A Introduction to Variational Inference in Bayesian Neural Networks

A Bayesian neural network (BNN) places a distribution over the weights of a neural network [MacKay,
1992]]. We hope to infer the posterior distribution over the weights given the data, p(6|D)—although
ultimately we are interested in a posterior distribution over functions, as described by|Sun et al.|[2019].
Because this is intractable, we seek an approximate posterior ¢(0) to be as close as possible to the
posterior over the weights. Variational inference (VI) is one method for estimating that approximate
posterior, in which we pick an approximating distribution and minimize the KL-divergence between
it and the true posterior. This KL divergence is the Evidence Lower Bound (ELBO), expressed using
the prior over the weight distributions p(0). We therefore minimize the negative ELBO:

prior regularization data likelihood

Lyrvi =KL(q(0) || p(0)) — E [logp(y|x, 0)] . (6)

For the full-covariance Gaussian approximate posterior [Barber and Bishop, |1998]], the model weights
for each layer 6; are distributed according to the multivariate Gaussian distribution A (p;, %) .
This is already a slight approximation, as it assumes layers are independent of each other. This is
important for our analysis in §3and §4} though note that the experiment in does not assume any
independence between layers.

The mean-field approximation restricts X; to be a diagonal covariance matrix, or equivalently assumes
that the probability distribution can be expressed as a product of individual weight distributions:

N (i %) = [TV (i 03y)- @)
J

The mean-field approximation greatly reduces the computational cost of both forward and backwards
propagation, and reduces the number of parameters required to store the model from order n? in the
number of weights to order n. The implementation of mean-field variational inference which we use
is based on Blundell et al.| [2015]], who show how to use a stochastic estimator of the ELBO.

B Discussions of Foong et al. 2020

Our work discusses some similar topics to those discussed by [Foong et al.| [2020], in work which
was developed in parallel to this paper. In particular, they reach a different conclusion as to the
value of mean-field variational inference in deep BNNs. We find their work insightful, but we think
it is important to be very precise about where their results do and do not apply, in order to best
understand their implications. Here, we briefly describe several of their main results, emphasising
that our analysis is not in conflict with any of their proofs.

Empirically, they focus on the posterior distribution over function outputs in small models, where they
find that the learned function distributions with mean-field variational inference for regression tend to
be overconfident, even in slightly deeper models. We also find that in relatively small regression tasks
MFVI does not perform particularly well, which aligns with their results. However, below, we note
that in fact their theoretical results suggest that MFVI may have problems with regression that do not
extend to classification tasks. Moreover, it is important to note that the largest of their experiments
considers data with only 16-dimensional inputs, with only 55 training points and very small models
with 4 layers of 50 hidden units. In contrast, our work analyses much larger models and datasets,
where it is admittedly harder to compare to a reference posterior in function-space. However, these
are the situations where MFVI would be more typical for deep learning. We therefore feel that, while
there is significant room for further investigation, on the balance of the current evidence MFVI seems
quite appropriate for large-scale deep learning especially in classification tasks.

Foong et al.|[2020] base much of their interpretation on the inability of single-layer mean-field
networks to have appropriate ‘in-between’ uncertainty. That is, they observe that if a model is trained
on data in two regions of input space which are separated, it ought to be able to be significantly more
uncertain between those two regions. They prove their Theorem 1 which states that the variance of
the function expressed by a single-layer mean-field network between two points cannot be greater
than the sum of the variances of the function at those points, subject to a number of very important
caveats. Our work is largely concerned with models with more than a single hidden layer, where

13

their theorem does not apply. Nevertheless, Foong et al.|[2020]] hypothesize the pathologies that they
identify might extend to deeper settings, so we note some further limitations of their proof.

1. Theorem 1 applies to single- or multi-output regression models, and to the individual logits in
classification models, but makes no predictions about the variance of classification decisions
(because this depends on the variance of the argmax of the logits).

2. Theorem 1 is strongest in a 1-dimensional input space. In higher dimensions, [Foong et al.
[2020] show as a corollary that the ‘in-between’ variance is bounded by the sum of the
variances of the hypercube of points including that space. But the number of such points
grows exponentially with the dimensionality, meaning that in even only 10 dimensions, the
in-between variance could be as much as 1024 times greater than the average edge variance.
This means that in high-dimensional input spaces, this bound can be extremely loose and
does not neccesarily preclude even single layer models from having significant ’in between’
uncertainty.

3. The line-segments where Theorem 1 applies are not fully general. They must either go
through the origin, or be orthogonal to one of the input basis vectors and cross a projection
of the origin. This makes their result sensitive to translation and rotation of the input space.
However, the authors do provide some empirical evidence that ‘in between’ uncertainty is
too low on more general lines in input space for small models.

They also prove their Theorem 3, which establishes that deeper mean-field networks do not have the
pathologies that apply in the limited single-layer regression settings identified in Theorem 1. We
consider a similar result (Proposition) which is more general because it considers more than the
first two moments of the distribution. Unlike [Foong et al.| [2020] we see this result as potentially
promising that deep mean-field networks can be very expressive. This is perhaps because their
empirical results suggest that deeper mean-field networks have poor performance in practice. This
may be because their experiments mostly focus on low-dimensional data with small numbers of
datapoints and comparatively small networks, while we consider the larger settings.

We note also that we find that deeper networks are able to show in-between uncertainty in regression,
if not necessarily capture it as fully as something like HMC. In Figure [5| we show how increasing
depth increases the ability of MFVI neural networks to capture in-between uncertainty even on
low-dimensional data.

Here, each layer has 100 hidden units trained using mean-field variational inference on a sythetic
dataset in order to demonstrate the possibility of ‘in-between’ uncertainty. Full experimental settings
are provided in Table [3] The toy function used is y = sin(4(z — 4.3)) + € where € ~ A(0,0.05?).
We sample 750 points in the interval —2 < x < —1.4 and another 750 points in the interval
1.0 < z < 1.8. We considered a range of temperatures between 0.1 and 100 in order to select the
right balance between prior and data. Note of course that while our figure in the main body suffices
to demonstrate the existence claim that there are deep networks that perform well, of course a single
case of a one-layer network performing badly does not show that all one-layer networks perform
badly.

C Experimental Details

C.1 Full Description of Covariance Visualization

Here we provide details on the method used to produce Figure[I] The linear version of the visualization
is discussed in §3]and the piecewise-linear version is discussed in §4}

In all cases, we train a neural network using mean-field variational inference in order to visualize
the covariance of the product matrix. The details of training are provided in Table[d The product
matrix is calculated from the weight matrices of an L-layer network. In the linear case, this is just the
matrix product of the L layers. In the piecewise-linear case the definition of the product matrix is
described in more detail in Appendix [D.4.2] All covariances are calculated using 10,000 samples
from the converged approximate posterior. Note that for L weight matrtices there are L — 1 layers of
hidden units.

We compare these learned product matrices, in Figure[6] to a randomly sampled product matrix. To
do so, we sample weight layers whose entries are distributed normally. Each weight is sampled with

14

+30 shading

/ +30 shading /
1-layer In-between Uncertainty 3-layer In-between Uncertainty
(a) 1-layer BNN (b) 3-layer BNN

Figure 5: In-between uncertainty. With a single hidden layer, mean-field variational inference cannot
capture in-between uncertainty at all in low-dimensional settings. But by adding more layers, we
increase the ability to capture in-between uncertainty, though still not to the point of HMC. Note, of
course, that neural networks are at their most useful with higher dimensional data where in-between
uncertainty results are exponentially weaker.

