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Abstract

Uniform stability is a notion of algorithmic stability that bounds the worst case
change in the model output by the algorithm when a single data point in the dataset
is replaced. An influential work of Hardt et al. [20] provides strong upper bounds
on the uniform stability of the stochastic gradient descent (SGD) algorithm on
sufficiently smooth convex losses. These results led to important progress in
understanding of the generalization properties of SGD and several applications to
differentially private convex optimization for smooth losses.
Our work is the first to address uniform stability of SGD on nonsmooth convex
losses. Specifically, we provide sharp upper and lower bounds for several forms
of SGD and full-batch GD on arbitrary Lipschitz nonsmooth convex losses. Our
lower bounds show that, in the nonsmooth case, (S)GD can be inherently less stable
than in the smooth case. On the other hand, our upper bounds show that (S)GD
is sufficiently stable for deriving new and useful bounds on generalization error.
Most notably, we obtain the first dimension-independent generalization bounds for
multi-pass SGD in the nonsmooth case. In addition, our bounds allow us to derive a
new algorithm for differentially private nonsmooth stochastic convex optimization
with optimal excess population risk. Our algorithm is simpler and more efficient
than the best known algorithm for the nonsmooth case [16].

1 Introduction

Successful applications of a machine learning algorithm require the algorithm to generalize well
to unseen data. Thus understanding and bounding the generalization error of machine learning
algorithms is an area of intense theoretical interest and practical importance. The single most popular
approach to modern machine learning relies on the use of continuous optimization techniques to
optimize the appropriate loss function, most notably the stochastic (sub)gradient descent (SGD)
method. Yet the generalization properties of SGD are still not well understood.

∗Part of this research was done while the author was at Google Research.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Consider the setting of stochastic convex optimization (SCO). In this problem, we are interested
in the minimization of the population risk FD(x) := Ez∼D[f(x, z)], where D is an arbitrary and
unknown distribution, for which we have access to an i.i.d. sample of size n, S = (z1, . . . , zn); and
f(·, z) is convex and Lipschitz for all z. The performance of an algorithm A is quantified by its
expected excess population risk,

E[εrisk(A)] := E[FD(A(S))]−min
x∈X

FD(x),

where the expectation is taken with respect to the randomness of the sample S and internal randomness
of A. A standard way to bound the excess risk is given by its decomposition into optimization error
(a.k.a. training error) and generalization error (see eqn. (2) in Sec. 2). The optimization error
can be easily measured empirically but assessing the generalization error requires access to fresh
samples from the same distribution. Thus bounds on the generalization error lead directly to provable
guarantees on the excess population risk.

Classical analysis of SGD allows obtaining bounds on the excess population risk of one pass SGD.
In particular, with an appropriately chosen step size, SGD gives a solution with expected excess
population risk of O(1/

√
n) and this rate is optimal [30]. However, this analysis does not apply to

multi-pass SGD that is ubiquitous in practice.

In an influential work, Hardt et al. [20] gave the first bounds on the generalization error of general
forms of SGD (such as those that make multiple passes over the data). Their analysis relies on
algorithmic stability, a classical tool for proving bounds on the generalization error. Specifically, they
gave strong bound on the uniform stability of several variants of SGD on convex and smooth losses
(with 2/η-smoothness sufficing when all the step sizes are at most η). Uniform stability bounds the
worst case change in loss of the model output by the algorithm on the worst case point when a single
data point in the dataset is replaced [4]. Formally, for a randomized algorithm A, loss functions
f(·, z) and S ' S′ and z ∈ Z , let γA(S, S′, z) := f(A(S), z)−f(A(S′), z), where S ' S′ denotes
that the two datasets differ only in a single data point. We say A is γ-uniformly stable if

sup
S'S′,z

E[γA(S, S′, z)] ≤ γ,

where the expectation is over the internal randomness of A. Stronger notions of stability can also be
considered, e.g., bounding the probability – over the internal randomness ofA – that γA(S, S′, z) > γ.
Using stability, [20] showed that several variants of SGD simultaneously achieve the optimal tradeoff
between the excess empirical risk and stability with both being O(1/

√
n). Several works have used

this approach to derive new generalization properties of SGD [28, 9, 19].

