Montezuma’s Revenge and Pitfall, the environment rewards are
super sparse and misleading rewards tend to trap the agent in the sub-optimal behavior. However,
DTSIL+EXP has a higher chance to escape from the sub-optimal solutions and significantly out-
performs the baseline approaches. Because of the stochasticity in the dynamic, imitation of diverse
demonstrations is more difficult than in the Atari environment with random initial delay. We only take
the exploration mode for the first 700M steps to increase the chance of finding the good trajectories
going through the first level. Then in the last 100M steps, we take exploitation mode to imitate
the best trajectories found during training to maximize average episode rewards. The buffer on
Montezuma’s Revenge, Pitfall and Venture costs the memory of 6GB, 500MB, 6GB respectively.

C.4 Robotics Navigation Task with Highly Random Initial States

Nav A3C+D1D2L 10
—— PPO+EXP

®
°
EY

DTSIL °
2o o e == | e
H S 6 <1600 P g‘
%A § 4 %400 f\oa
3, ° 5 T?zoo %02
—a—/\/"_’\ﬂl 0 0 0.0
o oM 16M 3.2M 4.8M 64M B8M of 1.6M 32M 4.8M 6.4M 8l
OM 1.6M 3.2M 4.8M 6.4M 8M OM 1.6M 3.2M 4.8M 6.4M 8M Steps. Steps
Steps Steps
(a) The map d) Number of states ~ (e) Success ratio
(b) Average reward (c) Best reward) ©

Figure 7: (a) The map of Beechwood layout from Gibson dataset, where the initial location of the agent is in the
red rectangle. (b)-(e) Learning curves of the average episode reward, the best episode reward, the number of
different states and the average success ratio, where the curves in dark colors are average over 3 curves in light
colors. The x-axis and y-axis correspond to the number of steps and statistics about the performance, respectively.
The average reward and average imitation success ratio are the mean values over 40 recent episodes.

In the robotics navigation task, the agent receives observations as RGB frames from the first-person
view. The action space is discrete with four possible actions: move forward, move backward, turn
left and turn right. There is only positive reward 10 when the agent reaches the fixed target location.
The state embedding is the agent’s location and orientation (¢, y¢, 2¢, roll, pitch,, yaw,). The time
limit for each episode is 250 steps.

The trajectory-conditioned policy takes the input of raw observation o; with shape 128 x 128 x 3.
Three convolutional layers are used to encode o; and then the convolutional feature ¢; is flattened and
concatenated with other features. The reward function is f(r;) = r;. The learning rate is 2.5e¢ — 4.
The length of demonstration input into the policy is m = 10. At is 10. The threshold for clustering
the state embedding is § = 0.1 in the normalized state embedding space. The number of supervised
learning update J = 10 if the action accuracy in supervised learning is less than 0.75. Otherwise,
the number of supervised learning update J = 1. In exploitation mode, we imitate the top-10 best
trajectories with the highest total rewards.

For the baseline method PPO+EXP, we search the weight of count-based exploration bonus A\ among
{5,10,20,50} and report the best average reward we achieved. DTSIL achieves higher average
reward from the environments. Figure 7 (b)(c) is the same as Figure 10 in the main text. We report
the number of states and success ratio here to provide more information about the training process.
As shown in Figure 7, there are about 1000 diverse trajectories ending with diverse states stored in
the buffer, and the memory usage is around 5GB.

C.5 Robotics Manipulation Task with Highly Random Initial States

In the robotics manipulation task (bin picking, as shown in Figure 8a), we randomly set the initial
location of the object in a left square and the agent needs to pick up the cereal and move it to the
left bottom bin in the right part. At each step, the agent receives an observation as a 44—dim vector,
consisting of the physical features of the robot arm and the position of the object. The high-level

state embedding includes the information about the position of the robot arm (Pt it 2*!), the

position of the object (29, 4%, 2°%), whether the gripper is open or close &7, and the cumulative

environment reward) . r;. The discrete action space includes 7 possible actions, moving right,