Hyperparameter Setting description
Architecture MLP

Number of hidden layers 3

Layer Width 100

Activation Leaky ReLLU

Approximate Inference Algorithm Mean-field VI (Flipout [Wen et al., [2018]])
Optimization algorithm Amsgrad [Reddi et al.| [2018]]
Learning rate 1073

Batch size 250

Variational training samples 1

Variational test samples 1

Temperature 65

Noise scale 0.05

Epochs 6000

Variational Posterior Initialization = Tensorflow Probability default
Prior N(0,1.0%)

Dataset Toy (see text)

Number of training runs 1

Number of evaluation runs 1

Measures of central tendency n.a.

Runtime per result < 5m

Computing Infrastructure Nvidia GTX 1060

Table 3: Experimental Setting—Toy Regression Visualization. Note that for these visualizations
we are purely demonstrating the possibility of in-between uncertainty. As a result, a single train-
ing/evaluation run suffices to make an existence claim, so we do not do multiple runs in order to
calculate a measure of central tendency.

15

Figure 6: Unlike the covariance matrices of prod-
uct matrix entries in models trained on real data,
a randomly sampled product matrix does not
show obvious block structure, though the noise
makes it hard to be sure. This model has 5 linear
layers.

3000 ~

2000 A

Density

1000 A

0.2 0.4
Parameter value

0.0 0.6

Figure 7: The local product matrix also allows
the unimodal Gaussian layers to approximate
multimodal distributions over product matrix en-
tries. Here, we show an example density over a
product matrix element, from a three-layer Leaky
ReLU model with mean-field Gaussian distri-
butions over each weight trained on FashionM-
NIST.

Hyperparameter Setting description

Architecture MLP

Number of hidden layers 0-9

Layer Width 16

Activation Linear or Leaky Relu with o = 0.1

Approximate Inference Algorithm
Optimization algorithm

Learning rate

Batch size

Variational training samples
Variational test samples

Epochs

Variational Posterior Initial Mean

Variational Posterior Initial Standard Deviation

Prior

Dataset

Preprocessing

Validation Split

Number of training runs
Number of evaluation runs
Measures of central tendency
Runtime per result
Computing Infrastructure

Mean-field Variational Inference
Amsgrad [Reddi et al., 2018]]
10-3
64
16
16

p e
log|1+ e
N(0,0. 232
FashlonMNIST W m
Data normalized 4 = 0, 0 =
90% train - 10% validation
1
1
n.a.
< 3m
Nvidia GTX 1080

Table 4: Experimental Setting—Covariance Visualization. Note that for these visualizations we
are purely demonstrating the possibility of off-diagonal covariance. As a result, a single train-
ing/evaluation run suffices to make an existence claim, so we do not do multiple runs in order to

calculate a measure of central tendency.

16

Hyperparameter Setting description

Architecture MLP

Number of hidden layers 1-4

Layer Width 4

Activation Leaky Relu
Approximate Inference Algorithm Variational Inference
Optimization algorithm Amsgrad [Reddi et al., [2018]]
Learning rate 1073

Batch size 16

Variational training samples 1

Variational test samples 1

Epochs 1000 (early stopping patience=30)
Variational Posterior Initial Mean He et al.|[2016]]
Variational Posterior Initial Standard Deviation log[T + e~ °]

Prior N(0,1.0%)

Dataset Iris [Xiao et al., [2017]]
Preprocessing None.

Validation Split 100 train - 50 test
Number of training runs 100

Number of evaluation runs 100

Measures of central tendency (See text.)

Runtime per result < 5m

Computing Infrastructure Nvidia GTX 1080

Table 5: Experimental Setting—Full Covariance.

standard deviation 0.3 and with a mean 0.01 and each weight matrix is 16x16. This visualization is
with a linear product matrix of 5 layers.

Further, since researchers often critique a Gaussian approximate posterior because it is unimodal,
we confirm empirically that multiple mean-field layers can induce a multi-modal product matrix
distribution. In Figure[/|we show a density over an element of the local product matrix from three
layers of weights in a Leaky ReLU BNN with o = 0.1. The induced distribution is multi-modal. We
visually examined the distributions over 20 randomly chosen entries of this product matrix and found
that 12 were multi-modal. We found that without the non-linear activation, none of the product matrix
entry distributions examined were multimodal, suggesting that the non-linearities in fact play an
important role in inducing rich predictive distributions by creating modes corresponding to activated
sign patterns.

C.2 Effect of Depth Measured on Iris Experimental Settings

We describe the full- and diagonal-covariance experiment settings in Table[5] We use a very small
model on a small dataset because full-covariance variational inference is unstable, requiring a matrix
inversion of a K* matrix for hidden unit width K. Unfortunately, for deeper models the initializations
still resulted in failed training for some seeds. To avoid this issue, we selected the 10 best seeds out
of 100 training runs, and report the mean and standard error for these. Because we treat full- and
diagonal-covariance in the same way, the resulting graph is a fair reflection of their relative best-case
merits, but not intended as anything resembling a ‘real-world” performance benchmark.

Readers may consider the Iris dataset to be unhelpfully small, however this was a necessary choice.
We note that the small number of training points creates a broad posterior, which is the best-case
scenario for a full-covariance approximate posterior.

C.3 HMC Experimental Settings

We begin by sampling from the true posterior using HMC.

17

ReLU Leaky ReLU 0.5 Leaky ReLU 0.95 Linear
Hidden Layers Test Acc. Acceptance Test Acc. Acceptance Test Acc. Acceptance Test Acc. Acceptance

1 99.1% 84.8% 98.4% 84.9% 91.9% 85.4% 83.9% 78.0%
2 99.7% 77.0% 99.5% 73.9% 96.4% 76.3% 84.2% 44.4%
3 99.1% 58.0% 99.6% 46.3% 97.2% 74.5% 84.4% 37.0%
4 99.5% 62.2% 99.6% 50.9% 95.8% 68.2% 84.4% 43.2%
5 98.1% 61.8% 99.5% 53.8% 98.4% 62.4% 84.3% 352%
6 95.4% 78.5% 99.6% 51.0% 98.0% 62.6% 84.1% 33.7%
7 92.7% 68.1% 99.7% 54.6% 97.5% 59.7% 84.0% 33.0%
8 87.8% 68.3% 99.6% 49.7% 98.0% 62.5% 83.8% 36.4%
9 80.6% 73.9% 99.6% 46.3% 97.4% 60.2% 83.9% 36.5%
10 74.6% 74.9% 99.5% 45.7% 97.1% 61.8% 83.8% 40.4%

Table 6: HMC samples for ReLU networks are most accurate for smaller numbers of layers, the
samples from deeper models may therefore be slightly less reliable. Acceptance rates tend to be with
10-20 percentage points of 65%, regarded as a good balance of exploration to avoiding unnecessary
resampling. The more linear models are less accurate, as one would expect for a dataset that is not
linearly separable.

0.12 A))
----- Naive Gaussian

—— Dominant Mode
0.10 1 HMC histogram

— SWAG

i SWAG-Dia
0.08 - 0.70 9

0.06 - 0.65

Density
Accuracy

0.04 - 0.60

10 20 30
PreResNet Depth

0.02 -

—210 —I20 (I) ZIO

Parameter value
Figure 8: Example density for randomly cho- Figure 9: CIFAR-100. Accuracy for diago-
sen parameter from a ReLU network with three nal and low-rank covariance SWAG. Like log-
hidden layers. The HMC histogram is multi- likelihood, there is no clear difference in perfor-
modal. If we picked the naive Gaussian fit, we =~ mance between these models, all of which are
would lie between the modes. By using a mix- above the depth threshold implied by our work.
ture model, we select the dominant mode, for
which the Gaussian is a better fit.

