A Proofs of results in Section 3

A.1 Proof of Theorem 1

Here, we present the full proof of Theorem 1, with the precise bound spelled out. To present

the theorem, recall the definition of §%U,m(9{) in (5): let m,n be two positive integers, and let
U=(z1,22,.., Zm+n) € ™" be a sample set. Then we define a notion of Rademacher complexity

Rum (H) as follows if o is a vector of (m +n) 1ndependent random variables taking value ™%
with probability —=— and value -

Furthermore, define i)?{mm =Ey [i)?{U,m(ﬂ-C)].

The bound of Theorem 1 as stated in Section 3 is for the special case m = n, and is stated in terms of
the standard Rademacher complexity R, (H). This follows from the following bound:

Lemma 8. If m =n, then Ry, (H) < 4%y (H).

m+n

Z UiL(ha Z’i)

heH | i=1

S%Uym(ﬂ-f) = E [ sup

m+no

Proof. Since m =n, o is a vector of 2m variables taking values in {—2, 2} uniformly at random.

fUZL(h,ZZ) :|

i=1
2m
=—IE| sup s)» o;L(h,z
2m o heF ; ( )
se{—l +1}

- 1 [
Rum(30) = 50 B sup
L €

[ 1
<—E supZalL(h zl):| + ]E|:sup > —a;L(h, z)
2m o | hedt ;=1 hed ;=1

= 4Ry (KH).
O
Theorem 1. Let Pg € A(F) be a prior over H determined by the choice of S € Z™, and let n be

a positive integer. Then, for any § > 0, with probability at least 1 — § over the draw of the sample
S ~ D™, the following inequality holds for all Q € A(H), if D := max{D(Q| Ps), 2},

: 1, 1)3
h]ij[L(h,z)] < hIpQ[L(h,z)] + inf \/2 (2D + a+log N (o,m,n, Do) (£ + L) mn

2~ (10)

z~S
1,1 4D 1,13 8eD
+ 3\/(% + ;)log(T) + 2\/(% + ;) mnlog(=5-).
Similarly, for any § > 0, with probability at least 1 — § over the draw of the sample S ~ D™, the
Jollowing inequality holds for all Q € A(H):

hIEZQ[L(h,z)] < E [L(h 2)] + (1)232(2\/5+ )R () + \/210g(/\/(047m,n,€1)) (L+ %)Smn

z~D

+3\/ log(4D)+2\/ —+ mnlog(%).
1D

Proof. Fix p > 0 and define the sample-dependent hypothesis set as

Qs ={Q € A(H):D(Q| Ps) <},

where A () is the family of all distributions defined over H. We define the loss of @ € A(H) over
the labeled sample z = (z,y) € Z as £(Q, z) = (Q, L.). Thus, the expected loss of Q is

E [£@.2)] = E [L(h,2)]

z~D
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We also define the sample-indexed family of sample-dependent hypothesis sets Q,, ,, = (2s,,.) gezm
and the U-restricted union of sample-dependent hypothesis sets QU,m, uw=Usezm Qs .
Scu

In view of that, by Theorem 2, for any § > 0, with probability 1— ¢ over the draw of a sample .S ~ D™,
the following holds for any @) € Hg ,,:

E[L(h )] B [L(h2)]+2 max R,,(Qn) +3/(h + 1) loa(3) + 2/ (55
z~S

z~D
where iﬂz,m(Qm ) is defined for any U = (21,..., Zm4n) € 2™ as fOIIOWS' if o is a vector of
(m+mn) 1ndependent random variables taking value " with probability —— and value —"-** with

probability —"*, then

. 1 mn
m?f,m(gm,#) :]El Sup Z 02<Q3L21>] .

QeaU,m,,u m+n =1

Via covering number arguments for D,, (Lemma 1) and ¢; (Lemma 2) we derive bounds on
Um (Qm.)- The bounds in the theorem then follow by applying Lemma 3. O

A.2 Proof of Lemma 1

Lemma 1. Forany a > 0, we have

° (0 H)(\} (u+a+logN(a,U,Doo))(1+1)3mn
m m, b m .

2 n

Proof. Let C be a covering for U under D, at scale a of size N'(a, U, Do, ). Define SU,m,p+a aS
Sumpra ={Q e A(H): 3P e Cs.t. D(Q|P) < p + o}

Now, let @ € Hr7,m, .- Then there exists a some subset S of U of size m, such that D(Q| Ps) < p.
Since C is a covering for U under D, at scale «, there exists a distribution P’ € C such that
Do (P|P") < . We have D(Q||P") < D(Q||P) + Doo (P|P") < pu+ cv. Thus, Q € Sy, j+a. This

implies that 37, S Sum,pra-

In the following derivation, we will use the shorthand uy(h) = Yi1" o;L(h,z;), so that
S 0:{Q, Le,) = (@ ). Forany P e C and Q € A(30), define ¥ p(Q) by Ws(Q) = D(Q|Ps)
if D(Q||Ps) < p + a and +o0 otherwise. It is known that the conjugate function ¥} of ¥ p is given
by U5 (u) =log ( Ehep[e“(h)]), for all u € R¥* (see for example [Mohri et al., 2018, Lemma B.37]).
We now upper bound the transductive Rademacher complexity term as follows:

1
U (@mop) = El sup (wa)} (definition of ue)
’ ’ m+no -
QeHu m,u
1 _
< E Ue Hum,pu € Sum,pra
m+n U[QGS?E,MQ (@ u )] (Hu, € GUm. s )
) -
B (@) (t>0
(m+n)t o Qegu v
) ~
=——FE|sup sup (Q, tua)] (iterated sup)
(m +n)t o | PeC @: D(Q|P)<p+a
) -
<——E|sup sup [Up(Q)+ \Il}(tu,,)]] (Fenchel inequality)
(m+n)t o | PeC @: D(Q|P)<p+a
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“(m+n)te