The key insight of Hardt et al. [20] is that a gradient step on a sufficiently smooth convex function is
a nonexpansive operator (that is, it does not increase the `2 distance between points). Unfortunately,
this property does not hold for nonsmooth losses such as the hinge loss. As a result, no non-trivial
bounds on the uniform stability of SGD have been previously known in this case.

Uniform stability is also closely related to the notion of differential privacy (DP). DP upper bounds
the worst case change in the output distribution of an algorithm when a single data point in the dataset
is replaced [14]. This connection has been exploited in the design of several DP algorithms for SCO.
In particular, bounds on the uniform stability of SGD from [20] have been crucial in the design and
analysis of new DP-SCO algorithms [36, 12, 17, 2, 16].

1.1 Our Results

We establish tight bounds on the uniform stability of the (stochastic) subgradient descent method
on nonsmooth convex losses. These results demonstrate that in the nonsmooth case SGD can be
substantially less stable. At the same time we show that SGD has strong stability properties even in
the regime when its iterations can be expansive.

For convenience, we describe our results in terms of uniform argument stability (UAS), which
bounds the output sensitivity in `2-norm w.r.t. an arbitrary change in a single data point. Formally, a
(randomized) algorithm has δ-UAS if

sup
S'S′

E ‖A(S)−A(S′)‖2 ≤ δ. (1)

This notion is implicit in existing analyses of uniform stability [4, 32, 20] and was explicitly defined
by Liu et al. [27]. In this work, we prove stronger – high probability – upper bounds on the random
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variable δA(S, S′) := ‖A(S)−A(S′)‖,2 and we provide matching lower bounds for the weaker –
in expectation – notion of UAS (1). A summary of our bounds is in Table 1. For simplicity, they are
provided for constant step size; general step sizes (for upper bounds) are provided in Section 3.

Algorithm H.p. upper bound Expectation upper bound Expectation Lower bound

GD (full batch) 4
(
η
√
T + ηT

n

)
4
(
η
√
T + ηT

n

)
Ω
(
η
√
T + ηT

n

)
SGD

(w/replacement) 4
(
η
√
T + ηT

n

)
min{1, Tn }3η

√
T + 4ηTn Ω

(
min{1, Tn }η

√
T + ηT

n

)
SGD (fixed

permutation) 2η
√
T + 4ηTn min{1, Tn }2η

√
T + 4ηTn Ω

(
min{1, Tn }η

√
T + ηT

n

)
Table 1: UAS for GD and SGD. Here T = # iterations; η is the step size.

Compared to the smooth case [20], the main difference is the presence of the additional η
√
T term.

This term has important implications for the generalization bounds derived from UAS. The first one
is that the standard step size η = Θ(1/

√
n) used in single pass SGD leads to a vacuous stability

bound. Unfortunately, as shown by our lower bounds, this is unavoidable (at least in high dimension).
However, by decreasing the step size and increasing the number of steps, one obtains a variant of
SGD with nearly optimal balance between the UAS and the excess empirical risk.

We highlight two major consequences of our bounds:

• Generalization bounds for multi-pass nonsmooth SGD. We prove that the generalization error
of multi-pass SGD with K passes is bounded by O((

√
Kn + K)η). This result can be easily

combined with training error guarantees to provide excess risk bounds for this algorithm. Since
training error can be measured directly, our generalization bounds would immediately yield strong
guarantees on the excess risk in practical scenarios where we can certify small training error.

• Differentially private stochastic convex optimization for non-smooth losses. We show that a
variant of standard noisy SGD [3] with constant step size and n2 iterations yields the optimal

excess population riskO
(

1√
n

+

√
d log(1/β)

αn

)
for convex nonsmooth losses under (α, β)-differential

privacy. The best previous algorithm for this problem is substantially more involved: it relies
on a multi-phase regularized SGD with decreasing step sizes and variable noise rates and uses
O(n2

√
log(1/β)) gradient computations [16].