0.00

We use the simple two-dimensional binary classification ‘make moons’ taskE] We use 500 training
points (generated using random_state = 0). Using |Cobb et al.| [2019]], we apply the No-U-turn
Sampling scheme [Hoffman and Gelman| 2014] with an initial step size of 0.01. We use a burn-in
phase with 10,000 steps targetting a rejection rate of 0.8. We then sample until we collect 1,000
samples from the true posterior, taking 100 leapfrog steps in between every sample used in order
to ensure samples are less correlated. For each result, we recalculate the HMC samples 20 times
with a different random seed. All chains are initialized at the optimum of a mean-field variational
inference model in order to help HMC rapidly find a mode of the true posterior. We use a prior
precision, normalizing constant, and 7 of 1.0. The model is designed to have as close to 1000 non-bias
parameters each time as possible, adjusting the width given the depth of the model. We observe that
the accuracies for the ReLU network fall for the deeper models, suggesting that after about 7 layers
the posterior estimate may become slightly less reliable (see Table[6). Acceptance rates are broadly
in a sensible region for most of the chains.

*https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.
html#sklearn.datasets.make_moons

18

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html#sklearn.datasets.make_moons

Using these samples, we find a Gaussian fit. For each model we fit a Gaussian mixture model with
between 1 and 4 components and pick the one with the best Bayesian information criterion (see
Figure @ We then find the best diagonal fit to this distribution, which is a Gaussian distribution
with the same mean and with a precision matrix equal to the inverse of the diagonal precision of
the full-covariance Gaussian. We do this because variational inference uses the mode-seeking KL-
divergence, so we are interested in the properties of a single Gaussian mode. The overall empirical
covariance would lead to a mode-covering distribution, while optimizing the mode-seeking KL to the
empirical distribution would of course result in a point-sized distribution centred at one of the HMC
samples. Using one mode of a mixture of Gaussians is therefore the closest we can come to finding a
single mode of the true posterior of the sort that VI might uncover. Note that we are therefore only
considering one of the many modes of the true posterior—this is inevitable given the fact that there is
a many-to-one correspondence between weight-distributions and function-distributions for neural
networks.

Finally, we calculate the KL divergence between these two distributions. The graph reports the mean
and shading reflects the standard error of the mean, though note that because all runs are initialized
from the same point, this underestimates the overall standard error. All experiments in this an other
sections were run on a desktop workstation with an Nvida 1080 GPU.

For the Wasserstein divergence, we estimate the distance between the empirical distributions formed
by the HMC samples and samples from the full- and diagonal-covariance posterior approximation.
We used the Python Optimal Transport package to estimate the divergence.

C.4 Diagonal- and Structured-SWAG at Varying Depths

We use the implementation of SWAG avaliable publicly athttps://github. com/wjmaddox/swa_
gaussian. We adapt their code to vary the depth of the PreResNet architecture for the values
2,8, 14, 20,26, 32, 38. We use the hyperparameter settings used by the |[Maddox et al.| [2019] for
PreResNet154 on CIFAR100 on all datasets to train the models. We use 10 seeds to generate the error
bars, which are plotted with one standard deviation. We use the same SWAG run to fit both the full
and diagonal approximations, and use 30 samples in the forward pass.

C.5 Large Scale Experiments Descriptions

In Table [7] we show a complete version of Table [2] including the standard deviations over three
runs (except for the Noisy K-FAC result where standard deviation was not provided). The standard
deviations, of course, underestimate the true variability of the method in question on Imagenet as they
only consider difference in random seed with the training configuration otherwise identical. Fuller
descriptions of the experimental settings used by the authors are provided in the cited papers.

For CIFAR-10, we show similar results in Table @ Here, authors compare a wider range of architec-
tures, which show substantial variation in resulting accuracy. However, within the same architecture,
there is little evidence of systematic differences between mean-field and structured-covariance meth-
ods and any differences which do appear are marginal. Note that|Zhang et al.|[2018] report difficulty
applying batch normalization to mean-field methods, but|/Osawa et al.| [2019] report no difficulties
applying batch normalization for their mean-field variant of Noisy Adam. For this reason, we report
the version of Noisy KFAC run without batch normalization to make it comparable with the results
shown for Bayes-by-Backprop (BBB) and Noisy Adam. With batch normalization, Noisy KFAC
gains some accuracy, reaching 92.0%, but this seems to be because of the additional regularization,
not a property of the approximate posterior family.

D Proofs

D.1 Full Derivation of the Product Matrix Covariance

Proposition 1. For L > 3, the product matrix M) of factorized weight matrices can have non-zero
covariance between any and all pairs of elements. That is, there exists a set of mean-field weight
matrices {W |1 < 1 < L} such that MY = [J WO and the covariance between any possible
pair of elements of the product matrix:

Cov(ml(i)7 mgs)) #0, (D

19

https://github.com/wjmaddox/swa_gaussian
https://github.com/wjmaddox/swa_gaussian

Architecture Method Covariance Accuracy NLL ECE
ResNet-18 VOGN? Diagonal 67.4% + 0.263 1.37 £0.010 0.029 £ 0.001
ResNet-18 Noisy K-FACTt MVG 66.4% =+ n.d. 1.44 + n.d. 0.080 + n.d.
DenseNet-161 SWAG-Diag! Diagonal 78.6% + 0.000 0.86 = 0.000 0.046 £+ 0.000
DenseNet-161 SWAGH Low-rank + Diag 78.6% £ 0.000 0.83 +0.000 0.020 £ 0.000
ResNet-152 SWAG-Diag! Diagonal 80.0% £+ 0.000 0.86 & 0.000 0.057 £ 0.000
ResNet-152 SWAG Low-rank + Diag 79.1% =+ 0.000 0.82 +0.000 0.028 4 0.000

Table 7: Imagenet. Comparison of diagonal-covariance/mean-field (in grey) and structured-covariance
methods on Imagenet. The differences on a given architecture between comparable methods is slight.
t [Maddox et al., 2019]]. ¥ [Osawa et al.| 2019]. Tt [Zhang et al., [2018]] as reported by (Osawa et al.

[2019].

Architecture Method Covariance Accuracy NLL ECE

VGG-16 SWAG-Diagf Diagonal 93.7% + 0.15 0.220 £ 0.008 0.027 = 0.003
VGG-16 SWAG' Low-rank + Diag 93.6% =+ 0.10 0.202 + 0.003 0.016 = 0.003
VGG-16 Noisy Adam!* Diagonal 88.2% +nd. nd. n.d.

VGG-16 BBB* Diagonal 88.3% +nd. nd. n.d.

VGG-16 Noisy KFACH MVG 80.4% +nd. nd. n.d.
PreResNet-164 SWAG-Diagf Diagonal 96.0% + 0.10 0.125 + 0.003 0.008 =+ 0.001
PreResNet-164 SWAG' Low-rank + Diag 96.0% 4 0.02 0.123 4 0.002 0.005 = 0.000
WideResNet28x10 SWAG-Diagt ~ Diagonal 96.4% + 0.08 0.108 + 0.001 0.005 = 0.001
WideResNet28x10 SWAGH Low-rank + Diag 96.3% 4 0.08 0.112 4 0.001 0.009 + 0.001
ResNet-18 VOGN Diagonal 84.3% +0.20 0.477 +0.006 0.040 + 0.002
AlexNet VOGN{ Diagonal 75.5% + 0.48 0.703 + 0.006 0.016 = 0.001

Table 8: CIFAR-10. For a given architecture, it does not seem that mean-field (grey) methods
systematically perform worse than methods with structured covariance, although there is some
difference in the results reported by different authors. t [Maddox et al.,[2019]. ¥ [Osawa et al.,[2019].
[Zhang et al.| 2018].

where mEJL) are elements of the product matrix in the i row and 7™ column, and for any possible

indexes a, b, ¢, and d.

Proof. We begin by explicitly deriving the covariance between elements of the product matrix.