10

2
g

oTSIL 1250
— PPO+EXP 800

°
®

1000

2
3
rd
P
2
8
>

=
&

Best Rewa
2
8
8
s o
=

Average Reward
g

Success Ratio

8
g
H

Number of Found State

°
°

0
M gM 12M 16M 20M oM 4M 8M 12M 16M 20M OM 5M 10M 15M 20M 25M OM 5M 10M 15M 20M 25M
Steps Steps Steps Steps

2

(b) Average reward (c) Best reward (d) Number of states (e) Success ratio

(a) Bin Picking

Figure 8: (a) A snapshot of Bin Picking task. (b)-(e) Learning curves of the average episode reward, the best
episode reward, the number of different states and the average success ratio, where the curves in dark colors are
average over 3 curves in light colors. The x-axis and y-axis correspond to the number of steps and statistics
about the performance, respectively. The average reward and average imitation success ratio are the mean values
over 40 recent episodes.

left, up, down, forward or backward and opening/closing the gripper. The agent will receive 0.5
reward each time it picks up the cereal and —0.5 reward each time it releases it. The agent will
receive a reward of 1 every timestep as long as the cereal is in the correct bin. The time limit for each
episode is 1000 steps.

The learning rate is 2.5¢ — 4. The length of demonstration input into the policy is m = 40 and
At = 40. We provide the information in the demonstration and the imitation reward more generously
for this task because it is challenging to stably lift the object and it requires careful manipulation
of the gripper and adjustment of the actions according to many influence factors such as the angle,
velocity, friction force, etc. The threshold for clustering the state embedding is § = 0.1. The number
of supervised learning update J = 10 if the action accuracy in supervised learning is less than 0.75.
Otherwise, the number of supervised learning update J = 1. In exploitation mode, we imitate the
top-10 best trajectories with the highest total rewards. The high-reward trajectories spend around
150 steps out of 1000 steps to successfully move the object into the correct bin. When the agent is
exploiting these best trajectories, the agent successfully imitates the portion to place the object in the
correct bin. But the final location of the object might not be quite close to the demonstration (even if
both these two are in the correct bin). So the episode success ratio is finally around 0.15. During
training, we store around 2000 trajectories in total and the whole replay buffer costs around 120MB
of memory.

C.6 Deep Sea

N ..‘
&=y

Figure 9: Deep Sea exploration: a simple example where deep exploration is critical.

As introduced in [8], the Deep Sea environment consists of a N x N grid where a state is represented
as a one-hot encoding (i.e., tabular states). The agent begins each episode in the top left corner of the
grid and descends one row per timestep. Each episode terminates after N steps when the agent reaches
the bottom row. In each state, there is a random but fixed mapping between actions A = {0, 1} and
the transitions ‘left’ and ‘right’. At each timestep there is a small cost r = —0.01/N of moving
right, and » = 0 for moving left. However, should the agent transition right at every timestep of the
episode it will be rewarded with an additional reward of +1. This presents a particularly challenging

11

exploration problem for two reasons. First, following the ‘gradient’ of small intermediate rewards
leads the agent away from the optimal policy. Second, a policy that explores with actions uniformly
at random has probability 27V of reaching the rewarding state in any episode.

Deep Sea 10x10 Deep Sea 10x10 Deep Sea 10x10 Deep Sea 10x10
10— pro pp——y— 1.0 ‘ 55.0 g10
e PPO+SIL ‘ | 2
— 2525
0.8 PPO+EXP 0.8 © | @
° DTSIL & 500 | @08
: H 7™ 3
306 506 S a
¢ H 3475 06
goa o4y S 45.0]
o o 3 E
2 | £ 425 <04
0.2 0.2 El o
\ Z 400 g
202
0.0 0.0 375 <
oM 04M 0.8M 1.2M 1.6M 2M OM 04M 0.8M 12M 1.6M 2M OM 04M 0.8M 12M 1.6M 2M oM 0.4M 0.8M 1.2M 1.6M 2M
Steps Steps Steps Steps
Deep Sea 30x30 Deep Sea 30x30 Deep Sea 30x30 ° Deep Sea 30x30
101 — pro 1.0 210
—— PPO+SIL | 9 <
o 0.8 — PPO+EXP 0.8 | © 400 208
o a
5 —— DTSIL - | 5 I
= g 2 s
306 Wy 206 — S 3 0.6
H é [] 2300 5
204 3041 — S ©04
: il : £
<02 02 E 200 w02
I z
0.0 f==t 0.0 = Z00
OM 24M 48M 72M 9.6M 12M OM 24M 48M 72M 96M 12M OM 24M 48M 7.2M 96M 12M OM 24M 48M 72M 96M 12M
Steps Steps Steps Steps