1.2 Overview of Techniques

• Upper bounds. When gradient steps are nonexpansive, upper-bounding UAS requires simply
summing the differences between the gradients on the neighboring datasets when the replaced data
point is used [20]. This gives the bound of ηT/n in the smooth case.
By contrast, in the nonsmooth case, UAS may increase even when the gradient step is performed
on the same function. As a result it may increase in every single iteration. However, we use the
fact that the difference in the subgradients has negative inner product with the difference between
the iterates themselves (by monotonicity of the subgradient). Thus the increase in distance satisfies
a recurrence with a quadratic and a linear term. Solving this recurrence leads to our upper bounds.

• Lower bounds. The lower bounds are based on a function with a highly nonsmooth behavior
around the origin. More precisely, it is the maximum of linear functions plus a small linear drift
that is controlled by a single data point. We show that, when starting the algorithm from the origin,
the presence of the linear drift pushes the iterate into a trajectory in which each subgradient step is
orthogonal to the current iterate. Thus, if d ≥ min{T, 1/η2}, we get the

√
Tη increase in UAS.

Our lower bounds are also robust to averaging of the iterates. The detailed constructions and
analyses can be found in the full version of the paper.

1.3 Other Related Work

Stability is a classical approach to proving generalization bounds pioneered by Rogers and Wagner
[31] and Devroye and Wagner [10, 11]. It is based on analysis of the sensitivity of the learning

2In fact, for both GD and fixed-permutation SGD we can obtain w.p. 1 upper bounds on δA(S, S′), whereas
for sampling-with-replacement SGD, we obtain a high-probability upper bound.
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algorithm to changes in the dataset such as leaving one of the data points out or replacing it with a
different one. Uniform stability was introduced by Bousquet and Elisseeff [4] in order to derive
general bounds on the generalization error that hold with high probability. These bounds have been
significantly improved in a recent sequence of works [18, 19, 5]. Chen et al. [9] establish limits of
stability in the smooth convex setting, proving that accelerated methods must satisfy strong stability
lower bounds. Stability-based data-dependent generalization bounds for continuous losses were
studied in [29, 25]. Independently and in concurrent work, Lei et al. [26] study on-average argument
stability of SGD with Hölder continuous gradients and some nonconvex settings. Their on-average
stability bounds match our uniform stability bounds in the nonsmooth convex case. Note however that
on-average stability is a weaker notion of stability than ours. In [26, Appendix G], a high probability
stability bound is derived for particular vanishing stepsize sequences; however, they lead to constant
excess risk bounds in the nonsmooth convex case (and for constant stepsize they incur in an additional√
T factor, compared to our bounds). In comparison, our bounds are more general (for arbitrary

stepsizes); moreover, we prove the optimality of our bounds up to constant factors.

First applications of uniform stability in the context of stochastic convex optimization relied on the
stability of the empirical minimizer for strongly convex losses [4]. Therefore a natural approach to
achieve uniform stability (and also UAS) is to add a strongly convex regularizer and solve the ERM
to high accuracy [32]. Recent applications of this approach can be found for example in [24, 6, 16].
In contrast, our approach does not require strong convexity and applies to all iterates of the SGD and
not only to a very accurate empirical minimizer.

Classical approach to generalization relies on uniform convergence of empirical risk to population
risk. Unfortunately, without additional structural assumptions on convex functions, a lower bound of
Ω(
√
d/n) on the rate of uniform convergence for convex SCO is known [32, 15]. The dependence

on the dimension d makes the bound obtained via the uniform convergence approach vacuous in the
high-dimensional settings common in modern applications.

Differentially private convex optimization has been studied extensively for over a decade (see, e.g.,
[7, 8, 21, 23, 33, 3, 35, 22, 34, 2, 16]). However, until recently, the research focused on minimization
of the empirical risk. A recent work of Bassily et al. [2] established that the optimal rate of the

excess population risk for (α, β)-DP SCO algorithms is O
(

1√
n

+

√
d log(1/β)

αn

)
. Their algorithms

are relatively inefficient, especially in the nonsmooth case. Subsequently, Feldman et al. [16] gave
several new algorithms for DP-SCO with the optimal population risk. For sufficiently smooth losses,
their algorithms use a linear number of gradient computations. In the nonsmooth case, as mentioned
earlier, their algorithm requires O(n2

√
log(1/β)) gradient computations and is significantly more

involved than the algorithm shown here.