Consider the product matrix, M (X), which is the matrix product of an arbitrary weight matrix, W),
with a mean field distribution over it’s entries, and the product matrix with one fewer layers, M (Z—1).
Expressed in terms of the elements of each matrix in row-column notation this matrix multiplication

can be written:
Kr_1

S Pm.
=1

We make no assumption about K _; except that it is non-zero and hence the weights can be any

rectangular matrix The weight matrix W) is assumed to have a mean-field distribution (the
covariance matrix is zero for all off diagonal elements) with arbitrary means:

Cov (wg?, wés))

Mep =

®)

L L
= Z((ngd = 5a055d0((1b);

L
Ew® o = gy ©)
¢ are the Kronecker delta. Note that the weight matrix is 2-dimensional, but the covariance matrix
is defined between every element of the weight matrix. While it can be helpful to regard it as
2-dimensional also, we index it with the four indices that define a pair of elements of the weight
matrix.

SWe set aside bias parameters, as they complicate the algebra, but adding them only strengthens the result
because each bias term affects an entire row.

20

We begin by deriving the expression for the covariance of the L-layer product matrix
Cov(m(L) mﬁs)). Using the definition of the product matrix in equation @i

ab
&) (L), (L—1) wH L=
Cov(myy ,m Cov Zw my we; Mg) (10)
J
We then simplify this using the linearity of covariance (for brevity call the covariance of the product
matrix Zabcd)

S = ZCOV D wlPmEY), (11)

rewriting using the definition of covariance in terms of a difference of expectations:

—ZE m & VP E] _E [Pl 1)]E[w@)m;§*1)], (12)

C] 7 cJ

using the fact that by assumption the new layer is independent of the previous product matrix:

=D E [we w1 fmiy ™ Vmig V] — B [wg) B [we | E [y ™ V) E [mig],

Wei cj j

13)

and rewriting to expose the dependence on the covariance of M (Z~1):
=3 (B[P vy] -E[w)E[0{)])
ij
(E[mly ml] —E [mG V] E [mlGY])

+E [w] B [w?)] (]E & mED] _E [mE] E [mgL_U])

jd
+E [y E 5] (E [l 0] - E [l £ [, (1

at cj cj

substituting the covariance:

—ZCOV(w,;”, C]) Cov((L=1) §-§71))
+E [w] E [w}]Cov(mly ™, m{;™")

+E [m] (L 1)} E [mgﬁ_l)]Cov<w(,L») w(%)) (15)

ar ¢y
This gives us a recursive expression for the covariance of the product matrix.

It is straightforward to substitute in our expressions for mean and variance in a mean-field network

provided in equation (El} where we use the fact that the initial M (") product matrix is just a single
mean-field layer.

In this way, we show that:

5= Z (5“5@09) : <5ij55dgz‘(;))

)

+ 1D (615000) + B [B [my)] (8uctiol?) (16)
—25 010y 0l + Spanls 1 0l + Sachiyy iy oy - (17)

The first term of equation (17) has the Kronecker deltas d,.d,4 meaning that it contains diagonal
entries in the covariance matrix. The second term has only 6,4 meaning it contains entries for the
covariance between weights that share a column. The third term has only §,. meaning it contains
entries for the covariance between weights that share a row.

21

This covariance of the product matrix already has some off-diagonal terms, but it does not yet contain
non-zero covariance for weights that share neither a row nor a column.

(3) (2)
ab

But we can repeat the process and find 3 .4 Using equation ll and our expression for i?ib jd-

(3 3 (2 3) (3)a(2 2 2 3
Egb)cd = Z <5a65ijgf(u)) : Zgb])'d + ﬂii)ﬂgj)ngg)‘d +E [mz('b)] E [mﬁd)] (5@5@-0({”)) (18)

is
=> (6%51-]-0((3)) > (&jébda,(,f)o,i},) + Santy 1ok + 52’1#5611))#;&2)0;3))
ij k
3 3 2 1 2 2 1 1 1 2
D (800 P oly) + a0l + 5 i))
k

+ ity)Mﬁ) (5ac5ij o ((3)) . (19)

It is the term in red which has no factors of Kronecker deltas in any of the indices a, b, c, or d. It is
therefore present in all elements of the covariance matrix of the product matrix, regardless of whether
they share one or both index. This shows that, so long as the distributional parameters themselves are
non-zero, the product matrix can have a fully non-zero covariance matrix for L = 3.

We note that there are many weight matrices for which the resulting covariance is non-zero
everywhere—we think this is actually typical. Indeed, empirically, we found that for any net-
work we cared to construct, we were unable to find covariances that were zero anywhere. However,
for our existance proof, we simply note that for any matrix in which all the means are positive each
term of the resulting expression is positive (the standard deviation parameters may be taken as positive
without loss of generality). In that case, it is impossible that any term cancels with any other, so the
resulting covariance is positive everywhere.

Last, we examine the recurrence relationship in equation Once Cov(mgf_l), mj(ﬁ_l)) # 0 for all

possible indices, the covariances between elements of M () may also be non-zero. Observe simply
that if the means of the top weight matrix are positive, then each of the terms in equation [I5] are
positive, so it is impossible for any term to cancel out with any other. The fact that the elements of
M =1 have non-zero covariances everywhere therefore entails that there is a weight matrix W (%)
such that M () has non-zero covariance between all of its elements also, as required.

Remark 3. Here, we show only an existance proof, and therefore we restrict ourselves to positive
means and standard deviations to simplify the proof. In fact, we believe that non-zero covariance is
the norm, rather than a special case, and found this in all our numerical simulations for both trained
and randomly sampled models. However, we do not believe that (in the linear case) any covariance
matrix can be created from a deep mean-field product.

D.2 Matrix Variate Gaussian as a Special Case of Three-Layer Product Matrix

We can gain insight into the richness of the possible covariances by considering the limited case of
the product matrix M) = ABC where B is a matrix whose elements are independent Gaussian
random variables and A and C' are deterministic. We note that this is a highly constrained setting, and
that the covariances which can be induced with A and C' as random variables have the more complex
form shown in[D.T] We can show the following:

Proposition 2. The Matrix Variate Gaussian (Kronecker-factored) distribution is a special case
of the distribution over elements of the product matrix. In particular, for M®) = ABC, M®) is
distributed as an MVG random variable when A and C are deterministic and B has its elements
distributed as fully factorized Gaussians with unit variance.

Proof. Consider the product matrix M®) = ABC. where B is a matrix whose elements are
independent Gaussian random variables and A and C' are deterministic. The elements of B are
distributed with mean x5 and have a diagonal covariance matrix X p.

22

We begin by recalling the property of the Kronecker product that:
vec(ABC) = (CT ® A)vec(B). (20)

By definition vec(M®)) = vec(ABC) = (CT @ A)vec(B). Because C'' ® A is deterministic, it
follows from a basic property of the covariance that the covariance of the product matrix 3, is
given by:

Sus = (CToA)Sz(CToA)T. (21)

Using the fact that the transpose is distributive over the Kronecker product, this is equivalent to:

Yyus =(CT@A)Tp(CAT). (22)

Because we only want to establish that the family of distributions expressible contains the matrix
variate Gaussians, we do not need to use all the possible freedom, and we can set X5 = I. In this
special case:

Yum = (CT@A)(C®AT). (23)
Using the mixed-product property, this is equivalent to:
Yys = (CTC)® (AAT). (24)

Now, we note that any positive semi-definite matrix can be written in the form A = M T M, so this
implies that, defining the positive semi-definite matrices V = C'"C and U = AAT, we have that the
covariance X, ,(s) is of the form,

Yye =VeU (25)

Similarly, we can consider the mean of the product matrix 1t,,(s). From equation |20} we can see that:
pae = (C1 @ A)vec(up). (26)

But since we have not yet constrained ¢, it is clear that this allows us to set any fi,,(s) we desire by
choosing g = (CT ® A)).