]E[sup [u+a+ \Ilfg(tuc,)]] (definition of U p(Q))

PeC
'u+a 1 o . .
i ’ Elsup Vp(tug distribut
(m+n)t (m+n)ta[§:g p(tu ):| (distribute)
. pta tua(h)) o .
) Elsuplog( E definition of W
(m+n)t  (m+n)t a[spgg Og(hwp[e ] (definition of ¥})

We now upper bound E, [sup p¢ log (Ep-p[e t“"(h)])] as follows:

E|suplo (IE et“"(h)
°'|:Peg & hNP[

] [log sup E
Pec h

(log is mon. incr.)

tua(h)])

<log (bup E [ ““’(h)]) (Jensen’s inequality)
PeC h~P ]
<log ( t“"(h)]) (nonnegative terms)
PECh ~P J
_ tu,(h) . . .
log PZG:C hIEPIE ]] (lin. of expectation; h, o indep.)
=1 E E[etZH" oil(nz) f. of
og ch EE[e ] (def. of u, (h))
=log| > E [ E etoiL(hz: )H (indep. entries of &)
| peo P [ =1 9
[ t2 (m+n)®
<log Z E [e 8(mn)? H (Hoeftding’s lemma)
PeCh ~P
[ t2 (m+n)’
=log Z e 8(mn)? :| (no dep. on h)
| PeC
[ £2(m+n)®
=log||C]-e s(mm? (all terms equal)
t2(m +n)d
= log|C] + — "1
Plugging this back in, we get:
t2(m +n)d
7 mo) < prao log|C|+ ———
S e vl e vl R Yy
_p+a+loglC|  t(m+n)
 (m+n)t 8(mn)?

8(mn)2(u+a+log|C|)
(m+n)®

We find that ¢ =

minimizes the bound.

Plugging this optimal ¢ back in, we obtain:

7 (p+a+log|C)(m+n)3

p+a+log|C]

<>UWL(QWL”U«) <

A.3 Proof of Lemma 2

Lemma 2. For any o > 0, we have

Um(Qmp) < (\/ﬂ+a)9~%y7m(i}() + \/W (i N 1

2(mn)?

3
) mn.
2

()

3
) mn.

m n
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Proof. Let C be a covering for U under ¢, at scale « of size N'(a, U, £1). Let Gy, be the

union of all the ¢; balls of radius \/2u + « around distributions in C, i.e.
SUm.vzi ={QeA(H): IP e Csit. [Q-Ply<\/2u+a}.

Now, let ) € ﬁy,myu. By Pinsker’s inequality, for some subset .S of U of size m, we have |Q—Ps|1 <
V2p. Since C'is a covering for U under ¢; at scale «, there exists a distribution P € C such that
| Ps = P[y < a. This implies that [Q - Ply < /2p+ ., 50 Q € Sy7,, /a51a- Hence Hypm i C
SU.m./Zi+a- In the following derivation, we will use the shorthand ug (h) = 3i27" 03 L(h, 2;), so

that ¥7°7" 0:(Q, L.,) = (Q, us). We can now proceed the bound the Rademacher complexity as
follows:

2pu+o

+no|, =
m+n | QeHu,m,u

<>U,'m ( Qm,u) =

E sup (Q,uqs)
| Q€Su,m,vam+a

[ sup (P, ua>] + (V3 + @) (30).

m+n o | peC

The last inequality follows since for any @ € Gy ,,, /554 there exists a distribution P € C' such that
|Q - PJl1 <+/2u+ «, and so we have

E[{Q - P.uo)] <E[IQ = Plifuc o] < (V201 + @) El[te | o] = (v/21 + @) (m + 1) R (39).

Now, define v : A(H) — [0,1]™*" as v(P); = Ep.p[L(h, 2;)]. Note that (P, us) = (o, v(P)), and
SO

E [sup (P, ua):| =E [sup (a,v(P))] .

7 | PeC 9 | PeC

We can now bound E,, [sup p.c {0, v(P))] by a version of Massart’s lemma which applies to non-
Rademacher (but still zero mean) random variables o, as follows: let £ > 0 to be chosen momentarily.
We have

exp (tE [sup (o, v(P))]) <E —exp (t sup (o, v(P)))- (Jensen’s inequality)
PeC L PpeC J
<E Z eXP((U,tU(P»)]
PeC

=E Z Hexp(tU(P),o'Z)
7 LpPeci=1
m+n

Z H [exp(tv(P);0;)]

PeC i=1 7t

<|Clexp ( £ (man)” ) (Hoeffding’s lemma).

8(mn)?

Thus,

B (Qmp) € E[sup <a,v(P>>] + (V20 + )Ry, (30)
m+mno|peC

L 0

Setting t = 4 / w to minimize the bound, we obtain:
m+n)®

T, (o) < \‘ (e WM OBICT (/o v ), (30).

2(mmn)?
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A.4 Proof of Lemma 3

Lemma 3. Suppose the following bound holds with probability at least 1 — § over the choice of S:

forall Q) € Qs ,,
E (L)< B [L(h)]+ £(n) +6(0),
z~D z~S

where f is an increasing function of u and g is a decreasing function of §. Then, the following holds
with probability at least 1 - § for all Q € A(H):

JE [L(h,2)] < E [L(h2)] + f(2max{D(QIPs).2)) + 9 (marmiameyar )

h~Q
z~D z~S
Proof. The proof follows [Kakade et al., 2008][Corollary 8]. First, define the sequences (1, );‘;0 and
(53-);10. Leta=4, p; = a2 and 0; = 2-G+1§. 5o that Z;‘io §;=96.