2 Notation and Preliminaries

Throughout we work on the Euclidean space (Rd, ‖ · ‖2). We denote the Euclidean ball of radius
r > 0 centered at x ∈ Rd by B(x, r). In what follows, we assume X ⊆ B(0, R) is a closed, convex
set for some R > 0. Let ProjX be the Euclidean projection onto X . A convex function f : X 7→ R is
L-Lipschitz if

f(x)− f(y) ≤ L‖x− y‖ (∀x, y ∈ X ).

We denote the class of convex L-Lipschitz functions as F0
X (L). In this work, we will focus on the

class F0
X (L) defined over a compact convex set X . Since the Euclidean radius of X is bounded by

R, we will assume that the range of these functions lies in [−RL,RL].

Nonsmooth stochastic convex optimization: We study the standard setting of nonsmooth stochastic
convex optimization

x∗ ∈ arg min{FD(x) := Ez∼D[f(x, z)] : x ∈ X}.
Here, D is an unknown distribution supported on a set Z , and f(·, z) ∈ F0

X (L) for all z ∈ Z . In the
stochastic setting, we assume access to an i.i.d. sample from D, denoted as S = (z1, . . . , zn) ∼ Dn.

A stochastic optimization algorithm is a (randomized) mappingA : Zn 7→ X . When the algorithm
is randomized,A(S) is a random variable depending on both the sample S ∼ Dn and its own random
coins. The performance of A is quantified by its excess population risk

εrisk(A) := FD(A(S))− FD(x∗).

4



Note that εrisk(A) is a random variable (due to randomness in the sample S and any possible internal
randomness of the algorithm).

Empirical risk minimization (ERM) is one of the most standard approaches to stochastic convex
optimization. In the ERM problem, we are given a sample S = (z1, . . . , zn), and the goal is to find

x∗(S) ∈ arg min
{
FS(x) :=

1

n

n∑
i=1

f(x, zi) : x ∈ X
}
.

Risk decomposition: A common way to bound the excess population risk is by decomposing it into
generalization, optimization and approximation error:

εrisk(A) ≤ FD(A(S))− FS(A(S))︸ ︷︷ ︸
εgen(A)

+FS(A(S))− FS(x∗(S))︸ ︷︷ ︸
εopt(A)

+FS(x∗(S))− FD(x∗)︸ ︷︷ ︸
εapprox

. (2)

Here, the optimization error corresponds to the empirical optimization gap, which can be bounded
by standard optimization convergence analysis. The expected value of the approximation error is at
most zero. One can show, e.g., by Hoeffding’s inequality, that the approximation error is bounded by
Õ(LR/

√
n) with high probability (see full version). Therefore, to establish bounds on the excess

risk it suffices to upper bound the optimization and generalization errors.

We say that two datasets S, S′ are neighboring, denoted S ' S′, if they only differ on a single entry;
i.e., there exists i ∈ [n] s.t. for all k 6= i, zk = z′k.

Uniform argument stability (UAS): Given an algorithm A and datasets S ' S′, we define the
uniform argument stability (UAS) random variable as

δA(S, S′) := ‖A(S)−A(S′)‖.
The randomness here is due to any possible internal randomness of A. For any L-Lipschitz function
f , we have that f (A(S), z) − f (A(S′), z) ≤ LδA(S, S′). Hence, upper bounds on UAS can be
easily transformed into upper bounds on uniform stability.

In this work, we will consider two types of bounds on UAS.

High-probability guarantees on UAS: For any pair S ' S′, one can bound the UAS random
variable δA(S, S′) w.h.p. over the internal randomness of A. High-probability upper bounds on UAS
lead to high-probability upper bounds on generalization error εgen. We will use the following theorem,
which follows in a straightforward fashion from [19, Theorem 1.1], to derive generalization-error
guarantees for our results in Sections 4 and 5 based on our UAS upper bounds in Section 3.
Theorem 2.1 (follows from Theorem 1.1 in [19]). Let A : Zn → X be a randomized algorithm.
Suppose that the UAS random variable of A satisfies:

P
A

[
sup
S'S′

δA(S, S′) ≥ γ
]
≤ θ0.