Figure 10: Experiment on Deep Sea. The learning curves show the average episode reward, best episode reward,
the number of found state representations, and the average success ratio of imitating the demonstrations in order.
The curves are averaged over 5 independent runs.

We compare DTSIL and baselines on deep sea environments with 10 x 10 grid and and 30 x 30 grid.
The state embedding we use here is exactly the observation. The result is shown in Figure 10. In the
first environment, it is easy for all of the methods to converge to optimal behavior. The second one is
much more challenging to find the optimal trajectory maximizing total reward. Therefore, PPO and
PPO+SIL fail in such a environment due to hard exploration. PPO+EXP is unable to always explore
to find good behavior and exploit it efficiently within 12M timesteps. DTSIL successfully discovers
the right way and imitate to converge to the optimal behavior.

C.7 Mujoco Maze

We evaluate DTSIL on continuous control tasks. We adapt the maze environment introduced in [4] to
construct a set of challenging tasks, which requires the point mass agent to collect the key, open the
door with the same color as the key and finally reach the treasure to get a high score. One key cannot
be re-used once it was used before to open a door with the same color. This makes the agent to be
easily trapped at sub-optimal behavior. A visualization of these environments is shown in Figure 11.
The agent’s initial location is randomly sampled from a Gaussian distribution as in standard MuJoco
tasks [2]. The observation is the agent’s location and range sensor reading about nearby objects. The

.. t
state representation is e, = (¢, Y¢, > ;1 74)-

— PPO 9
= PPO+EXP g 3500
61— PPO+SIL 8 g
2 ®7 3 3000
H 2 2
& 2 3
) 26 £ 2500
g % 5 e
@ a5 g 2000
g 2
x B £
5
Z 1500
3
oM AM 1M 1/M 24am M oM 6M 12M 18M 24M 30M
101 — pro 12{; 2250
= PPO+EXP 2 2000
—— PPO+SIL | o
°
g8 - ours) 2 1750
: g g
! H
8 vy 2 ; 1250
3 a
4 et 8
2 ﬂv "“GP: 6 £ 1000
5
' z
2 750
4
OM 6M 12M 18M 24M 30M oM 6M 12M 18M 24M 30M ol 6M 12M 18M 24M 30M
Steps Steps Steps

Figure 11: Point Maze in Mujoco domain. The reward for getting the key, opening the door, and collecting the
treasure (yellow block) is 1, 2, and 6 respectively. The learning curve of the episode reward is averaged over 3
independent runs.

12

As shown in the first maze of Figure 11, the agent can easily get the blue key near its initial location
and open the blue door in the upper part. However, the optimal path is to bring the key to open the
blue door in the bottom and obtain the treasure, reaching an episode reward of 9. In the second maze,
the agent should bring the blue key and pick up the green key while avoiding opening the blue door
in the upper part. Then, the green and blue key can open the two doors at the bottom of the maze,
which results in the total reward of 12. The learning curves in Figure 11 show that PPO, PPO+EXP,
and PPO+SIL may get stuck at a sub-optimal behavior, whereas our policy eventually converges to
the behavior achieving the high episode reward.