By the union bound, we thus have that with probability at least 1 — ¢ over the draw of a sample
S~ D™, forall Q e A(H):

E L2 < B (L0 2]+ () + 9(6) (12)
z~D z~S

oo

where 1 is the smallest element of (11;) 32, such that D(Q||Ps) < p;j (i.e., since we have a sequence
of bounds holding for increasing values of 1 ;, we choose the tightest applicable bound for each Q).

We now plug in the values of y;,d;:
B [L(h, )] < B [L(h,2)] + f(a2) +g(270*D5) (13)
z~D z~S

and try to upper bound the RHS in terms of D(Q|Ps), eliminating any appearances of j (i.e., we
want a single bound that captures the sequence of bounds).

Upper bound y.;: By the assumption that 11; is the smallest element of (11;)52, such that D(Q| Ps) <
i, we necessarily have D(Q||Ps) > pj-q for j > 1. (For j = 0, this simply yields D(Q||Ps) > 0,
which will not help, so we need to handle j = 0 separately.)

For j > 1, we thus have D(Q| Ps) > p1;-1 = 277, 50 2D(Q|| Ps) > a27.

For 5 =0, a2 = a.

This yields: _
a2’ <max{2D(Q|Ps),a} =2max{D(Q|Ps),2}.

Lower bound §;: Since §; = 201§, we use the same assumption as above to obtain 4D(Q| Ps) >

a27*! and then use the definition of d; to obtain the lower bound: §; > Wél\l’s) for j > 1. For j =0,

we simply have ¢; = §/2 by definition. This yields:

5«>mm{“§ 5/2}— 0
T AD(Q|Ps)’ max{D(Q|Ps),2}
The stated bound follows from the monotonicities of f and g. [
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B Proofs of results in Section 4

B.1 Proof of Theorem 3

We prove Theorem 3, with the exact bound explicitly spelled out:

Theorem 3. Suppose Q. = (Qg)sczm is B-uniformly stable. Then, for any § > 0, with probably at
least 1 — § over the draw of the sample S ~ D™, the following holds for all Q € Qg:

Q[L(h 2)] < IE [ iL(h zl):|

z~D
+29%°(Qm)+(2ﬂ(29% (J{)+\/W)+ ) 8mlog(%).

Proof. The proof is along the lines of the proof of Theorem 2 in [Foster et al., 2019] with a tighter
analysis coming from the special structure in our setting. Specifically, for two samples S, 5" € 2™,
define the function ¥ (.S, S") as follows:

U(S,8') = sup (Q.0)-(Q,ls),

where ¢, (g € R defined as £(h) = E..p[L(h,z)] and g/ (h) = E..g/[L(h,z)], where z ~ S’
indicates uniform sampling from S’. The proof of the bound consists of applying McDiarmid’s
inequality to ¥(S,.S). To do this, we need to analyze the sensitivity of this function, i.e. compute a
bound on |U(S,S) - ¥(S’,S")| where S’ is a sample differing from S in exactly one point. As in
[Foster et al., 2019], we first observe that ¥(S, ) - ¥ (S, S") < -, so now we turn to

‘11(575')—‘1’(5',5'):5%13 (@.0) = (Q,ls) = sup (Q,0) - (Q, Ls).

QEQSI

By definition of the supremum, for any € > 0 there exists a (). € Qg such that

sup (Q7£> - <Q7‘€AS’) —€< sup <Q67‘€> - <QE?£S')'
QeQs QeQs

Using the 3-stability of Q,, = (Qg)sezm, there exists a Q.. € Qg such that |Q. — Q%|1 < 26. Thus,
we have

U(S,8") - (S, 9) <(Qer£) = (Qer lsr) + € = (QL,0) = (QL, Lgr) + €
=(Qc— QL L—ls)+e
< Q- QL5 oo +e
<208 Sl}llp [6(h) —Ls:(h)| +e.

Since this bound holds for any € > 0, we conclude that ¥ (S, $")-W(S’,8") < 2B sup,, |¢(h)—Ls (h)),
which implies that

U(S,S) —U(S',8") < 28sup|e(h) - P (B)] + ~ <28+ -
h m m

Now, via standard Rademacher complexity bounds Mohri et al. [2018], with probability at least 1 — §
over the choice of S’, we have

Supl(1) = s (1) € 290, (90) + [ 220D

Thus, with probability at least 1 — §’ over the choice of S’, we have

2m m

\I/(S,S)—\I/(S”Sl)S2ﬁ(2mm(5{)+ 10g(2/5’))+1.
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Define B := 273 (29%,”(5}() + \/%) + % for notational convenience. Now we can apply a

variant of McDiarmid’s inequality that allow almost-everywhere stability [Kutin and Niyogi, 2002]
(using the explicit form in Theorem 5.2 in [Rakhlin et al., 2005] with M = 23 + - , Bn = B, and
0y, = ¢') to conclude that for any ¢ > 0,

2(26 + . )md’ ~t? 1.5
PlT(S,S)-E¥(S,S)|>t] < (8 BQ) B < 2exp S’ +2m 4.

Now, set §’ = 5-° S andt = By /8mlog(3) so that P[|W (S, S)~E ¥(S,S)| > t] < 4. Finally, exactly
as in [Foster et al., 2019], we have Eg.. Dm[ (S,5)] <22, (Qm). O

B.2 Explicit bound of Theorem 4

Theorem 4. Suppose the family of sample-dependent priors (Ps) sezm has Do sensitivity €. Also
assume that for some 1 > 0, we have Ps(h) > n for all h € 3, and all S € Z™. Then, for any 6 > 0,
with probability at least 1 — 0 over the draw of the sample S ~ D™, the following inequality holds for
all Q € A(H): if D = max{D(Q| Ps), 2},

E[L(h2)] <, [ ZL(hzz) +2\J‘f+262+26,/10g(2::2/’7)+\/§+;

z~D
+(4e(29{m(9{)+ log@xm”’DM)) m) 8mlog(TD).