So far, we have only discussed the first- and second-moments, and the proof has made no assumptions
about specific distributions. However, we now observe that a random variable X is distributed
according to the Matrix Variate Gaussian distribution according to some mean px and with scale
matrices U and V if and only if vec(X) is a multivariate Gaussian with mean px and covariance
UaV.

Therefore, given equations 1) and li the special case of M) where the first and last matrices
are deterministic and the middle layer has a fully-factorized Gaussian distribution over the weights
with unit variance is a Matrix Variate Gaussian distribution where:

vee(ux) = (CT @ A)vec(up); 27)
v=C'c, (28)
U=ATA. (29)

O

D.3 Distribution of the Product Matrix

In general the probability density function of a product of random variables is not the product of
their density functions. In the scalar case, the product of two independent Gaussian distributions
is a generalized 2 distribution. The product of arbitrarily many Gaussians with arbitrary non-i.i.d.
mean and variance is difficult to calculate (special cases are much better understood e.g., |Springer
and Thompson|[1970]]). An example of a distribution family that is closed under multiplication is the
log-normal distribution.

23

In the case of matrix multiplication, important for
neural network weights, because each element of a

product of matrix multiplication is the sum of the — l-layers
product of individual elements we would ideally 1.5 4 3-layers
like a distribution to be closed under both addi- —— 5-layers
tion and multiplication (such as the Generalized —— 7-layers

Gamma convolution [Bondesson, [2015]]) but these
are not practical.

1.0 1

Density

Instead, it would be helpful if we could make use
of a simple distribution like the Gaussian but main- 0.5 -
tain roughly similar distributions over product ma-
trix elements as the network becomes deeper. For
only one layer of hidden units, provided K is suffi-

ciently large, we can use the central limit theorem 0.0- T T
to show that the elements of the product matrix -1 0 1 2
composed of i.i.d. Gaussian priors tends to a Gaus- Weight value

sian as the width of the hidden layer increases. For

two or more layers, however, the central limit the- Figure 10: Density over arbitrary element
orem fails because the elements of the product of product matrix for L diagonal prior Gaus-
matrix are no longer independent. However, even sian weight matrices whose elements are i.i.d.
though the resulting product matrix is not a Gaus- A/(0,0.23?). Product matrix elements are not
sian, we show through numerical simulation that strictly Gaussian, but very close.

products of matrices with individual weights dis-

tributed as NV(0, 0.232) have roughly the same distribution over their weights. This, combined with
the fact that our choice of Gaussian distributions over weights was somewhat arbitrary in the first
place, might reassure us that the increase in depth does not change the model prior in an important
way. In Figure |10 we plot the probability density function of an arbitrarily chosen entry in the
product matrix with varying depths of diagonal Gaussian prior weights. The p.d.f. for 7 layers is
approximately the same as the single-layer Gaussian distribution with variance 0.232.

D.4 Proof of Linearized Product Matrix Covariance

D.4.1 Proof of Local Linearity

We consider local linearity in the case of piecewise-linear activations like ReL.U.

Lemma 1. Consider an input point x* € D. Consider a realization of the model weights 0. Then,
for any x*, the neural network function fg is linear over some compact set Ag C D containing x*.
Moreover, Ag has non-zero measure for almost all x* w.r.t. the Lebesgue measure.

Proof. Neural networks with finitely many piecewise-linear activations are themselves piecewise-
linear. Therefore, for a finite neural network, we can decompose the input domain D into regions
D; C D such that

1. UD; =D,
2. D;ND; =2 Vi#j,
3. fe is a linear function on points in D; for each i.
For a finite neural network, there are at most finitely many regions D;. In particular, with hidden

layer widths n; in the ¢’th layer, with an input domain D with dimension ng, Montufar et al.| [2014]]
show that the network can define maximally a number of regions in input space bounded above by:

L—1 |no no
(H])z ("), -~

=1 LMo i=o \J
Except in the trivial case where the input domain has measure zero, this along with (1) and (2) jointly
entail that at least one of the regions D; has non-zero measure. This, with (3) entails that only a

set of input points of zero measure do not fall in a linear region of non-zero measure. These points
correspond to inputs that lie directly on the inflection points of the ReL.U activations. O

24

(a) 1 sample: Ay, (b) 5 samples: A = [, 5 A,

Figure 11: Visualizaton of the linear regions in input-space for a two-dimensional binary classification
problem (two moons). Colored regions show contiguous areas within which a neural network function
is linear. We use an abitrary numerical encoding of these regions (we interpret the sign pattern of
activated relus as an integer in base 2) and a cylic colour scheme for visualisation, so the color of each
region is arbitrary, and two non-contiguous regions with the same color are not the same region. The
neural network has one hidden layer with 100 units and is trained for 1000 epochs on 500 datapoints
from scipy’s two moons using Adam. (a) a single model has fairly large linear regions, with the most
detail clustered near the region of interest. (b) The regions within which all samples are linear (the
intersection set .A) are smaller, but finite. The local product matrix is valid within one of these regions
for any input point.

We visualize A, in Figure@ This shows a two-dimensional input space (from the two moons
dataset). Parts of the space within which a neural network function is linear are shown in one color.
The regions are typically smallest where the most detail is required in the trained function.

D.4.2 Defining the Local Product Matrix

We define a random variate representing the local product matrix, for an input point x*, using the
following procedure.

To draw a finite /N samples of the random variate, we sample [V realizations of the weight parameters
© = {0, for 1 <i < N}. For each 0;, given x* there is a compact set Ag, C D within which fo, is
linear (and x* € A;) by lemma([I] Therefore, all samples of the neural network function are linear in
the intersection region A = (), Ag,. We note that A at least contains x*. Moreover, so long as D
is a compact subset of the reals, .A has non-zero measureﬂ Figure shows a visualization of A
with 5 samples. The linear regions are smaller, because there is a discontinuity if any of the models is

®Intuitively, we know that x* is in all Apg,, so when we add a new sample we know that there is either overlap
around x* or the point x* is on the boundary of the new subset, which means we could equally well pick a
different set that has x* on its boundary and does have non-zero-measure overlap with the previous sets.

More formally, consider some compact set Ag, C D with non-zero measure such that x* € Ag,. Take some
new compact set Ag, C D with non-zero measure also such that x* € Ag, . Define the intersection between
those sets B = Ag, N Ag, . Suppose that 5 has zero measure. But both Ag, and A, contain x*, so the only
way that 55 could have zero measure is if x™ is an element in the boundary of both sets. But if .4g, has x* on its
boundary, then, by the continuity of the real space, there is at least one other compact set Ay, different to Ay, ,
such that x* is on its boundary. But, since by hypothesis .Ag, has non-zero measure, there exists such a set A;,l
which has a non-zero-measure intersection with Ag,. We can therefore select Ajp, instead of Ag, when building
A, such that the intersection with .Ag, has non-zero measure. By repeated application of this argument, we can
guarantee that for any finite © we are able to find a set of Ag, C D such that Vi : x* € Ap, and A has non-zero
measure. This argument does not guarantee that the measure of A in the limit as /N tends to infinity is non-zero.

25

discontinuous. Nevertheless, the space is composed of regions of finite size within which the neural
network function is linear.

For each 0; we can compute a local product matrix within 4. Ordinarily, setting aside the bias term
for simplicity, a neural network hidden layer h;; can be written in terms of the hidden layer before
it, a weight matrix W, and an activation function.
h; 1 = o(Wihy) 3D
We observe that within .4 the activation function becomes linear. This allows us to define an activation
vector ay« within A such that the equation can be written:
hl+1 = Ax=* * (Wlhl) (32)

The activation vector can be easily calculated by calculating W;h;, seeing which side of the (Leaky)
ReL.U the activation is on within that linear region for each hidden unit, and selecting the correct
scalar (0 or 1 for a ReLU, or « or 1 for a Leaky ReL.U).