C.8 Montezuma’s Revenge with Learned State Representation

We learn a state representation with the approach proposed in [3]. In the state embedding

(roomy, T4, Yt, Z§=1 max(r¢,0)), (z¢,y:) can be detected by a well-trained ADM, and the room
information is based on the clustering of projected features of the observation. However, on Mon-
tezuma’s Revenge, the rooms at the bottom floor are all black and it’s impossible to differentiate them
based on visual features if the agent does not pick up a torch to lit up the rooms. So the learned state
representation is not reliable when the agent goes to the last floor. We modify DTSIL to make it more
robust against the inaccuracy in the learned state embeddings. In the trajectory-conditioned policy,
instead of using the sequences of learned state representations as input, we provide the sequence
of observations in the demonstration and the agent’s incomplete trajectory. Then the learned state
representations are mainly used to cluster the states, organize the trajectories in the buffer and assign
imitation rewards. With this small modification, on Montezuma’s Revenge with random initial delay,
DTSIL performs robustly with the learned state representation, eventually achieves an average score
over 20,000 and visits the next level. In conclusion, we could combine DTSIL with other methods
of state representation learning to remove our assumption about the availability of high-level state
embedding.

Montezuma's Revenge Montezuma's Revenge Montezuma's Revenge Montezuma's Revenge
50000

IS
S

40000 DTSIL+EXP 250000

200000 40000

w
S

30000

ard

£ 150000
20000 «

Average Reward
Noow
S 8
s 8
g8 8
8 8

% 100000
8
10000

=
°

10000

Number of Found Room
N
S

Number of Found State

50000

0 0 0 0
OM 240M 480M 720M 960M 1200M OM 240M 480M 720M 960M 1200M oM 240M 480M 720M 960M 1200M OM 240M 480M 720M 960M 1200M
Steps Steps Steps Steps

Figure 12: Learning curves of the average reward, the best episode reward, the number of rooms, the number of
different state representations found on Atari Montezuma’s Revenge.

C.9 Apple-Gold domain with Highly Random Structure

We further investigate the efficiency of DTSIL for multi-task problems, where each task is defined
in a stochastic environment with local optima. On the Apple-Gold domain, we design 12 possible
structures of mazes as shown in Figure 14. For each episode, the structure of the maze is randomly
sampled and the initial location of the agent and the location of the gold is randomized. For exploration
and exploitation, we sample the state of interest from the buffer of diverse trajectories. We learn a
hierarchical policy with the buffer so that the agent could behave flexibly in the highly stochastic
environment to reach the sampled long-term goal.

concatenated features |
Vignian (01, 9) | =
T g = Vorow (01, 1)
. v ~mgrow (a0, gt)
i)
olg) € RIAW K
geRIWS ge RIW
(a) A diagram for the high-level policy. (b) A diagram for the low-level policy.

Figure 13: A diagram for the hierarchical policy we learn on the Apple-Gold domain.

13

As shown in Figure 13b, at every step t, the low-level policy observes o; (e.g. a RGB image of the
map on Apple-Gold domain) and a sub-goal g; (e.g. a gray image indicating the target location of
the agent) proposed by the high-level policy and output an atomic action a;. For every c steps, in
Figure 13a, the high-level policy observes o; and produces a high-level action to update the sub-goal
e (e.g. the target location of the agent) conditioning on the long-term goal state g sampled from
the buffer. The high-level policy receives the environment rewards 7, and the goal-achieving bonus
(e.g. positive reward when the low-level policy successfully reaches the goal location e9) while
the low-level policy only gets a positive reward when visiting the sub-goals e]. To improve policy
learning and to better leverage the past trajectories, we introduce the supervised learning objective.
We sample a trajectory 7 = {(oq, €9, ag, 7o), (01, €1,a1,71) - - - } € D, formulate the long-term goal
state g = ojg), and assume the agent’s current observation is o; for 1 < ¢ < |g|. In such a case,
the ’correct’ action for the high-level policy is to propose the location e . as the sub-goal and the
correct action for the low-level policy is a;. Our supervised learning objective is to maximize the log
probability of taking such actions. Experimental results in Figure 16 shows the performance of the
hierarchical policy with the diverse trajectories. As we learn the hierarchical policy, we also evaluate
it on the test set (6 structures unseen during training as shown in Figure 15). DTSIL outperforms the
baseline PPO+EXP on the training set and test set.