Then there is a constant c such that for any distribution D over Z and any θ ∈ (0, 1), we have

P
S∼Dn,A

[
|εgen(A)| ≥ c

(
Lγ log(n) log(n/θ) + LR

√
log(1/θ)

n

)]
≤ θ + θ0,

where εgen(A) = FD(A(S))− FS(A(S)) as defined earlier.

Expectation guarantees on UAS: Our results also include upper and lower bounds on
sup
S'S′

E
A

[δA(S, S′)]; that is the supremum of the expected value of the UAS random variable, where

the supremum is taken over all pairs of neighboring datasets. This suffices to obtain generalization
error guarantees in expectation [20].

3 Tight Bounds on Uniform Argument Stability

In this section we establish sharp bounds on the Uniform Argument Stability for SGD with nonsmooth
convex losses. We start our analysis by a key lemma, which can be used to bound the UAS for generic
versions of SGD. Next we present one of our main results that establishes the first sharp bound on the
UAS of nonsmooth SGD. We only provide details for the sampling-with-replacement SGD method,
but full-batch GD and fixed-permutation SGD are analyzed similarly in the full version.
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3.1 The Basic Lemma

We begin by stating a key lemma that encompasses the UAS bound analysis of multiple variants of
(S)GD. In particular, all of our UAS upper bounds are obtained by almost a direct application of this
lemma. In the lemma we consider two gradient descent trajectories associated to different sequences
of objective functions. The degree of concordance of the two sequences, quantified by the distance
between the subgradients at the current iterate, controls the deviation between the trajectories. We
note that this distance condition is satisfied for all (S)GD variants we study in this work.
Lemma 3.1. Let (xt)t∈[T ] and (yt)t∈[T ], with x1 = y1, be online gradient descent trajectories for
convex L-Lipschitz objectives (ft)t∈[T−1] and (f ′t)t∈[T−1], respectively; i.e.,

xt+1 = ProjX [xt − ηt∇ft(xt)]
yt+1 = ProjX [yt − ηt∇f ′t(yt)],

for all t ∈ [T − 1]. Suppose for every t ∈ [T − 1], ‖∇ft(xt) − ∇f ′t(xt)‖ ≤ at, for scalars
0 ≤ at ≤ 2L. Then, if t0 = inf{t : ft 6= f ′t},

‖xT − yT ‖ ≤ 2L

√√√√T−1∑
t=t0

η2t + 2

T−1∑
t=t0+1

ηtat.

Proof. Let δt = ‖xt − yt‖. By definition of t0 it is clear that δ1 = . . . = δt0 = 0. For t = t0 + 1,
we have that δt0+1 = ‖ηt0(∇ft0(xt0)−∇f ′t0(yt0))‖ ≤ 2Lηt0 .

Now, we derive a recurrence for (δt)t∈[T ]:

δ2t+1 = ‖ProjX [xt − ηt∇ft(xt)]− ProjX [yt − ηt∇f ′t(yt)]‖2 ≤ ‖xt − yt − ηt(∇ft(xt)−∇f ′t(yt))‖2

= δ2t + η2t ‖∇ft(xt)−∇f ′t(yt)‖2 − 2ηt〈∇ft(xt)−∇f ′t(yt), xt − yt〉
≤ δ2t + η2t ‖∇ft(xt)−∇f ′t(yt)‖2 − 2ηt〈∇ft(xt)−∇f ′t(xt), xt − yt〉 − 2ηt〈∇f ′t(xt)−∇f ′t(yt), xt − yt〉
≤ δ2t + η2t ‖∇ft(xt)−∇f ′t(yt)‖2 + 2ηt‖∇ft(xt)−∇f ′t(xt)‖δt − 2ηt〈∇f ′t(xt)−∇f ′t(yt), xt − yt〉
≤ δ2t + 4L2η2t + 2ηtatδt,

where at the last step we use the monotonicity of the subgradient. Note that

δt0+1 ≤ ηt0‖∇ft0(xt0)−∇f ′t0(xt0)‖ ≤ 2Lηt0 .