This allows us to straightforwardly construct a product matrix for each 8; which takes the activation
function into account (in the linear case, we effectively always set ax- to equal the unit vector).
The random variate Py~ is constructed with these product matrices for realizations of the weight
distribution.

Samples from the resulting random variate Py~ are therefore distributed such that samples from
Py«x* have the same distribution as samples of the predictive posterior y given x* within A.

D.4.3 Proof that the Local Product Matrix has Non-zero Off-diagonal Covariance

Proposition 3. Given a mean-field distribution over the weights of neural network f with piecewise
linear activations, f can be written in terms of the local product matrix Py« within A.

For L > 3, for activation functions which are non-zero everywhere, there exists a set of weight
matrices {WW|1 < | < L} such that all elements of the local product matrix have non-zero
off-diagonal covariance:

Cov(ply . Pia) # 0, @)
where pj‘J is the element at the i row and " column of Py~

Proof. First, we show that the covariance between arbitrary entries of each realization of the product
matrix of linearized functions can be non-zero. Afterwards, we will show that this implies that the
covariance between arbitrary entries of the product matrix random variate, Py« can be non-zero.

Consider a local product matrix constructed as above. Then for each realization of the weight matrices,

the product matrix realization Mi(L), defined in the region around x* following lemma We can
derive the covariance between elements of this product matrix within that region in the same way as
in Proposition|I] finding similarly that:

S = Qabed Y (5ac5z‘j0$)) > (&ﬁwoﬁ?a,ﬁ?
ij k

2 2 1
+ 5bd:“’1k)/1“§k)al(c)

1 2
+ 52]/‘”(61))/“"/2:61) ()>

3 1
t(u):u‘q) Z (5 6bd01k O—’(itb)

(2) (2) _(1
+5bdﬂlk)/ﬁ§k) "

1 2
+ dnfy o)

+ 1 3 (Gacdigol)). (33)

26

where « is a constant determined by the piecewise-linearity in the linear region we are considering.
Note that we must assume here that a;;; # 0 except in a region of zero measure, for example a
LeakyReLU, otherwise it is possible that the constant introduced by the activation could eliminate
non-zero covariances. We discuss this point further below.

Now note that the covariance of the sum of independent random variables is the sum of their
covariances. Therefore the covariance of [realizations of P (suppressing the notation (L)) is:

COV(Pab, Pcd) =

~l =

I
> S (34)
=1

As before, consider the case of positive means and standard deviations. Just like before, this results
in a positive entry in the covariance between any two elements for each realization of the product
matrix, and by equation [34]the entry for any element of the local product matrix remains positive as
well. This suffices to prove the proposition for the case of L = 3. Just as Proposition T extends to all
larger L, this result does also.

Remark 4. The above proof assumes that o;; # 0. In fact, for common piecewise non-linearities
like ReLU, o may indeed be zero. This means that the non-linearity can, in principle, ‘disconnect’
regions of the network such that the ‘effective depth’ falls below 3 and there is not a covariance
between every element.

We cannot rule this out theoretically, as it depends on the data and learned function. In practice, we
find it very unlikely that a trained neural network will turn off all its activations for any typical input,
nor that enough activations will be zero that the product matrix does not have shared elements after
some depth.

However, we do observe that for at least some network structures and datasets it is uncommon in
practice that all the activations in several layers are ‘switched off’. We show in Figure[l|an example
of a local product matrix covariance which does not suffer from this problem. We find that for a model
trained with mean-field VI on the FashionMNIST test dataset the number of activations switched on
is on average 48.5% with standard deviation 4.7%. There were only four sampled models out of 100
samples on each of 10,000 test points where an entire row of activations was ‘switched off’, reducing
the effective depth by one, and this never occurred in more than one row. Indeed, [|Goldblum et al.|
2019|] describe settings with all activations switched off as a pathological case where SGD fails.

O

D.5 Existence Proof of a Two-Hidden-Layer Mean-field Approximate Posterior Inducing
the True Posterior Predictive

In this section we prove that:

Proposition 4. Let p(y = Y|x, D) be the probability density function for the posterior predictive
distribution of any given multivariate regression function, with x € A where A is a compact set
inRP, y € R, and Y the posterior predictive random variable. Let f(-) be a Bayesian neural
network with two hidden layers. Let Y be the random vector defined by f(x). Then, for any €,6 > 0,
there exists a set of parameters defining the neural network f such that the absolute value of the
difference in probability densities for any point is bounded.:

Vy,x € A,i: Pr (Ip(yi =Y;) - ply: = Yilx,D)| > 6) <9, 3)

so long as: the activations of f are non-polynomial, non-periodic, and have only zero-measure
non-monotonic regions, the first hidden layer has at least D + 1 units, the second hidden layer has
an arbitrarily large number of units, the cumulative density function of the posterior predictive is
continuous in output-space, and the probability density function is continous and finite non-zero
everywhere. Here, the probability bound is with respect to the distribution over a subset of the weights

described in the proof, Op,, while one weight distribution 87 induces the random variable Y .

Proof. We extend an informal construction by |Gal|[2016] which aimed to show that a sufficiently
deep network with a unimodal approximate posterior could induce a multi-modal posterior predictive

27

by learning the inverse cumulative distribution function (c.d.f.) of the multi-modal distribution. In
our case, we are not chiefly interested in the number of modes, but more generally the expressive
power of the mean-field distribution in a BNN of sufficient width and depth. First, we outline a
simplified version of the proof that highlights the main mechanisms involved but is not constructed
with a Bayesian neural network. Later, we prove the full result for Bayesian neural networks.

D.5.1 Simplified Construction

©

@

o 1
Fe ~ Fypl

S

Figure 12: The random variable whose probability density function is the true predictive posterior
p(y|x, D) can be written Y'|x. If it has an inverse cumulative density function (c.d.f.), ijﬁe we
can transform a uniform random variable U onto it. We can approximate this inverse c.d.f. with fx
indexed by x. The random variable given by ¥ := fx(U) can be constructed to be ‘similar’ to Y|x
as we show.

Lemma 2. Let p(y = Y|x,D) be the probability density function for the posterior predictive
distribution of any given univariate regression function. Let U be a uniformly distributed random
variable. Let f(-) be a deterministic neural network with a single hidden layer of arbitrary width and
invertible non-polynomial activations. Let Y be the random variable defined by f(U,x). Then, for
any € > 0, there exists a set of parameters defining a sufficiently wide f such that the absolute value
of the difference in probability densities for any point is bounded:

Vy,x: ply=Y)-ply=Yx,D)|<e (35)

so long as the cumulative distribution function of the posterior predictive is continuous in output-space
and the probability density function is non-zero everywhere.

Proof. An outline of the proof for the simplified case is shown in Figure

Suppose there is a true posterior distribution over function outputs whose probability density function
(p.d.f) is given by p(y = Y'|x, D). These define a random variable that we will denote Y'|x.

We also have some approximation that takes x as an input and returns some y in the output space.
Later, this will be our Bayesian neural network, but for now we simplify. Instead, our procedure is
to have some deterministic neural network which accepts as an input a realization of a uniformly

distributed random variable, U, and the input point x. We define a random variable Y = f(U,x).

We would like to show that it is possible to construct a neural network f such that the result in
equation (33) holds—that Y is suitably similar to the true predictive posterior random variable Y|x.

First, note that if Y|x has an inverse cumulative density function (c.d.f.) then, by the universality
of the uniform, transforming a uniform random variable by this function creates a random variable
distributed as Y'|x. As a result, if there is such an invertible cumulative density function, there is also
a function mapping U and x onto Y'|x.