Figure 14: Visualization of the maze structures in the training set. The agent (gray), apple (red), gold (yellow)
are shown as squares for simplicity. The rocky region is in dark blue. On each maze, the initial location of the
agent and the location of the gold could be randomized in a small region.

Biii

Figure 15: Visualization of the maze structures in the test set.

D Comparison with Learning Diverse Policies by SVPG

We replicate the method in [5] to learn diverse policies with the Stein variational policy gradient
(SVPG). Their experiments focus on continuous control tasks with relatively simple observation

14

w
G
3

—— PPO+EXP
DTSIL

/\//_—
2 0

of 8M 16M 24M 32m 40M oM 8M 16M 24M 32M 40M 8M 16M 24M 32M 40M oM 8M 16M 24M 32M 40M
Steps Steps Steps Steps

(a) Average episode reward (b) Best episode reward (c) Number of found states (d) Average episode reward

Figure 16: (a)-(c) Learning curves of the average episode reward, the best episode reward, the number of different
states where the curves in dark colors are average over 3 curves in light colors. The x-axis and y-axis correspond
to the number of steps and statistics about the performance, respectively. The average reward is the mean values
over 40 recent episodes. (d) Average episode reward on the test set.

—— PPO+EXP
DTSIL

©
@
IS

S
3

>
o
i3
w

[A~

Average Reward
IS
Best Reward

~
Average Reward
~

-

[

&
3

IS
Number of Found State
RN N oW
>
3

AN

°
3

A

)

I
3

=

spaces with limited local optimal branches in the state space. We learn 8 diverse policies in parallel
following their method on our Apple-Gold domain with discrete action space. Figure 17 shows a
visualization of the learning progress: the 8 policies learn to cover different regions of the environment.
The SVPG method explores better than PPO+SIL, but the exploration of each individual agent is not
strong enough to find the optimal path to achieve the highest episode reward.

(e el | e

] e

OM steps 5M steps 10M steps 15M steps

PPO+SIL

SVPG diverse

DTSIL

Figure 17: Visualization of the trajectories stored in the buffer for PPO+SIL, SVPG diverse [5] and our method
as training continues. In the second row, we show the trajectories for a total of 8 policies learned simultaneously
with the SVPG method proposed in [5], where each color corresponds to the trajectories collected by each policy.

E Effects of Hyperparameters

E.1 Hyperparameter At

At influences how flexibly the demonstration should be followed. If At = 1, the agent could only
get imitation reward ™ when it visits the next state from the lastly visited state in the demonstration
trajectory, i.e. 7 41> Where u is the index of last visited state in the demonstration. With a larger value
of At, we provide imitation reward r*™ if the agent visits any of the next At state in the demonstration,
i.e. any state in the set {7, , ;, €5 5, -, €, A, }. In our experiment, we have the constraint At < m,
where m is the length of the input demonstration part. For each step, only the next m states from the
lastly visited state in the demonstration might be input into the trajectory-conditioned policy. So we
should only consider awarding the agent for imitation if it visits a state in the demonstration that it has

15

known from the policy input. We run experiments on the Apple-Gold domain, Montezuma’s Revenge,

Apple-Gold domain Montezuma's Revenge Pitfall
—_ At=2 {)/ aadi 25000 { = At=6 —— At=6
8 (‘;'
— J‘M’#“v ol 20000 fi=s
— At=6 N At=10 At=10
EG at=8 A .’/ (i 20000 € 15000
2 At=10 ,‘NJV 2 2
K] y 2 15000 kK
o4 . *.‘ i) » 10000
o . o o
© J N © 10000 8
2, r'ﬂ 2 NN,W 2 5000
; 5000 A a
o, AW M
MV M "
ofV 0 (o S
OM 8M 16M 24M 32M 40M OM 160M 320M 480M 640M 800M OM 160M 320M 480M 640M 800M
Steps Steps Steps

Figure 18: Learning curves of the average reward.

and Pitfall with m = 10 and different values of At¢, as shown in Figure 18. On the Apple-Gold
domain with a simple action space and observation space, it’s easy to imitate the demonstration
trajectories. Thus, DTSIL performs well for all values of At € {2,4,6,8,10}. On Montezuma’s
Revenge and Pitfall, when the demonstration is longer and harder to follow, larger A¢’s are more
suitable in order to provide imitation rewards more leniently. Therefore, we prefer to set a large value
of At to generously provide imitation rewards, and we set At = m in our experiments.