2m

B.3 Lemma 9 & Proof

Lemma 9 (Extension of Lemma 3.17 in [Dwork and Roth, 2014]). Let P be a distribution on
(S,T,h) s.t. DL (P || D*™ ® P) < K, where D*™ is the marginal distribution of (S,T) induced by
P and P is the marginal distribution of h induced by P. Then 3 a distribution P’ on (S,T,h) s.t.
|P =P |rv <y and Doo (P’ || D*™ ® P) < k (following Lemma 3.17) and, further, P and P’ induce
the san;e marginal distributions on (S, T) - i.e., the marginal distribution of (S,T) induced by P’ is
also D=,

Proof. We construct P’ s.t. P . = D?™ (i.e., the marginal distribution of (.S, 7) matches that of P
by design) and then, for any fixed (S, T"), we define the conditional distribution fP;L‘ (s,r) in terms of
Ph(s,) as follows (as is done in Lemma 3.17):

Let Sg.7 = {h: Pps,ry(h) > € -P(h)} and Ts 1 := {h: Pps,ry(h) < P(h)}. (For the moment,
k can be thought of as any positive constant; its connection to our assumption will only come into
play at the end, with .)

We want to remove the following total probability from Sg 7:

> [Prcsmy(h) =€ P(h)] = Pusry(Ss.r) — € - P(Ss,r)

hESSyT

And we have the following additional capacity in T g 7:

> [P() = Pusmy(W)] = Y [Puicsry(h) -P(h)]

hETsyT heTS,T
> Y [Py (h) - P(h)]
hESS,T
2 Z [iPh|(S,T)(h)_eH',P(h):|v
hESS’T

which exceeds the mass we want to remove from Sg 7.

Therefore, just as in Lemma 3.17, we can lower the probabilities for h € Sg 1 and raise the probabili-
ties for h € T g 7 to construct :P,h\(S - We obtain:
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1. Vhe SS,T, UJ;L|(S,T) (h) =e"- P(h) < Th\(S,T)(h)~
2. YVheTg, Th\(S,T)(h) < T;1|(S,T)(h) < P(h)

3. Vh ¢ SS,T U TS,T, T;z|(S,T)(h) = (Ph|(S,T)(h) <erv. P(h)

We thus have DM(?;L\(S,T) | P) < x and consequently Do, (P’ || D™ @P) < k, due to the equivalent
marginal distributions on (S, T).

Formally, our original assumption D (P || D?*™ ® P) <  means that for all events E:

P(E) —e"- (D*™ @ P)(E) <.

Let E := {(S,T,h) € D™ x H : Pp s,y (h) > €™ - P(h)}. We then have:

7' =Pl = B [Py - Pasnlay]
T (8T)~ D[ ns.)(Ss.r) = h|(s,T)(Ss,T)]
(ST) L m [?m(ST)(SST ~P(SsﬁT)]
E T = e~ ®2m E T
(ST) ~D2m [iP( |S ) € ( ®7))( |S )]
=P(E)-e*- (D’ @ P)(E)
<.

We have thus shown that [P’ — P|ty < v and Do (P’ || D*™ ® P) < & for a P’ whose marginal
distribution on (S, T") matches that of P. O

B.4 Proof of Theorem 5

We prove Theorem 5, with the exact bound explicitly spelled out:

Theorem 5. Suppose the family of sample-dependent priors (Ps) sezm has Do sensitivity €. Then,
for any § > 0, with probability at least 1 — § over the draw of the sample S ~ D™, the following
inequality holds for all Q € A(H): if D = max{D(Q| Ps), 2},

Q[L(h 2)] < IE [ iL(h zZ:|

z~D
4D + 4log(2 /log(2
+ max {4\' +70g() +2€2 + 2¢ w, 862/3m7n(9{)1/3, 864/5}
m m

2 log(4m'5D/§
+—— + | 4e| 2R, (H) + M 8mlog(TD).
vm 2m m
Proof. Define a sample-dependent family of distributions Q,, = (Qg)gezm where Qg =

{Q: Deo(Q|Ps) < u} for some parameter ;. We now apply the bound in Theorem 3, using
the bound on the Rademacher complexity from Lemma 10, and the bound 3 < 2¢ from Lemma 6.
Finally, a uniform bound over all values of u follows by an application of Lemma 3. [

Lemma 10. IfDo.(Ps || Ps') < eforall S,S" € 2™ differing by exactly one point, then

Ry (Qm,pu) < max{?\j 2p + 4log(2) +2€2 + 2¢\ lmg(2)7462/39%m(g{)1/3,464/5} + i
m m vm
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Proof. Assume Do, (Ps || Ps/) < ¢ for all S, S € Z™ differing by exactly one point.
Now, we fix the value of o € {—1,1}" and introduce the following two distributions on J:

(1) Let P, be a joint distribution on (S, T, h) induced by sampling S, T ~ D™, and then, conditioned
on the values of S and 7', sampling h ~ Psg, using the notation Psg introduced for Equation 8.

(2) Let P be the marginal distribution of h induced by P,. We have dropped o from the notation
because - since all elements of S and T" are sampled i.i.d. - we have:

erEpnPsz(W]= B [Ps(h)],

i.e., the marginal distribution of h is independent of o.

