
A Bounded rationality, maximum entropy, and Boltzmann-rational policies

A perspective on reward learning that makes use at its core the Boltzmann model from Equation
1 would not be complete without a formal justification for it within our context. In this section,
we derive it as the maximum-entropy distribution for the choices made by a bounded, satisficing
human. Our explanation is complementary to that of [50] who derive an axiomatic, thermodynamic
framework to modeling bounded-rational decision making. Their framework leads to much the same
interpretation of the Boltzmann-rational distribution, but is significantly more complex than needed
for our purposes.

A perfectly rational human choosing from the set C would always pick the choice with optimal reward,
maxc∈C r(ψ(c)). However, since humans are bounded, we do not expect them to perform optimally.
Herbert Simon proposed the influential idea that humans are bounded rational and merely satisfice
[51], rather than maximize, i.e., they pick an option above some satisfactory threshold, rather than
picking the best possible option.

We can abstractly model a satisficing human by modeling their expected reward as equal to a
satisficing threshold, maxc∈C r(ψ(c))− ε where ε ∈ (0, εmax) is the amount of expected error. The
maximum possible error, εmax = minc∈C r(ψ(c))−maxc∈C r(ψ(c)), corresponds to anti-rationality,
i.e., always picking the worst option.

Given the constraint that the human’s expected reward is satisfactory, how should we pick a distribu-
tion to model the human’s choices? The principle of maximum entropy [52] gives us a guide. If we
want to encode no extra information in the distribution, then we ought to pick the distribution that
maximizes entropy subject to the constraint on the satisficing threshold.
Definition A.1 (Satisficing MaxEnt problem). Let be be a distribution P over choice set C and let
p be a density for P with respect to a base measure F . The Shannon entropy of P is defined as
H(P) = −

∫
C p(f) log p(f)dF (f). The satisficing maximum entropy problem is to find a distribution

P that maximizes entropy subject to the satisficing constraint (8):

max
P

H(P)

subject to
Ec∼P [r(ψ(c))] = max

c∈C
r(ψ(c))− ε . (8)

It is well-known that the maximum-entropy distribution subject to linear constraints (such as a
constraint on the mean like in (8)) is the unique exponential distribution that satisfies the constraints.
Thus, for our special case, the maximum-entropy distrbution is the Boltzmann distribution with
rationality coefficient β satisfying the satisficing constraint.
Theorem A.1 ([52]). The solution to the satisficing maximum entropy problem is the Boltzmann
distribution Pβ(f) ∝ exp(β ·r(ψ(c))) where β is the unique value satisfying the satisficing constraint
(8).

Since the expected reward Eβ [r(ψ(c)] is monotonically increasing in the rationality parameter β, the
satisficing error ε and rationality coefficient β have a one-to-one relationship, as summarized in the
following corollary.
Corollary A.1. The solution to the satisficing maximum entropy problem is a Boltzmann-rational
policy where the rationality coefficient β is monotonically decreasing in the satisficing error ε. In
particular, we have the following:

Human type Error ε Rationality β
Perfectly rational ε→ 0 β → +∞

Random ε = maxc∈C r(ψ(c)) −
Ec∼Unif(C)[r(ψ(c))]

β = 0

Anti-rational ε→ εmax β → −∞

Thus, we see that the idea of bounded rationality, as in satisficing, and Boltzmann-rationality are in
fact equivalent. By following the principle of maximum entropy, Boltzmann-rationality provides
a way to model a satisficing human, without implicitly adding in any other assumptions about the
human’s choice.

13

P
ro

x
y

R
ew

a
rd

Feasible RewardsTraining Environments Testing Environments

Env 1 Env 2 Env 3 Env 4

Ground

Truth

Proxy

Im
p

ro
v

em
en

t

Ground

Truth

Env 1 Env 2 Env 3 Env 4

C
o

m
p

a
ri

so
n

Env 1 Env 2 Env 3 Env 4

Ground

Truth

Ground

Truth

Figure 2: A case study for teaching a reward for robot arm motion using two training environments. The robot
trades off efficiency, keeping distance away from the human, and also from the table. We use the constraints
interpretation of feedback in this study. We start by defining a proxy reward that produces acceptable behavior
(orange trajectories) in the training environments (1st row). This initial feedback significantly prunes the feasible
space, but is not enough to guarantee good performance in other environments. On the right, we see trajectories
still considered feasible in two test environments. The green one is correct, however, the other feasible trajectories
are either too close to the human or too close to the robot. After an improvement feedback and a comparison, the
robot shrinks the space of feasible rewards, removing extraneous rewards that produce undesirable behavior at
test time.