Hence,

δ2t ≤ δ2t0+1 + 4L2
∑t−1
s=t0+1 η

2
s + 2

∑t−1
s=t0+1 ηsasδs

≤ 4L2
∑t−1
s=t0

η2s + 2
∑t−1
s=t0+1 ηsasδs. (3)

Now we prove the following bound by induction (notice this claim proves the result):

δt ≤ 2L
√∑t−1

s=t0
η2s + 2

∑t−1
s=t0+1 ηsas (∀t ∈ [T ]).

Indeed, the claim is clearly true for t = t0. For the inductive step, we assume it holds for some
t ∈ [T − 1]. To prove the result we consider two cases: first, when δt+1 ≤ maxs∈[t] δs, by induction
hypothesis we have

δt+1 ≤ δt ≤ 2L
√∑t−1

s=t0
η2s + 2

∑t−1
s=t0+1 ηsas ≤ 2L

√∑t
s=t0

η2s + 2
∑t
s=t0+1 ηsas.

In the other case, δt+1 > maxs∈[t] δs, we use (3)

δ2t+1 ≤ 4L2
∑t
s=t0

η2t + 2
∑t
s=t0+1 ηsasδs ≤ 4L2

∑t
s=t0

η2t + 2δt+1

∑t
s=t0+1 ηsas,

which is equivalent to(
δt+1 −

∑t
s=t0+1 asηs

)2
≤ 4L2

∑t
s=t0

η2t +
(∑t

s=t0+1 ηsas

)2
.

Taking square root at this inequality, and using the subadditivity of the square root, we obtain the
inductive step, and therefore the result.
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Theorem 3.2 below summarizes our results for the UAS of sampling-with-replacement SGD on
nonsmooth losses. Given our key lemma, we prove both in-expectation and high-probability upper
bounds on the UAS. Our theorem below also establishes the tightness of our upper bounds by showing
a matching lower bound. Detailed statements of these results and their full proofs are deferred to
the full version of the paper. Similar analysis of full-batch GD and fixed-permutation SGD are also
deferred to the full version of the paper.

Algorithm 1 ArSGD: Sampling with replacement SGD
Require: Dataset: S = (z1, . . . , zn) ∈ Zn, # iterations T , stepsizes {ηt : t ∈ [T ]}

1: Choose arbitrary initial point x1 ∈ X
2: for t = 1 to T − 1 do
3: Sample it ∼ Unif([n])
4: xt+1 := ProjX (xt − ηt · ∇f(xt, zit))
5: return xT = 1∑

t∈[T ] ηt

∑
t∈[T ] ηtx

t

Theorem 3.2 (Sharp bounds on UAS for nonsmooth SGD). Let X ⊆ B(0, R) and F = F0
X (L). The

uniform argument stability of the sampling-with-replacement SGD (Algorithm 1) satisfies:

sup
S'S′

E
ArSGD

[δArSGD
(S, S′)] ≤ min

2R, L

2

√√√√T−1∑
t=1

η2t +
4

n

T−1∑
t=1

ηt

 .

Moreover, if ηt = η > 0 ∀t then, with probability at least 1− n exp (−n/2) (over the algorithm’s
internal randomness), the UAS random variable satisfies

sup
S'S′

δArSGD
(S, S′) ≤ min

(
2R, 4L

(
η
√
T − 1 + η

T − 1

n

))
.

Finally, if d ≥ min{T, 1/η2} and assuming3 T ≥ n, there exist S ' S′ such that Algorithm 1 with

constant stepsize ηt = η > 0 satisfies E
ArSGD

[δArSGD
(S, S′)] = Ω

(
min

(
R, L

(
η
√
T + ηT

n

)))
.