We first invoke several differential privacy results to show that, for the distributions P, and P as

defined above, and # := €2m + ey/mlog(2/v), we have:

DL (Po || D*™ @ P) < k. (14)

Specifically, consider U = (S, T) and U’ = (S',T") for S,T,S’,T" € Z™ such that U and U’ differ
by only one of their 2m elements. Then S% and S’7, can only differ by at most one element, so by
our main assumption: Do (Psg || PS/;,) < e. Crucially, another way of saying this is: the algorithm
A taking U = (S, T) as input and outputting h ~ Pge is an e-differentially private algorithm, so we
can apply Theorem 20 in [Dwork et al., 2015], with an input of size 2m, and obtain (14).

We now use Lemma 3.17 (Part 1) in [Dwork and Roth, 2014] to convert (14) into a result concerning
Do vs. D7, so we can more easily use it below. Specifically, by Lemma 3.17 (Part 1), there exists a
distribution P on (S, T, h) such that [P, — P. |1y <vand Do (P, || D*™ @ P) < k.

Finally, we upper bound fR;,(Q,, ) as follows. For convenience, we use a variable ¢ > 0 and
the function ¥ p(Q), which is defined as D(Q || P) if D(Q || P) < p and +co otherwise; thus,
its conjugate function is ¥} (u) = log (Epep[e“(™]), for all u € R [Mohri et al., 2018, Lemma

B.37]. We use the shorthand u,(h) = Y1y 0;L(h, 2;), where z; is element ¢ of sample T, so that
221 Ui(Q? L27,> = <Q7 ’LL0->.

P (@) = %]‘E“I?T) [D(QFEE%)SM<Q’tua>:|
< % IE (SIEET) [ \ijsiu(%)gu \IIPS% Q)+ \I/}ES% (tu,)] (Fenchel inequality)
7
< By —E (Vg (o)
= % + % IE (SI?IT) [log ( h~11[§5% [et“"(h)])] (definition of ™)
< % + % ]Elog ( (S,T,]g)w,, [et“"(h)]) (Jensen’s inequality) (15)

In the following, to make the dependence of u, on the set T' explicit, we now denote it as us 7. For
any sample 7', define W(T') by ¥(T) = - supj,.q¢ (umT(h) ~Eqr.pm [u,,yT,(h)]). Changing one

point in T affects ¥(T') by at most 1/m, since the loss is bounded by one. Thus, by McDiarmid’s
inequality, for any fixed o and for any § > 0, we have

SP | UT) s B TU(T)]+/ miim] >1-4.
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Now, Er.pm [¥(T)] can be bounded in terms of the Rademacher complexity as in the standard
analyses:

1
U(T)yl=— E E - ’
R T MO ORe 0)]

1

<— E [sup U, (h) - u,,,T/(h)] (sub-additivity of sup)
m T,T'~Dm hek
1 m ,

<— E 5 sL(h,zl) = o;L(h, 2"
RN RS
]. m /

<— E (i L(h,21) = o, L(h, 2 Rademach iables f3;
mT,T’~Dm,ﬁ|:iB£;ﬁ(U (h,2; ) - o;L(h,z )] (Rademacher variables (3;)

<

2 E [supiﬁi(oiL(h,ziT )]

m T~D™.B | hed ;-1

2 E [sup i BiL(h, ZZT ]

m T~D™.B | heH j=1
2R, ().

Thus, for any fixed o and for any § > 0, we have

TN]I;m I:Sl}llp (ua,T(h) - T/NEbm[u"’T'(h)]) <2mR, (H) ++v/2m log(l/é)] >1-4. (16)
Note that for any h, we have Epr.pm[usr(h)] = X" 0;E..p[L(h,z)], and hence
|Eqrapm [ue 1 (h)]| < | Xitq 0;]. Hence, we conclude that

+2mR (H) + \/leog(l/(S)] >1-4. (17)

m
P [ h s‘ :
P 5lillpua,T( ) ;01

For notational convenience, define

+2mR,, (H) +/2mlog(1/6).

NgE

B ::|

0

(3

I
=

Now, let § := e7¥, and let G € Z™ be the set of m-element samples 7" such that
G = {T e Z™: supug r(h) < BU}.
h
By (16), we have Pr.pm [G] > 1 - §. Hence, we have

(S,T,Iii‘;)@cr [etumT(h)] < E [etu"’T(h)] + (sup sup et“a,T(h)) . (

< P[TeG|-P[TeG
(S, T,h)~P, TeG h To[ €] Ts[ ) ]|)

+etm-UI)P’[T¢G]

< E tuo.,T(h) + tBo + tm5
hS (ST h)~P, |:€ ] e €

— t’u.ayT(h) tBs
(S,T,]g%?;, [e ] + e +1

< (579" [ ® 1) (et 1),

Using this bound in (15), we get

Ry (Qmp) < % + %]E[log((&T’IE)N% [et““(h)] + 1) +log (yetB" + 1)] (18)
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We bound the two terms involving the logarithm in (18) separately. First, we have

o

As for the second term, setting ~y

Elog( E [emv(“] +1)

(S,T,h)~P",

IEI g ( ST h)]ED2m®73 [e“et“"(h)] + 1) (since Doo (PL[D*™ @ P) < k)
<lo ( . D’m@v:lg [eﬁetua(h)] v 1) (Jensen’s inequality)
<lo ( (5T :D,m@m emtmiti2 1) (Hoeffding’s lemma)
<log (26”‘”’” /2) (eF+mil2 5 1)
Sn+m72€2+log(2). (19)