E.2 Hyperparameter o

d is the threshold to cluster similar state embeddings. If § is small, there could be a large number of
clusters in the state embedding space, and it costs more trials to search for novel states with higher
rewards. If 0 is large, some distinctive state embeddings might be mistakenly clustered into one single
cluster, and we may miss a chance to explore around a specific state embedding because in the buffer
it can be replaced by another state embedding meaningfully different from itself.

Apple-Gold domain Montezuma's Revenge Pitfall
81 o008 25000 6=0.06
ooonz
T, . ° 20000 6=0.11 o
5 61 o — 6 =0.14 ©
8 § 150001 — 6=02 z
o o o
o 4 [(]
g & 10000 g
g g g
) Z-M < 5000 <
0] 0
OM 160M 320M 480M 640M 80OM OM 160M 320M 480M 640M 80OM

8M 16M 24M 32Mm 40M
Steps

=)
=

Steps Steps
Figure 19: Learning curves of the average reward.

Figure 19 shows the performance of DTSIL with different values of §. Based on the ablative study,
we conclude that DTSIL is not quite sensitive to the choice of hyper-parameter §. After normalizing
the state embedding space so that each dimension for the agent’s location has a range [0, 1] (as we
discussed in Appendix C), 6 € [0.08,0.14] is proper across different environments. With such a value
of 4, the number of clusters in the state embedding space is reasonable for exploration. The similar
states are clustered into a single cluster, but meaningfully different states are clustered into different
clusters. Thus, DTSIL could perform well with the proper hyper-parameter 6.

Assume agent’s location in state embeddings is normalized to [0,1] for each coordinate and the
distance metric is /... When clustering embeddings in parametric memory,d = 0.1 will discretize 2D
location space into 10 x 10 grid, an intuitively reasonable size. So we set 6 = 0.1 in our experiments.

16

F Effect of Stochasticity in Environments

Apple-Gold domain Apple-Gold domain

DTRA
DTSIL

imitation success ratio

0.2 DTRA
DTSIL

average episode reward
N W s O No®

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
i probability of sticky acti(?n Psticky probability of sticky action psticky .
Figure 20: Effects of the degree of stochasticity on DTRA and DTSIL. The imitation success ratio and average

episode reward is averaged over the last 40 episodes during training.

On the Apple-Gold domain, we study the performance of DTSIL and DTRA when the agent takes a
sticky action (e.g. the agent randomly repeats the previous action with a probability ps¢;cky). Figure
20 summarizes the final performance of DTRA and DTSIL on the Apple-Gold domain with different
degrees of stochasticity in the dynamics. If pgyicry = 0, the dynamics are totally deterministic,
and hence the DTRA agent repeating the stored action sequence could exactly go to the goal state.
DTRA achieves the imitation success ratio 1, which indicates that the agent successfully follows the
demonstration trajectory to the last state. However, even if the DTRA agent perfectly follows the
diverse demonstrations, after visiting the goal state, it uniformly samples the action from the discrete
action for each step until the episode terminates. Such a naive random exploration without the learned
parameterized policy is not efficient enough to discover the optimal path with 40M training timesteps.
On the contrary, DTSIL could gradually learn to imitate the diverse demonstrations, increase the
imitation success ratio to 1, and achieve the optimal total reward. If pss;cry > 0, the performance of
DTRA becomes much worse because it could not follow the demonstration well by repeating the
stored action sequence in the stochastic environment. However, DTSIL is robust to the different
degrees of sticky action in the dynamics. Figure 21, 22, 23, 24 shows the learning curves during
training process.