4 Generalization Guarantees for Multi-pass SGD

One important implication of our stability bounds is that they provide non-trivial generalization
error guarantees for multi-pass SGD on nonsmooth losses. Multi-pass SGD is one of the most
extensively used settings of SGD in practice, where SGD is run for K passes (epochs) over the
dataset (namely, the number of iterations T = Kn). To the best of our knowledge, aside from the
dimension-dependent bounds based on uniform convergence [32], no generalization error guarantees
are known for the multi-pass setting on general nonsmooth convex losses. Given our uniform stability
upper bounds, we can prove the following generalization error guarantees for the multi-pass setting
of sampling-with-replacement SGD. Analogous results can be obtained for fixed-permutation SGD
(using our stability bounds for the latter in Sec. 3 of the full version).
Theorem 4.1. Running Algorithm 1 for K passes (i.e., for T = Kn iterations) with constant stepsize
ηt = η > 0 yields the following generalization error guarantees:

|EArSGD
[εgen(ArSGD)]| ≤ 4L2η

(√
Kn+K

)
,

and there exists c > 0, such that for any 0 < θ < 1, with probability ≥ 1− θ − n exp(−n/2),

|εgen(ArSGD)| ≤ c

(
L2η

(√
Kn+K

)
log(n) log(n/θ) + LR

√
log(1/θ)

n

)
.

Proof. First, by the expectation guarantee on UAS given in Theorem 3.2 together with the fact that
the losses are L-Lipschitz, it follows that Algorithm 1 (when run for K passes with constant stepsize
η) is γ-uniformly stable, where γ = 4L2

(
η
√
Kn+ ηK

)
. Then, by [20, Thm. 2.2], we have

|EArSGD
[εgen(ArSGD)]| ≤ γ.

3The assumption that T ≥ n is not necessary. It is invoked here only to simplify the form of the bound (see
Table 1 or the full version of the paper for the general version of the bounds.)
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For the high-probability bound, we combine the high-probability guarantee on UAS given in Theo-
rem 3.2 with Theorem 2.1 to get the claimed bound.

These bounds on generalization error can be used to obtain excess risk bounds using the standard
risk decomposition (see (2)). In practical scenarios where one can certify small optimization error
for multi-pass SGD, Thm. 4.1 can be used to readily estimate the excess risk. In the full version of
the paper we provide worst-case analysis showing that multi-pass SGD is guaranteed to attain the
optimal excess risk of ≈ LR/

√
n within n passes (for appropriately chosen constant stepsize).

5 A Simple Algorithm for Differentially Private Nonsmooth Stochastic
Convex Optimization with Optimal Risk

Now we show an application of our stability upper bound to differentially private stochastic convex
optimization (DP-SCO). Here, the input sample to the stochastic convex optimization algorithm is a
sensitive and private data set, thus the algorithm is required to satisfy the notion of (α, β)-differential
privacy. A randomized algorithm A is (α, β)-differentially private if, for any pair of datasets S ' S′,
and for all events O in the output range of A, we have P [A(S) ∈ O] ≤ eα · P [A(S′) ∈ O] + β,

where the probability is taken over the random coins ofA [14, 13]. For meaningful privacy guarantees,
the typical settings of the privacy parameters are α < 1 and β � 1/n.

Using our UAS upper bounds, we show that a simple variant of noisy SGD [3], that requires only n2
gradient computations, yields the optimal excess population risk for DP-SCO. In terms of running
time, this is a small improvement over the algorithm of [16] for the nonsmooth case, which requires
O(n2

√
log 1/β) gradient computations. More importantly, our algorithm is substantially simpler.

For comparison, the algorithm in [16] is based on a multi-phase SGD, where in each phase a separate
regularized ERM problem is solved. To ensure privacy, the output of each phase is perturbed with an
appropriately chosen amount of noise before being used as the initial point for the next phase.

The description of the algorithm is given in Algorithm 2.

Algorithm 2 ANSGD: Noisy SGD for convex losses
Require: Private dataset S = (z1, . . . , zn) ∈ Zn, step size η; privacy parameters α ≤ 1, β � 1/n

1: Set noise variance σ2 := 8L2 log(1/β)
α2

2: Choose an arbitrary initial point x1 ∈ X
3: for t = 1 to n2 − 1 do
4: Sample it ∼ Unif([n])
5: xt+1 := ProjX (xt − η · (∇`(xt, zit) + Gt)) , where Gt ∼ N

(
0, σ2Id

)
drawn indepen-

dently each iteration
6: return x = 1

n2

∑n2

t=1 x
t

We state the guarantees of Algorithm 2 below.
Theorem 5.1 (Privacy guarantee of ANSGD). Algorithm 2 is (α, β)-differentially private.