Second, consider the conditions under which Y'|x has an invertible c.d.f. We must assume that the
c.d.f. is continuous in output space and that the probability density function is non-zero everywhere.
The first is reasonable for most normal problems, we often make a stronger assumption of Lipschitz
continuity. The second is also relatively mild, corresponding to non-dogmatic certainty (a posterior
distribution that puts zero probability density on some output given some input can never update
away from that in light of new information). Given these mild assumptions, therefore, we know that

there exists a continuous function Fy ﬁ(which is the inverse of the c.d.f. of Y|x.

Third, we consider how we might approximate this function. Here, we invoke the universal approxi-
mation theorem (UAT) [[Leshno et al., |1993]]. This states that for any continuous function g, arbitrary

28

fixed error, €, and compact subset 4 of RP, there exists a deterministic neural network with an
arbitrarily wide single layer of hidden units and a non-polynomial activation, f such that:

Vaec A:|f(a) —g(a)|] <e. (36)

By setting the arbitrary continuous function as the inverse c.d.f. of Y|x, that is, g(U, x) = Fgllx(U)
(which we have already assumed is continuous) it follows that:

Yu,x € A: |f(u,x)—F;|i(u)| <e u~U. 37

Fourth, we convert this bound on the inverse c.d.f. into a bound on the c.d.f. and then a bound on the
p-d.f. We rewrite the function represented by the neural network to make explicit that we are using x
to index a function from u to y: y = f(u,x) = fx(u).

For this step, we will need to be able to invert the approximation to the inverse CDF such that
u = f71(y) (for fixed x). In general for neural network functions this is not true. As a result,
we employ a construction which breaks apart the line over which y runs into subsegments within
which the network is invertible. For non-periodic activation functions which have only zero-measure
non-monotonic regions (e.g., ReLU) there will be finitely many of these segments given a finite
number of hidden units. Let us index over these subregions with ¢, noting that we can think of the
distribution over y as a weighted mixture distribution with a member for each subregion which has
zero-density outside of that subregion. The approximate inverse CDF of each of these sub-region
mixture members can be written as f%(u) such that fx(u) = Y, fi(u). Each of these fi(u) is
invertible. We can therefore rewrite equation (37), since u and x are bounded by assumption, as:

Vyxe A Y AfT W) - B)l <« (38)

which implies that:

vyxed: Y y-Frl(fi) <e (39)

Remember that we assumed above that the c.d.f. of Y'|x is uniformly continuous, which means that for
any 3 and ", and any € > 0 there exists a 0 such that if [y —y"| < ¢ then [Fy x(y') — Fy x(y")| < €.
Alongside equation (39), and canceling the c.d.f. with the inverse c.d.f. this entails that:

VyxeA: 3 Fyply) — i ()] < (40)

.
But since fi (y) is zero by construction outside of its subregion, this results in a bound on the
overall c.d.f. of the random variable. That is to say, the bound on the inverse c.d.f. implies a bound
on the c.d.f.

Finally, we remember that the cumulative density is the integral of the probability density function.
Therefore, by Theorem 7.17 of Rudin|[[1976] and the uniform convergence in the c.d.f.s, it follows
that:

Vy,xe A: |ply=Y|x,D)—ply=Y)| <e 41)
introducing a bound in the probability density functions of the random variable of true posterior
outputs and the outputs of the approximation Y = f(U, x). O

D.5.2 Full Construction

The full construction extends the result above in the following ways:

e Rather than separately introducing U, we show how the first layer of a Bayesian neural
network can map x — x’, Z, where Z is a unit Gaussian random variable and x’ is a noised
version of x.

e Rather than using a deterministic neural network for the universal approximation theorem,
we apply the stochastic adaptation introduced by Foong et al.[[2020].

e Rather than a univariate regression, we consider multivariate regression.

29

Like|Leshno et al.|[1993]] we note that the extension from univariate to multivariate regression follows
trivially from the existence of a mapping from R — R¥

We first give some intuition as to how the proof works. The first weight layer serves to map x — x’, Z.
This sets us up in a similar situation to the proof in the previous section, where we began with x, U.
This requires two small adjustments to the proof above. The first is that the random variable we
introduce is now Gaussian, rather than Uniform. The second is that all our results will be in terms of
x’, rather than x, and an additional step will be required to convert a probabilistic bound in one to the
other (noting that we can freely set the weights in the first layer to have arbitrarily small variance).

The second weight layer will play the role of the neural network in the simplified proof. This also will
require a small modification, because earlier we assumed that the neural network was deterministic,
but it is now stochastic. This means that the final result becomes a probabilistic bound.

As a result of all of these changes, the proof becomes considerably more complicated, though nothing
important changes in the intuition behind the construction.

Step 1: Mapping x — x', Z

Consider inputs x € R”. We define a two-hidden-layer neural network with an invertible non-
polynomial activation function ¢ : R — R. The first component of the network is a single weight
matrix mapping onto a vector of hidden units: hy = ¢(0px + bg). The second component is a neural
network with a layer of hidden units defined relative to the first layer of units hy = ¢(61h; + by),

and outputs y = 63hsy + bs. The distribution over the outputs y defines the random variable Y.
Here, 0, 6,1, and 0- are matrices of independent Gaussian random variables and by, by, and by are
vectors of independent Gaussian random variables. Given some dataset D the predictive posterior
distribution over outputs is p(y|x, D) which we associate with the random variable Y. This is our
(intractable) target.

Consider only the first component of the neural network, which maps x onto h;. We can construct
simple constraints on 8y and by such that:

- (5)

where z ~ Z, a unit Gaussian random variable, and x’ € R, such that Pr (||x’ — x|| > €1) < ;. In
particular, suppose that for 8y € RP*P+1 and by, € RP+1:

6o = N (Mpg,, Xg,) where Mg, = (0p,Ipxp); S, = 0’ Ipxp+1; (43)
by =N (ub,, Ob,) Where pup, =0pi1,0p, =(1 o ... o). (44)

By multiplication, straightforwardly x’ = A (x, 2021). It follows trivially that for any €; and ¢,
there exists some o such that the bound holds. We will apply this bound at the end of the proof to
convert a bound in x’ to one in x.

Here, we introduce a distinction between the weights which determine x’ and those that create 7.
The only weights which determine Z are the first element of 8 and the first element of by. Call these
6. We then define the remainder of the weight distributions as @p, := {6, 01,602, bg, b1, ba} \ 0.
This distinction is important, because the probabilistic bound in the proof will be over 8p, while the

distribution over @z will induce the random variable Y.
Step 2: Invoking a Result Similar to the Simplified Construction

We show that there is a function which maps Z and x’ onto Y, under reasonable assumptions similar
to those of the simplified construction. For brevity, we denote the probability density function (p.d.f.)
of the true posterior predictive distribtion of the random variable Y conditioned on x’ and D as
fy)xr = p(Y = y|x’, D) and the cumulative density function (c.d.f.) as Fy ... We similarly write

. -1
the inverse c.d.f. as FY‘X,.

We must adapt the simplified construction to account for the fact that rather than simply approximating
the inverse of the c.d.f. we now need to also transform the Gaussian random variable onto a Uniform
one and invert the activation. We show below:

7 A slightly complication is added by the continuity requirements. However, we note that the assumption that
the p.d.f. is finite everywhere guarantees that there is a continuous function over y which contains continous
segments for each of K dimensions, even if those individual segments are not continuous with each other.

30

Lemma 3. There exists continous function G;,l = F;ﬁ(, -Fz-¢~1, where Fy is the c.d.f. of the unit

Gaussian and ¢~ is the inverse of the activation function, such that the random variable G;,l (¢0(2))
is equal in distribution to Y |x, if the p.d.f. of the posterior predictive is non-zero everywhere and the
c.d.f. is continuous.

The limitation to p.d.f.s is modest as before. The naming of the function G;,l is suggestive, and
indeed its inverse exists if Fy-|, is invertible, since the c.d.f. of a unit Gaussian is invertible (though
this function cannot be easily expressed).