o
o

oTSIL
DTRA

DTSIL
DTRA

3
®

£

°

®
£
°
®

°
Y

~
<
e

°
=
Average Reward
-
Average Imitation Success Ratio
°
S

Average Reward
=
Average Imitation Success Ratio

o
o

16M 24M 32M 40M

°

8M 16M 24M 32M 40M

°
=
®
=

16M 24M 32M 40M of 8M 16M 24M 32M 40M

°
=
®
=

Steps Steps Steps Steps
Figure 21: psticky = 0 Figure 22: pgticry = 0.1
s TSI £10 8 oTSIL 210
oA 2 omRa &
° 808 o 0.8
g° g° i
& 206 & 206
g4 2 g4]
g Zo4 g Zoa
z2 < z2 <
$0.2 &o2
H H
0l M 16M 24M 32M 40M ol M 16M 24m 32m 40M ol 8M 16M 24M 32M 40M 0l 8M 16M 24M 32M 40M
Steps Steps Steps Steps
Figure 23: psticky = 0.2 Figure 24: psticky = 0.3

The commonly used value for sticky action is 0.25 [6]. We present the experimental results with
Dsticky = 0.25 in Figure 25.

g|—pro s % 1.0 ———
— rrosexe 2 23501
— PPO+SIL 20 =
E 6 DTRA ° g 08 g 300
& DTSIL g6 306 H |
Py 4 2 5 &£ 250
g PINANNA~ A Zoa 5
s T\ i, 20 § 200
<] i 202 £ 150 nm——
0] © 4
2 200 100
0l 8M 16M 24M 32M 40M oM 8M 16M 24M 32M 40M < oM M 16M 24M 32M 40M [8Mm 16M 24M 32M 40M
Steps Steps Steps Steps
(a) Average reward (b) Best reward (c) Success ratio (d) Number of state

Figure 25: Learning curves of the average episode reward, the best episode reward, the average success ratio and
the number of different states found, where the curves in dark colors are average over 5 curves in light colors.

17

G Hyperparameters

The hyperparameters used in each experiment are listed in Table 1. The robotics manipulation
task requires careful adjustment of the action according to many factors such as the angle, velocity,
friction force, etc. To provide the agent with more guidance signal, we input a longer part of the
demonstration into the policy m = 40 and award the imitation reward more generously At = 40. On
Mujoco maze, RL loss alone worked well so J = 0 we did not include SL loss for behavior cloning.
On the other environments when action prediction in supervised learning is poor, we set a large J to
quickly learn to imitate demonstrations. When action prediction is accurate enough, we de-emphasize
behavior cloning to enhance exploration around the demonstration. On Apple-Gold and Deep Sea
environments, there could be only a single trajectory performing well enough to avoid the myopic
behavior, so we only imitate the top-1 trajectory in exploitation mode. In the other environments, we
imitate the top-10 best trajectories with the highest total rewards.

Environment | Apple-Gold Atari | Navigation | Deep Sea | Mujocomaze | Manipulation
Learning Rate n 2.5e-4 2.5e-4 2.5¢e-4 2.5¢-4 le-4 2.5e-4
At 10 20 10 10 10 40
Length of
demonstration 10 20 10 10 10 40
input part m
10 if action 10 if action 10 if action 10 if action 10 if action
Number of . L . . .
. .| prediction accuracy | prediction accuracy | prediction accuracy | prediction accuracy prediction accuracy
supervised learning > 0.75; > 0.75; > 0.75; > 0.75; 0 > 0.75;
updates J 1 otherwise 1 otherwise 1 otherwise 1 otherwise 1 otherwise
Threshold ¢ for
state embedding 0.1 0.1 0.1 0.1 0.1 0.1
Top-_K trajectories 1 10 10 1 10 10
1mitation
Weight of 10 1 10 0.2 1 10
exploration A (best one among | (best one among | (best one among | (best one among |(best one among| (best one among
in PPO+EXP 5, 10, 20, 50) 0.5,1,2,4) 5, 10, 20, 50) 0.1,0.2,0.5, 1) 0.5,1,2,4) 5, 10, 20, 50)
Discount factor ~ 0.99 0.99 0.99 0.99 0.99 0.99

Table 1: Hyperparameters on various environments for our experiments.