_ 3/2
—e (2mtR,, () +V/2mt )’ we have

Elog (e + 1) = Elog (' (25 l2m?n (O=2m 02(/D) 1 1) (definition of B,)
o

_ IElog HED oil 1) (using y = e—(zmtmm(}c)+\/§mt3/2))

(¢
<E10g( Hxi 1‘”')
e

i=1

]+log

= tE[ =n Ji)2:| +1og(2)

q
| |
I—I

E|(ZF, 0:)%|+1og(2) (Jensen’s inequality)

o

= V/mt +log(2) (20)

Using bounds (19), (20), and the bound on & in (18) we get

R (Qmp) < — L (u+&+—+\/_t+210g(2))

1 (s e\/m(2miR,, (30) +VZmtH2)) + mlog(2) + 7 + mt + 2log(2))

< max 2\J 2 A1082) | ga 90y [1082) gy 30y gerrn | L

m m vm’
settingt:max{\/m*ﬂ?gm +2€2 + 2¢ bg77§2),262/3mm(3’f)1/3,264/5}. O
B.5 Proof of Theorem 6

The requirement in Theorem 5 that the family of sample-dependent priors (Ps)gezm has Deo
sensitivity € is equivalent to saying that the priors define an e-differentially private mechanism. Here,
we give an extension to Theorem 5 which makes the weaker assumption that the priors define an
(e, 0)-differentially private mechanism, for some § > 0. The extension relies on the following theorem
of Rogers et al. [2016]. The statement given below is an adaptation of Theorem 3.1 in [Rogers et al.,
2016] that is implicit in their proof. We need this more nuanced statement for our analysis.

Theorem 7 (Theorem 3.1 in [Rogers et al., 2016]). Let A : X™ — Y be an (¢, d)-differentially private
algorithm for € € (0, %] and § € (0,¢). Let D be any distribution on X and let S € X™ be a dataset

with elements sampled i.i.d. from D. Let P be the joint distribution of (S, A(S)), and P be the
marginal distribution of A(S). Then there is a constant ¢ > 0 such that for any v € (0, 1] we have

C ém
Di: Vi (P || D™ ®P) < 72¢*m + 6ey/2mlog(1/7) + C\@m.
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With this theorem, we can now prove the following theorem which is analogous to Theorem 5 but
assumes only the priors define an (e, §)-differentially private mechanism.

Theorem 6. Assume that € > 0 and § € [0, %e], where c is the constant from Theorem 7.
Suppose the family of sample-dependent priors (Ps)sezm satisfy the property that D2, (Ps||Ps/) < €
for all S,S" € Z™ differing in exactly one point. Then, for any v > 0, with probability at least
1 — v over the draw of the sample S ~ D™, the following inequality holds for all Q € A(H): if
D = max{D(Q| Ps), 2},

1 m
[L(h,z)] < hIEEQ [m ; L(h, zl)]

h~Q
z~D
4D + 6log(2 )
+ max {4\/ AD+618(2) | g0z, 302/, (30112, 3064/5}
m
2 Vo log(4m!'->D/v) 1Y m——mo
+m+463/2+(4€(2mm(5{)+ T +E 8m10g(7)
Proof. Define a sample-dependent family of distributions Q,, = (Qg)sezm where Qg =

{Q: Do (Q|Ps) < p} for some parameter ;1. We now apply the bound in Theorem 3, using
the bound on the Rademacher complexity from Lemma 11, and the bound 3 < 2¢ from Lemma 6.
Finally, a uniform bound over all values of x follows by an application of Lemma 3. O

Lemma 11. Assume that € > 0 and ¢ € [0, %e], where c is the constant from Theorem 7. Suppose

that D?_(Ps||Ps/) < € for all S,S" € 2™ differing in exactly one point. Then,

R (D) < max{Q\/Mlog(z) +300€2, 1562398, (F0) /3, 1564/5} L L, oV
m

—_— .
Vm o 8e3/2

Proof. The proof is exactly along the lines of the proof of Lemma 10. Instead of using Theorem
20 in [Dwork et al., 2015], we use Theorem 7 above. Using this theorem, the proof of Lemma 11

follows with
Kk = 144€*m + 12ey/mlog(1/7) + 20\/§m

and v replaced by v + 20\/§m. The bound (20) changes as follows: setting v =

e~ (2mtR, (30O +v/2mt?) exactly as in the proof of Lemma 10, and assuming that we choose ¢ < 2

.. . -16m
(t > 2 leads to a trivial bound), we note that v + 2c\/§m < 27y since we assumed that § < Z&W@ and
hence

Elog ((fy + 2c\/§m)et3" + 1) <Elog (ZWetB“ + 1) < v/mt +log(4).
Finally, we have

1 t?
R Qi) < —(u+ K+ mT +/mt + 3log(2))

mt

m

2
(u +144€*m + 126\/m(2mtfﬁm(9{) +/2mt312)) + 20\/5771 + Tt ++/mt
€
+3log(2) )

20+ 6log(2 .
< max {2\//“'60’?5() 130062, 1523R,,, (H) 1, 1564/5} . Vs
m

1
mt

<

ﬁ+ 8e3/2’

setting ¢ = min {max{\/%()g@) +300€2, 15e*/3R,, (H) /3, 1564/5} , 2} and using the bound
2c /9 < 2c ) < /8 ]

t Ve~ /300e2 V e = 832"
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Remark. The stipulation that § < %e in the statement of Lemma 11 is made simply to yield a

clean statement. It should be evident from the proof that other values of § also yield analogous bounds
e—(4mtmr,,L(IHf)+2\/§7nt3/2)

4c2m?2

on the Rademacher complexity. For example, we can allow § to be as large as €

for the value of ¢ in the proof above and retain the exact same bound.