Whereas in the simplified construction we showed that the neural network could approximate the
inverse c.d.f., here we show that the second hidden layer of our larger Bayesian neural network can
approximate the more complicated function required by lemma/[3] This allows the second hidden
layer of the neural network to transform x’, Z onto Y such that Y is appropriately similar to Y. First
we show that we can approximate the function G;,l, generating a probabilistic bound because the
weights of the neural network are now Gaussian random variables:

Lemma 4. For a uniformly continous function G’;,l (2) : z2,x' =y, forany €,§ > 0 and compact
subset A of RP, there exist fully-factorized Gaussian approximating distributions q(01), q(82), g(by),

and q(bs), and a function over the outputs of the later part of the neural network: G=(x',z) =
05(0(01h1) + b1) + by (remembering that hy = ¢(z,%’)), such that:

Pr(’@‘l(x’,z) -G (2)| > e) <46, Vx' €Az (45)
The probability measure is over the weight distributions of 1,02, b1, bo.

Having shown that the second component can approximate the inverse c.d.f. to within a bound, we as
before we further show that the random variable created by this transformation has a p.d.f. within a
bound of the p.d.f. of Y, which suffices to prove the desired result.

For this, we show this below for the transformed variable x’:
Lemma 5. For any € > 0 and § > 0 there exists a mean-field weight distribution q(01, 62, b1, bs)
such that the probability density functions are bounded.:

Pr<|p(yi =Y,;) - p(y; = Y;[x',D)| > e) <6, X,y A (46)

We then move the bounds onto an expression in the original features, x. Recall from before that
because the variance of the weights in the first layer can be arbitrarily small, that for any e there is a
d:

Pr(|x' — x| >¢€) <8 Vx,x €A, 47)
where the probability measure is over Op;. Moreover, since we have assumed that the probability
density function is continuous, this bound alongside the previous bound on the probability density
functions jointly entail that:

Pr(’p(yi = YZ) —p(y; = Yi|x,D)’ > 6) <4, VxeAuy;. (48)

where the probability measure is over Op;.

Below, we prove the lemmas required in the proposition above.

Lemma 3. There exists continous function G;,l =Fy ﬁ(, -Fy-¢~1, where Fy is the c.d.f. of the unit

Gaussian and ¢~ is the inverse of the activation function, such that the random variable G} (¢(Z))
is equal in distribution to Y |x, if the p.d.f. of the posterior predictive is non-zero everywhere and the
c.d.f. is continuous.

Proof. Trivially ¢~ 1(¢(2)) = Z.

Let F'z be the cummulative distribution function (c.d.f.) of the unit Gaussian random variable Z. By
the Universality of the Uniform, U = Fz(Z) has a standard uniform distribution.

31

Let Fy |4 be the c.d.f. of Y conditioned on x, and D. Suppose that the posterior predictive is non-zero
everywhere (that is, you cannot rule out that there’s even the remotest chance of any y; given some
input x, however small). Then, since the c.d.f. is continuous by assumption, Fy |, is invertible.
Again, by the Universality of the Uniform U" = Fy|<(y) has a standard uniform distribution. So
Vu : p(U = u) = p(U" = u). Moreover Fy | is invertible. So p(Y = y) = F;li(FZ(Z))

It follows that there exists a continuous function as required.

O

Lemma 4. For a uniformly continous function G;,l (2) : z,x' =y, forany €,6 > 0 and compact
subset A of RP, there exist fully-factorized Gaussian approximating distributions q(01), q(82), ¢(b1),

and q(bs), and a function over the outputs of the later part of the neural network: G=1(x',z) =
02(c(01hy) + by) + by (remembering that hy = ¢(z,%’)), such that:

Pr(|é*1(x’,z) — G| > e) <5, VX' €Az 45)
The probability measure is over the weight distributions of 61,02, b1, ba.

Proof. The Universal Approximation Theorem (UAT) states that for any continuous function f, and
an arbitrary fixed error, e, and compact subset A of RP, there exists a deterministic neural network
with an arbitrarily wide single layer of hidden units and a non-polynomial activation, o

Vx € A: lo(wa(o(wix) +by) + b)) — f(x)] < e. (49)
In addition, we make use of Lemma 7 of [Foong et al.,[2020]. This states that for any €', d > 0,
for some fixed means fu1, ta, s, > o, of ¢(01), ¢(02), ¢(b1), and g(bs) respectively, there exists

some standard deviation s’ > 0 for all those approximate posteriors such that for all s < s/, for any
h; = (z,x/) e RVH!

Pr(!o(eg(a(Blhl) + bl) + b2) — U(Mg(d(ﬂlhl) + /Lbl) + /J/b2)| > 6/) <d. (50)
Note that the deterministic weights of equation (#9) can just be these means. As a result:
Pr(;a(az(o(elhl) +by) +bo) — f(ly)| > e+ e') <6 (51)

We note that we define G~ (x, z) = 0(82(c(01h1) + by) + by) as above, and that f(h;) may be
G;,l (%), which is assumed to be uniformly continuous. It follows, allowing € = e + ¢’

Pr(}é_l(x',z) -G (2)| > e) < 0. (52)

as required.

Lemma 5. For any € > 0 and § > 0 there exists a mean-field weight distribution q(01,6>,b1,bs)
such that the probability density functions are bounded.:

Pr<|p(yi = Yi) —ply; = Yi|X’,D)| > e) <4, X',y A. (46)

In this lemma, we show that a bound on the inverse c.d.f. used to map Z onto our target implies a
bound in the p.d.f. of that constructed random variable to the p.d.f. of our target.

This lemma follows the argument of the simplified construction, with some additional complexity
of notation introduced by the requirement that the input random variable was Gaussian rather than
Uniform. Here, we complete the proof steps with a univariate y to simplify notation, noting that
because we can map R — RX the multivariate regression follows trivially from the univariate result.

We first note that the result of Lemma@can be applied to 2’ = G(x,y) using an inverted version of
our network function such that:

Pr (‘Crl(x', G(x',y)) — G;,l(@(x',y))‘ > 62) <8y, VX €Ay (53)

32

We further note that by the triangle inequality:

X

GH G (1) — G G)| < |63 (G ly) = G Gx)| (54)

e LG y) - GG)| 69)

and since G (G () = G1(¥, G(X,y)) = x":
< |GG Y) - GG)| (56)

Inserting this inequality into the result of Lemmafd] we have that:
Pr(‘G;,l(Gx/(y)) - G;,l(é’(x’,y))‘ > 62) <8, Vyx €A (57)

But we further note that we have assumed that the ¢.d.f. Gy is uniformly continous so for any ¢’ and
y”, and for any ¢’ > 0 there is an €¢” > 0 and vice versa, such that if:

ly —y"| <€, (58)

then:
|G (y') — G (y")| < €. (59)

It follows that for any € and § there is a ¢(@) such that:
Pr(‘Gx/(G;,l (G (y))) — G (G MG, y)))’ > 6) <45, VW eAy (60)

and therefore: R
Pr(’(le(y) - G(X’,y)‘ > e) <4, VX' eAy. 61)

Next, we remember that Gy = ¢ - F, L. Fylx/, and that ¢ and F', L are continuous, and therefore:
Pr(|(Frin () = Fypolw)| > ¢) <8, Wx' € A, (62)

where Fy , (y) = Fz(¢7H(G(X,y))).

As a final step, we remember that the cumulative density is the integral of the probability density
function. Therefore, by Theorem 7.17 of Rudin|[[1976] and the uniform convergence in the c.d.f.s, it
follows that there for any bounds there exists ¢(0) such that:

Pr(| e = frie

Writing out the probability density functions fully and mapping the univariate function the multivariate
we have:

> e) <5 VX €Ay (63)

Pr(|p(yi = Yl) —ply; = Y;\X’,D)’ > 6) <94, ¥x' €Ay, (64)

O

33