18

H Environment Setting

For each experiment we conducted, we list the detailed environment setting in Table 2. There is
stochasticity in the environments of the Apple-Gold domain, Atari, robotics tasks, and Mujoco maze,
where the stochasticity lies in the initial state distribution or the dynamics.

Environment | Apple-Gold | Atari | Navigation | Deep Sea | Mujoco maze | Manipulation
agent’s location agent’s location
bliIrl1alr7X\1:rigarl;?é§ stacked most recent | first-view RGB one-hot encoding | in 22x22 space; phys;gzti)lofe:;:rl:lr.es of
Observation in dicat}i/n whe tﬁer 4 gray observations frame with of state in 10x10 range sensor the location’of
apple ir old with shape 84x84x4| shape 84x84x3 or 30x30 grid reading about cereal:
ii P collec%e d nearby objects ’
(e, Yt 2t (mibt, yibt7 Zibla
State t) (roomy, ¢, yt, ol . t) obj obj _obj
Representation (@, Yes Doy T4) S max(rs, 0)) roll, p}ttcht7 yaw, |same as observation| (¢, ye, > ., 74) OREIN 27,
= 2 im1T) 75&. 2o TZ)
iscrete actions
5 discrete actions: | 18 discrete actions: | 4 discrete actions: . N (dz, dy) in up down,
. 2 discrete actions: . .
Action up, down, left, noop, fire, left, |forward, backward, left. richt continuous left, right,
right, noop e left, right g action space | forward, downward
open/close gripper
0 if going left lift the
mostly zero — 0'—01g Ei 0.01 object +0.5
apple +1 sparse ositi\’/e if r oing ri ﬁ(t) key +1 release th.e
Reward gold +10 rre):wardz when target +10 g1 atgtheg door +2 object -0.5
rock -0.05 collecting objects last step if treasure +6 Object in the
always going right correct bin +1
Time limit 45 steps 4500 steps 250 steps 10 or 30 steps 1000 steps 1000 steps
random initial random normal
location of agent o random initial S o
.. . <. |random initial delay L S noise in the random initial
Stochasticity | or random initial . . location in the deterministic R .
. or sticky action agent’s initial | location of cereal
location of gold upper part osition
or sticky action P

Table 2: The setting of various environments for our experiments.

19

References

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473, 2014.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[3] J. Choi, Y. Guo, M. Moczulski, J. Oh, N. Wu, M. Norouzi, and H. Lee. Contingency-aware
exploration in reinforcement learning. arXiv preprint arXiv:1811.01483,2018.

[4] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement
learning for continuous control. In International Conference on Machine Learning, pages

1329-1338, 2016.

[5] T. Gangwani, Q. Liu, and J. Peng. Learning self-imitating diverse policies. arXiv preprint
arXiv:1805.10309, 2018.

[6] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. Hausknecht, and M. Bowling.
Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research, 61:523-562, 2017.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep
reinforcement learning. Nature, 2015.

[8] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore,

C. Szepesviri, S. Singh, B. Van Roy, R. Sutton, D. Silver, and H. van Hasselt. Behaviour suite
for reinforcement learning. 2019.

20

	Detailed Description of DTSIL Algorithm
	DTSIL Full Algorithm
	Algorithm of Sampling Demonstrations
	Algorithm of Updating Trajectory Buffer
	DTSIL Algorithm on Environments with Highly Random Initial States

	Additional Implementation Details
	Imitation Reward
	Trajectory-Conditioned Policy
	Buffer Organization

	Additional Experimental Details
	Apple-Gold Domain with Random Initial States
	Atari Montezuma's Revenge with Random Initial Delay
	Atari with Sticky Action
	Robotics Navigation Task with Highly Random Initial States
	Robotics Manipulation Task with Highly Random Initial States
	Deep Sea
	Mujoco Maze
	Montezuma's Revenge with Learned State Representation
	Apple-Gold domain with Highly Random Structure

	Comparison with Learning Diverse Policies by SVPG
	Effects of Hyperparameters
	Hyperparameter t
	Hyperparameter

	Effect of Stochasticity in Environments
	Hyperparameters
	Environment Setting