B.6 Proof of Lemma 5

Lemma 5. Suppose |Ps — Ps:|1 < e for all S, S’ € Z™ differing by exactly one point. For some
p > 0, define the sample-dependent set of distributions as Qg ;, = {Q: D(Q|Ps) < u}, and the

corresponding family to be Q., ,, = (Qs,,)sezm. Then Q. ,, is 3-stable for f = min { f}iﬁ, €d2°° },

where doo = SUPg 57 geas

PSr

[e)

Proof. Consider an arbitrary Q) € Qg ,.

Case (1): D(Q || Psr) < .
In this case, @ € Qg ,,, 50 we choose Q' = @, and thus |Q’ — Qv = 0.

Case (2): D(Q || Ps/) > p.

We consider Q" = A\Q + (1 - \) Psy, for A = %llf;)) < 1. We show that )’ € Qg ,, as follows:

D(Q" || Ps) =D(AQ + (1= A)Ps || Ps:) <AD(Q || Psr) + (1= A)D(Psr || Ps) =D(Q || Ps) < pu,

where the inequality is by the convexity of relative entropy.

We can upper bound |Q" - Q||Tv in two different ways.
One way is to directly upper bound the TV distance as follows:

1Q" - Qlrv = [AQ + (1 - X)Ps: = Q| rv
=(1-N)]Q - Ps/|rv

[ Sairgie-roin
=[D(Q || Ps:)-D(Q || Ps)] m

_D(Q ] Ps') -D(Q | Ps)
S VD@ Ps)

(Pinsker’s inequality).

Alternatively, we can upper bound the TV distance by upper bounding the KL divergence as follows:

D(Q Q) =D(Q I \Q+(1-A)Ps)

<(1-M)D(Q || Ps) (convexity of relative entropy)
D(Q | Ps) ]
= 1 - D P ’
Bt r P@t

=D(Q || Ps) -D(Q | Ps)

= Q" - Qv < \/D(Q ” PS,); D@1 Ps) (Pinsker’s inequality).
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We upper bound the common term D(Q || Ps/) - D(Q || Ps) as follows:
ORI [1 Q(h)
h~Q

D(Q | Ps)~D(Q | Ps) = E |log

og (def. of relative entropy)
Ps(h) ]

E
h~Q | o8 Ps:(h) |

-1 (logx <z -1)

) h%:{Q(h) [Ps'(h) ) 1]

o Q) o
- h;( PSI(h) [Ps(h) PS (h)]

IN

% H | Ps - Ps| 4 (Holder’s inequality)

(),

where deo (f) = | flloo-

Putting this together, we obtain:

D(Q || Ps') -D(Q | Ps) [D(Q | Ps))-D(Q || Ps)}
2D(Q || Psr) 7 2

Q- Qv < min{

coinl e ()50 ()}

For convenience, define do, = supg g QeQs,, doo (%)
,S, ” =

Thus, if we define 3 := min {ﬁdw, ;dw}, then the family Q,, ,, is S-uniformly stable.

B.7 Proof of Lemma 6

Lemma 6. Suppose Doo(Ps || Ps/) < € forall S, S’ € Z™ differing by exactly one point. For some
p > 0, define the sample-dependent set of distributions as Qg ;, = {Q: D(Q|Ps) < p}, and the

corresponding family to be Q. ,, = (Qs, ) sezm. Then Qyy, ,, is f-stable for § = min {267 ﬁ7 \/g}

Proof. This follows from Lemmas 12 and 13. O

Lemma 12. [f Do (Ps || Ps/) < € forall S,S’ € Z™ differing by exactly one point, then Q,, ,, is

B-uniformly stable with 8 = min { \/62?’ %}

Proof. Consider an arbitrary ) € Qg ;.

Case (1): D(Q || Ps/) < p.
In this case, @ € Qg ,,, 50 we choose Q' = @, and thus |Q’ - Q|rv = 0.

Case (2): D(Q || Ps/) > p.

We consider Q' = A@ + (1 = \)Ps/, for A = g((glilgssf)) < 1. We show that )’ € Qg ,, as follows:

D(Q" || Ps') =D(AQ + (1= A)Ps: || Psr) <AD(Q || Psr) + (1 - A)D(Psr | Psr) =D(Q || Ps) < p,
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where the inequality is by the convexity of relative entropy.

We can upper bound |Q" - Q||Tv in two different ways.
One way is to directly upper bound the TV distance as follows:

1Q" - Qlrv = [AQ + (1 - \)Ps = Q| 1v
=(1-N)]Q - Ps/|rv

_[i-b@iP) |5 p,

-[1- g1 g e P

) |Q — Psr| v
= [D(Q || P) - D@1 P)) 5oy

D@ Ps) -D(Q | Ps)
- V2D(Q || Psr)

Alternatively, we can upper bound the TV distance by upper bounding the KL divergence as follows:

D(Q Q) =D(Q I \Q+(1-))Ps)

(Pinsker’s inequality).

<(1-2)D(Q | Ps) (convexity of relative entropy)
D(Q I Ps) ]
= 1 P ’
- B@trg P
=D(Q | Ps/) -D(Q || Ps)
= [Q"-Q|1v < \/D(Q ” PS’); D@ Fs) (Pinsker’s inequality).

We upper bound the common term D(Q || Ps/) - D(Q || Ps) as follows:

Q(h) Q(h)
] = [log Ps(h)

D(Q I P)-D(@ | 7o) = o

. Ps(h)
" [1og Ps'(h)]

< Do (Ps || Psr).