B A case study on combining feedback types

Fig. 2 illustrates a case study for teaching a robot arm a reward for motion planning through a novel
combination of feedback types. In each environment, the robot arm must plan a trajectory from a
start configuration to a designated goal configuration. We want this trajectory to properly trade off
efficiency against staying at an appropriate distances to the human, and to the table. Hand-tuning
a reward function that returns desirable trajectories in all possible environments is actually very
challenging. You could imagine that as you increase the efficiency weight to produce a smoother
trajectory in one environment, you break the behavior in another environment where the robot now
gets too close to the human, etc. In fact, the first type of feedback in the case study illustrates this: we
design a (proxy) reward function that works well in two (training) environments (top left), but there
are many rewards that are consistent with that behavior, yet produce vastly different behaviors in the
two test environments (right).

Therefore, we start by defining a proxy reward, but then follow it up with more feedback: an
improvement, and a comparison between two trajectories. This narrows down the space of rewards
such that the robot can now generalize what to do outside of the training environments, as shown by
two testing environments (right).

Cost Function and Features.

Efficiency :=

|τ |−1∑
i=1

‖τ [i]− τ [i− 1]‖22 ,

14

Distance to Table :=

|τ |−1∑
i=0

1− exp(−disti)

where disti = |gst(τ [i])z − tablez| ,

Distance to Human :=

|τ |−1∑
i=0

1− exp(−disti)

where disti = ‖projx(gst(τ [i]))− projx(human)‖22 .

Efficiency is the sum of squared configuration space distances between consecutive trajectory
waypoints. The table and human features are expressed as 1 minus a radial basis function of a
modified distance between the object and the robot’s end effector positon (denoted by gst(τ [i]),
where gst is the forward kinematics that maps configuration ξ[i] ∈ Q to its end effector location
in R3). For the table, this modification is to only consider distance in the z-coordinate, effectively
measuring the distance from the robot’s end effector to the table plane. For the human, the
modification is to treat the human as an axis x and consider distance in 2 dimensions after
projecting onto the plane with normal x. In Figure 2, the main obstacle is either the human’s
body or his arm. When the body is the obstacle, x = [0, 0, 1] and when the arm is the obstacle,
x = [0, 1, 0]. This considers the human not as just a point, but rather a line along the body, or arm axis.

Optimization We approximate the space of reward parameters Θ by uniform discretization at the
surface of the non-negative octant of the 3 dimensional sphere (1371 points). Robotic motion
planners cannot, in general, compute the globally optimal trajectory for a given θ ∈ Θ so we resort to
computing a set T̂ of locally optimal trajectories for each θ via TrajOpt [53]. The optimal trajectory
for a given θ is then defined as

ξ(θ) := arg min
ξ∈T̂

θTφ(ξ)

Proxy Reward. For this case study, the robot begins by asking the human designer for a proxy reward
(cost) function. It is difficult for humans to provide proxies that work across all environments [2], so
the robot asks for a proxy that produces the desired behavior in the two training environments. The
human can provide the proxy weights: [0.55, 0.55, 0.55] and produce trajectories that match those of
ξθ∗ (Figure 2 depicted in orange). Providing a proxy applies constraints that shrink our feasible set
from Θ to Fproxy:

Fproxy = {θ̃ : θ∗Tφ(ξ
(1)

θ̃
) ≥ θ∗Tφ(ξ

(1)
θ) , θ∗Tφ(ξ

(2)

θ̃
) ≥ θ∗Tφ(ξ

(2)
θ) ∀ θ ∈ Θ} ,

where ξ(i)
θ denotes the optimal trajectory3 w.r.t. cost parameter θ in environment i. The new feasible

set Fproxy contains only the parameters θ that produce optimal trajectories with respect to the true
weights θ∗ in environments 1 and 2. Although it is a subset of the original feasible set Θ, the new
feasible set Fproxy is still a reasonably large set (Figure 2, top, middle, orange area). Furthermore,
although the proxy produces optimal trajectories in environments 1 and 2, it does not necessarily
for environments 3 and 4. Figure 2 (top, right) illustrates the different trajectories that result from
optimizing different θ ∈ Fproxy. To further narrow our feasible set, we will ask for another form of
feedback: Improvement.