The proof of the theorem follows the same lines of [3, Theorem 2.1], but we replace their privacy
analysis of the Gaussian mechanism with the tighter Moments Accountant method of [1]. We note
that even though the algorithm of Abadi et al. [1] employs Poisson sampling rather than uniform
sampling, their privacy analysis is still applicable in our case. In particular, the only place where
sampling is invoked in their analysis is in [1, Lemma 3]. In the proof of that lemma, it is easy to see
that the only relevant condition that involves sampling is satisfied in our case.

Theorem 5.2 (Risk of ANSGD). In Algorithm 2, let η = R/
(
L · n ·max

(√
n,

√
d log(1/β)

α

))
. Then,

for any θ ∈ (6n exp(−n/2), 1), with probability at least 1 − θ over the randomness in both the
sample and the algorithm, we have

εrisk (ANSGD) = RL ·O

(
max

(
log(n) log(n/θ)√

n
,

√
d log(1/β)

αn

))

8



Proof outline: We first use standard online-to-batch conversion technique to provide a high-
probability bound on εopt(ANSGD) (excess empirical error of ANSGD). We next observe that our
high-probability upper bound on UAS in Theorem 3.2 applies directly to ANSGD since noise addition
does not impact the stability analysis. By Theorem 2.1, this implies a high-probability bound on the
generalization error εgen(ANSGD). Using the standard risk decomposition (see eq. (2)), we get a
bound on the excess population risk. Optimizing this bound in η yields the claimed bound value in
Theorem 5.2 (for the value of η in the theorem statement).

Full proofs of the theorems above are deferred to the full version (see Section 6.1 therein).
Remark 5.3. Using the expectation guarantee on UAS given in Theorem 3.2 and following similar
steps of the analysis above, we can also show that the expected excess population risk of ANSGD is
bounded as:

E [εrisk (ANSGD)] = RL ·O

(
max

(
1√
n
,

√
d log(1/β)

αn

))
.

6 Discussion and Open Problems

In this work we provide sharp upper and lower bounds on uniform argument stability for the
(stochastic) subgradient method in stochastic nonsmooth convex optimization. Our lower bounds
show inherent limitations of stability bounds compared to the smooth convex case, however we can
still derive optimal population risk bounds by reducing the step size and running the algorithms for a
longer number of iterations. We provide applications of this idea for differentially-private noisy SGD,
and for two versions of multipass SGD (sampling-with-replacement and fixed-permutation).

The first open problem regards lower bounds that are robust to general forms of algorithmic ran-
domization. Unfortunately, the methods presented here are not robust in this respect, since random
initialization would prevent the trajectories from reaching the region of highly nonsmooth behavior
of the objective (or doing it in such a way that it does not increase UAS). One may try to strengthen
the lower bound by using a random rotation of the objective; however, this leads to an uninformative
lower bound. Finding distributional constructions for lower bounds against randomization is a very
interesting future direction.

Our privacy application provides optimal excess risk for an algorithm that runs for n2 steps, which is
impractical for large datasets. Other algorithms, e.g. in [16], run into similar limitations. Investigating
whether quadratic running time is necessary for general nonsmooth DP-SCO is a very interesting
future direction, that can be formalized in terms of the oracle complexity of stochastic convex
optimization [30] under privacy constraints. We note that an excess risk of ≈

√
d/n is attainable

in linear time. For example, this can be achieved by running the noisy SGD algorithm of [3] for n
iterations with privacy parameter ε ≈ 1/

√
n, and use the algorithmic stability of differential privacy

itself to bound the generalization error. This excess risk is clearly suboptimal unless the desired
privacy parameter is very small.

Broader Impact

Our work is theoretical in nature. There are no immediate ethical or societal consequences for the
research presented here. We hope our results can offer theoretical insights that lead to a deeper
understanding of a basic algorithm of central importance to modern machine learning. Our results
can also have a direct impact on the design and analysis of differentially-private stochastic gradient
methods, which are widely used for private data analysis.
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