] (def. of relative entropy)

Putting this together, we obtain:
D@l Ps') -D(Q || Ps) _ Deo(Ps || Ps) €

-l = QT Pe) N

|Q" = Qlrv < min

{D(Q | Ps)-D(Q | Ps) [D(Q Ps')-D(Q | PS)}
VD@ Ps) 2

D.. (PS || Ps)  [Due(Ps | PS')}

< min R 9

<m — .
) { vem \/;}
So if we define 8 = min { Nk \/g }, then the family Q,, , is S-uniformly stable. O

Lemma 13. If Do (Ps || Ps/) < e forall S,S" € Z™ differing by exactly one point, then Q,, ,, is
B-uniformly stable with (3 = 2e.

Proof. For convenience, we measure stability using the total variation distance rather than ¢, and
then present the final bound in terms of ¢; stability.
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Consider an arbitrary @) € Qg ;.

Case (1): D(Q || Ps') <D(Q || Ps).
In this case, @ € Qg ,,, s0 we choose Q' = @, and thus |Q’ — Q|rv = 0.

Case (2): D(Q || Ps) > D(Q || Ps).

We consider Q' = A@ + (1 — \)Ps/, for A = E?((SIPI":S)) < 1. We show that Q" € Qg ,, as follows:

D(Q" || Ps') = D(AQ + (1= M) Py || Ps:) <AD(Q || Psr) + (1= A\)D(Ps || Ps) =D(Q || Ps) <

where the inequality is by the convexity of relative entropy.

Next we will upper bound D(Q’ || Ps). For this we will use the fact that D(Ps || Ps:) < 2¢2. This
fact is from [Popescu et al.] and we provide an alternate proof in Lemma 14 below. Given the lemma
we have

Pg(h)
D(Q || Ps:) -D(Q || Ps) = = [log Pj,(h)]

B Ps(h) Ps(h)
- h~P[ o8 Ps'(h)] " (hI~EQ - h~P)[10g Ps'(h)]
<D(Ps, Ps/) +€|Q - P|rv

<2e2 + €|Q - Ps|tv

<22 ey X 25T D(@ ” s) . (Pinsker’s inequality) (21

Next we show that () and Q' are close in total variation distance. We consider two cases:
Case a: D(Q | Ps) < 2¢2. Using convexity of D(Q || .) we have

D(Q Q) < (1-M)D(Q | Ps)
=D(Q [l Ps) -D(@Q || Ps)

<2+ e 2250 D@ ” Ps) [from (21)]

< 3é2.

Using Pinsker’s inequality we can conclude that |Q - Q'||Tv < 2e.
Case b: D(Q || Ps) > 2¢%. We have

1Q - Qv =(1-X)]Q - Ps| v

) ) 19~ Pyrllrv
=(D(Q || Ps') -D(Q || Ps)) D(Q | Ps)
1

D Ps:)-D —
<(D(Q I Pe) ~D(Q | ) s

[ from Pinsker’s inequality and the fact that D(Q || Ps:) > D(Q || Ps)]
2¢2 €
<—— + — [from (21)]
V2D(Q || Psr) 2

< 2¢ [since D(Q || Ps) > 2€°].

O

Lemma 14. [f Do (Ps, Ps') < € for all S, S’ € Z™ differing by exactly one point, then D(Ps ||
PSI) < 2€2.
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Proof. Suppose Do (Ps, Ps/) < € and Do (Psr, Ps) < €. Then,
E |log Ps(z) + E [log Py (@)
x~Pg PS/(,’L‘ x~Pgr PS(CC)

)
Ps(z) Pg/(x) Pgsi(z)
:EEDS [log PS/(QT) " log Ps(.’lt) ] * ZENPE—PS [log Ps(l‘) ]

ey |PS,(x) - Ps(x)| (since Doo (Ps, Ps), Doo(Psr, Ps) < €)

D(Ps || Ps') + D(Ps: || Ps)

P 4
e Y Py(a)|=2 (@) _ 1‘. (Ps(x) = 0 implies Py (z) = 0)
Ps(z)>0 Ps(x)
Next, since both Do, (Ps, Ps) and Do, ( Ps, Psr) are bounded by ¢, we have
Ps ()

-1

Ps () gmax(ee—l,l—e_e)

<e‘-1.
Hence we can conclude that
D(Ps || Ps/) + D(Ps: || Ps) <e(e“=1) > Ps(x)
Ps(w)>0
<e(ef-1)

< 262

B.8 Proof of Lemma 7

Lemma 7. Suppose |Ps — Ps:|1 < e for all S, S’ € Z™ differing by exactly one point. For some
p > 0, define the sample-dependent set of distributions as Qg ,, = {Q: |Q — Ps|1 < p}, and the
corresponding family to be Qy, ;, = (s, ) sezm. Then Q. is (B-stable for 3 = 5.

Proof. For convenience, we do the computations using the total variation distance rather than /1.

Since || Ps — Pg/| vy < 5, there exists a coupling Cy of Pg and Pg: such that if (X, X") ~ Cy, we

have P[X # X'] < §. Similarly, since | Ps — Q| v < 5, there exists a coupling C5 of Ps and ) such
that if (X,Y") ~ Ca, we have P[X # Y'] < £. Now construct a coupling C'3 as follows. First, sample

X ~ Psg. Then, sample X’ ~ C; conditioned on X, and independently, sample Y ~ C5 conditioned
on X. Set

V' o X ifX=Y
Yy otherwise.

Let Q' be the distribution of Y. Note that P[X = Y] > 1~ 4,50 P[Y' = X'] > 1 - £, which implies
that | Ps: — Q| v < . Furthermore, by a union bound, we have

P[Y’:Y]:gw[x’:X:Y]zg+1—(IP[X¢Y]+P[X¢X’])zg+1—(g+§):1—7.

So. [Q - Qv < 5. O
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