Improvement. The robot will now (actively) provide a nominal trajectory, and ask the human to
improve it, i.e. alter the trajectory to better suit their preferences. Suppose the robot presents the
human with the nominal trajectory shown in gray (Figure 2, middle, left). This nominal trajectory is
inefficient, staying too close to the table. Based on θ∗, the human could provide the improved orange
trajectory (Figure 2, middle, left) that is more efficient and doesn’t emphasize closeness to the table
as much. This improvement reduces our feasible set from Fproxy to Fimprovement:

Fimprovement = {θ : θTφ(ξimproved) ≥ θTφ(ξR) θ ∈ Fproxy} .

Figure 2 (middle, middle) shows the effect of applying this constraint, shrinking the orange feasible
set. The feasible set has shrunk, but not enough to guarantee optimal behavior in all environments.

3In our case study, the optimal trajectory is unique.

15

Figure 3: Environments used for experiments on active selection of feedback. (Top) These four
environments were used during "training". (Bottom) These four environments were held as a test set
to measure maximum and average regret.

The improvement establishes that closeness to the table should not come at the cost of efficiency.
As a result, it removes the red trajectory in environment 3, which greatly traded off efficiency for
proximity to the table (Figure 2, middle, right). To further fine tune, we will ask the human to answer
a trajectory comparison.

Trajectory Comparison. The robot presents the human with two trajectories (Figure 2 bottom, left,
orange and gray) and asks which incurs less cost. The human answers "orange", the trajectory that
prioritizes efficiency over distance to the table. This comparison feedback shrinks our feasible set
from Fimprovement to Fcomparison:

Fcomparison = {θ ∈ Fimprovement : θTφ(ξorange) ≥ θTφ(ξgray)} .

We finally see a very small orange feasible set (Figure 2, bottom, middle). Appropriately, in all
four environments now, every θ ∈ Fcomparison produces a trajectory ξθ s.t. φ(ξθ) = φ(ξθ∗). This is
illustrated in Figure 2 (bottom, right) as only the optimal green trajectory remains in each environment.

Our case study showcases the usefulness of combining types of feedback. A designer might start with
their best guess at a reward function, the robot might misbehave in new environments, the designer or
even end-user might observe this and intervene to correct or stop the robot, etc. – over time, the robot
should narrow in on what people actually want it to do.

C Actively selecting which type of feedback to use

Given we can mix and match types of feedback, we may also wonder what is the best type to ask for
at each point in time. The probabilistic model defined by reward-rational choice hints at how to select
the feedback type – pick the one that maximizes expected information gain. We point this out, not
because using information gain as an active learning metric is a new idea, but because the ability to
use it arises immediately as an application of the formalism.

Suppose we can select between n types of feedback with choice sets C1, . . . , Cn to ask the user for.
Let bt be the robot’s belief distribution over rewards at time t. The type of feedback i∗ that (greedily)
maximizes information gain for the next time step is

i∗ = arg max
i∈[n]

I(rt; c
∗
i) = Ert,c∗i

[
log

(
p(c∗i | rt)∫

rt∈R p(c
∗
i | rt)bt(rt)

)]
,

where rt ∼ Bt is distributed according to the robot’s current belief, c∗i ∈ Ci is the random variable
corresponding to the user’s choice within feedback type i, and p(c∗i | rt) is defined according to the
human model in Equation 1.

16

Figure 4: Statistics computed over 10 iterations of our greedy maximum information gain algorithm.
We notice that demonstrations (purple) are initially very information dense but quickly flatten out,
whereas comparisons (cyan) obtain more information but less efficiently. We notice that combining
the two methods (orange) inherits the positive aspects of both, the efficiency of demonstrations with
the precision of comparisons.

To showcase the benefit of actively selecting feedback types, we run an experiment with demon-
strations and comparisons. We measure regret (maximum and expected difference, on holdout
environments, in ground truth reward between 1) optimizing with ground truth vs. 2) optimizing with
the learned reward). We manipulate whether we have access to demonstrations only, comparisons
only, or both, as well as the number of feedback instances queried.

One may initially wonder whether comparisons are necessary, given that demonstrations seem to
provide so much information early on. Overall, we observe that demonstrations are optimal early
on, when little is known about the reward, while comparisons become optimal later, as a way to
fine-tune the reward (Fig. 4 shows our results). The observation also serves to validate the approach
contributed by [49, 25] in the applications of motion planning and Atari game-playing, respectively.
Both papers manually define the mixing procedure we found to be optimal: initially train the reward
model using human demonstrations, and then fine-tune with comparisons.

Experiment Details We tested 3 different active learning methods: active querying of demonstrations,
active querying of comparisons, and active querying of demonstrations and comparisons, across 8
different gridworld environments depicted in Figure 3. The top 4 environments were used in training
while the bottom 4 were held for testing. Each environment e is a 25x25 gridworld MDP with a linear

17

reward function in 3 features: RGB color values of each pixel. We assign each e with 10 different
start goal pairs (s, g) from which the algorithms can ask queries. The goal of each algorithm is to
efficiently recover a ground truth reward r∗ through querying.

Since our rewards are linear in RGB, the feasible reward setR consists of 3D parameters that weight
the value of each feature in the reward function. R can be constrained to the surface of the 3D unit
sphere since reward functions in MDPs are scale invariant. We uniformly discretize points at the
surface of the 3D sphere to approximateR via R̂. To approximate Ξ, we first compute the optimal
trajectory under each r ∈ R̂ to make {arg maxξ r(ξ); r ∈ R̂}. We include trajectories that are not
the result of optimizing reward functions by inserting noise into the value function when computing
optimal trajectories as above.

Demonstrations and Comparisons as Hard Constraints The algorithms recover r∗ by narrowing
a set of feasible rewards with active queries. We use Ri to denote the set of feasible rewards at
iteration i of querying. Demonstrations and comparisons shrink the feasible set in the following way:

Rdemo
i+1 (ξd) = {r : r(ξd) ≥ r(ξ) r ∈ Ri; ∀ξ ∈ Ξ}

Rcomp
i+1 (ξ1, ξ2) =

{
Rcomp
i+1 (ξ1, ξ2) = {r : r(ξ1) ≥ r(ξ2) r ∈ Ri} ξ1 > ξ2
Rcomp
i+1 (ξ1, ξ2) = {r : r(ξ2) ≥ r(ξ1) r ∈ Ri} ξ2 > ξ1

For our experiments, we performed the following greedy volume removal over possible (s, g) pairs
that we specified in each environment.

Ri+1 =

{
Rdemo
i+1 (ξ∗d) Vdemo < Vcomp

Rcomp
i+1 (ξ1, ξ2) Vcomp < Vdemo

Vcomp = min
(s,g)

max
{
Rcomp
i+1 (ξ1, ξ2), Rcomp

i+1 (ξ1, ξ2)
}

Vdemo = min
(s,g)

Er∗∈Ri

[
|Ri+1(ξdemo

r∗)|
]

For demonstrations, we look for the (s, g) pair that in expectation produces a demonstrations that
leave the smallest feasible set (size of feasible set is volume or diameter described below). For
comparisons, we look for the pair of trajectories (ξ1, ξ2) that produce the minimum worst-case
feasible region remaining. For the method with demonstrations and comparisons, we computed the
above 2 metrics and select the feedback type with the smaller feasible region. We run this algorithm
for 10 iterations and average our results across 50 different ground truth r∗. We plot several statistics
for each iteration in Figure 4 including

|Ri| Volume at iteration i
supr1,r2∈Ri

‖r1 − r2‖2 Diameter at iteration i
maxe;(s,g); r∈Ri

r∗(ξ
(e,s,g)
r∗)− r∗(ξ(e,s,g)

r) Max regret at iteration i
Ee;(s,g); r∈Ri

[
r∗(ξ

(e,s,g)
r∗)− r∗(ξ(e,s,g)

r)
]

Avg regret at iteration i

where e is a holdout environment and (s, g) is a start-goal pair in the MDP. Each metric is a proxy for
how accurate our estimate of r∗ is. We notice that the combination of demonstrations and comparisons
achieves lower volume, diameter, max regret, and average regret than demonstrations alone and that
it achieves this in fewer iterations than comparisons alone.

D Meta-choice: a new source of information

In Section 4, we described a straight-forward way of combining feedback types: treat each individual
feedback received as an independent reward rational choice, and update the robot’s belief (Equation
6). However, the moment we open it up to multiple types of feedback, the person is not stuck with a
single type and is actually choosing which type to use. We propose that this itself is a reward-rational
implicit choice, and therefore leaks information about the reward. We call the choice of feedback
“meta-choice”, and in this section, we formalize it and empirically showcase its potential importance.

18

Ex
pe

ct
ed

 R
eg

re
t

Metarationality vs. Expected RegretNaiveMetareason

Lava

G
oa

l

Correction

Off

Ex
pe

ct
ed

 R
eg

re
t

Figure 5: (Left) Environment with designated start (red circle), goal (green circle) and lava area (red tiles). The
human can provide a correction (one of the green trajectories) or turn off the robot, forcing the robot to stop
at the marked dot. (Middle) Belief distribution over rewards after the human provides feedback (β0 = 10.0).
Darker indicates higher probability. The metareasoning model is able to rule out more reward functions than the
naive model. (Right) When the human’s metareasoning has no signal (β0 = 0), then the metareasoning (orange)
and naive model (gray) perform equally well. As β0 increases, the advantage of the metareasoning model also
increases.

D.1 Formalizing meta-choice

The assumption of conditional independence that the formulation in (6) uses is natural and makes
sense in many settings. For example, during training time, we might control what feedback type we
ask the human for. We might start by asking the human for demonstrations, but then move on to
other types of feedback, like corrections or comparisons, to get more fine-grained information about
the reward function. Since the human is only ever considering one type of feedback at a time, the
conditional independence assumption makes sense.

But the assumption breaks when the human has access to multiple types of feedback at once because
the types of feedback the robot can interpret influence what the human does in the first place.4 If
the human intervenes and turns the robot off, that means one thing if this were the only feedback
type available, and a whole different thing if, say, corrections were available too. In the latter case,
we have more information - we know that the user chose to turn the robot off rather than provide a
correction.

Thus, our key insight is that the type of feedback itself leaks information about the reward, and the
RRC framework gives us a recipe for formalizing this new source: we need to uncover the set of
options the human is choosing from. The human has two stages of choice: the first is the choice
between feedback types, i.e corrections, language, turn-off, etc. and the second is the choice within
the chosen feedback type, i.e the specific correction that the human gave. Our formalism can leverage
both sources of information by defining a hierarchy of reward-rational choice.

Suppose the user has access to n types of feedback with associated choice sets C1, . . . , Cn, groundings
ψ1, . . . ψn, and Boltzmann rationalities β1, . . . , βn. For simplicity, we assume deterministic ground-
ings. The set of choice sets C0 for the first-stage choice is {C1, . . . , Cn} The grounding ψ0 : C → fΞ

for the first stage choice maps a feedback type Ci to the distribution of trajectories defined by the
human’s behavior and grounding in the second stage:

ψ0(Ci) = P(ξ | r, Ci) =
∑

ci∈Ci:ψi(ci)=ξ

P(ci | r, Ci) , (9)

4We note that this adaptation by the human only applies to types of behavior that the human uses to
purposefully communicate with the robot, as opposed to sources of information like initial state.

19

where, as usual, P(ci | r, Ci) is given by Equation 1. Instantiating Equation 1 to model the first-stage
decision as well, results in the following model for the human picking feedback type Ci:

P(Ci | r) =
exp

(
β0 · Eξ∼ψ0(Ci)[r(ξ)]

)∑
j∈[n] exp

(
β0 · Eξ∼ψ0(Cj)[r(ξ)]

) , (10)

Finally, the probability that the human gives feedback c∗ is

P(c∗ | r) =
∑
i

P(c∗ | r, Ci) · P(Ci | r) (11)

=
∑
i

(
exp

(
βi · r(ψi(c∗))

)∑
c∈Ci exp

(
βi · r(ψi(c))

) · exp
(
β0 · Eξ∼ψ0(Ci)[r(ξ)]

)∑
j∈[n] exp

(
β0 · Eξ∼ψ0(Cj)[r(ξ)]

)) . (12)

The first-stage decision can be interpreted as the human metareasoning over the best type of feedback.
The benefit of modeling the hierarchy is that we can cleanly separate and consider noise at both
the level of metareasoning (β0) and the level of execution of feedback (β1, . . . , βn). Noise at the
metareasoning level models the human’s imperfection in picking the optimal type of feedback. Noise
at the execution level might model the fact that the human has difficulty in physically correcting a
heavy and unintuitive robot.5

D.2 Comparing the literal interpretation to meta-choice

We showcase the potential importance of accounting for the meta-choice in an experiment in a
gridworld setting, in which an agent navigates to a goal state while avoiding lava (Figure 5, left).
The reward function is a linear combination of 2 features that encode the goal and lava. The human
has access to two channels of feedback: “off” and corrections. We simulate the human feedback as
choosing between feedback types according to Equation 12. We manipulate three factors: 1) whether
the robot is naive, i.e. only accounts for the information within the feedback type, or metareasons,
i.e. accounts for the other feedback types that were available but not chosen; 2) the meta-rationality
parameter β0 modeling human imperfection in selecting the optimal type of feedback; and 3) the
location of the lava, so that the rational meta-choice changes from off to corrections. We measure
regret over holdout environments.

Figure 5 (left) depicts the possible grounded trajectories for corrections and for off. For the top, off
is optimal because all corrections go through lava. For the bottom, the rational meta-choice is to
correct. In both cases, we find that meta-reasoning gains the learner more information, as seen in the
belief (center). For the top, where the person turns it off, the robot can be more confident that lava is
bad. For the bottom, the fact that the person had the off option and did not use it informs the robot
about the importance of reaching the goal. This translates into lower regret (right), especially as β0

increases and there is more signal in the feedback type choice.

D.3 What happens when metarationality is misspecified?

In our main metareasoning experiments, we assumed that the simulated human metareasoned with β0

and that our algorithm somehow knew this quantity. However, in practice, we will not have access to
β0. This brings about an interesting question: What are the effects of inference under a misspecified
β0. What are the effects of overestimating or underestimating the human’s rationality?

To test this, we designed an experiment in which our simulated human provided supervision with a
fixed ground truth r∗ and β∗0 while our algorithm performs belief updates with various β0 above and
below β∗0 . The first way to measure the extent of misspecification is to measure the KL divergence
between the belief induced by β∗0 and that induced by β0.

DKL(P (r | c∗)‖Q(r | c∗))
P (r | c∗) ∝ P (c∗ | r, β∗0) · P (r)

5Although we modeled rationality with respect to the reward r that the robot should optimize, we can easily
extend our formalism to capture that the person might trade-off between that and their own effort – this is
especially interesting at this meta-choice level, where one type of feedback might be much more difficult and
thus people might want to avoid it unless it is particularly informative.

20

K
L

 D
iv

er
g

en
ce

E
x

p
ec

te
d

 R
eg

re
t

Figure 6: In each plot, the human operates under a true metarationality denoted by β∗0 . We measure
performance drop from misspecification by computing the KL divergence and expected regret of
the belief distribution over rewards for robots with misspecified metarationalities β0 ∈ [0.0, 10.0].
(Top) The plots display the KL divergence between the true belief with β∗0 and various misspecified
beliefs. We notice that assuming metareasoning when the human does not metareason (left β∗0 = 0)
results in significant divergence in the belief distribution. (Bottom) The plots show the expected
regret for robots that learn, with misspecified β0’s, from a human who gives feedback with β∗0 . As
with KL divergence, the expected regret incurred by assuming metareasoning when the human does
not metareason is high. Additionally, we note that a robot learning with β0 = β∗0 does not necessarily
incur minimum expected regret (as mentioned below in the text).

Q(r | c∗) ∝ P (c∗ | r, β0) ·Q(r)

Additionally, we wanted to measure the expected regret given a human that provides supervision with
rationality β∗0 and the algorithm that performs belief updates with rationality β0.

E[Regret | c∗, Ci, r∗, β0] =
∑
r∈R

(r∗(φ(r∗))− r∗(φ(r)))

·P(r | c∗, Ci, β0)

E[Regret | β0] =
∑
r∗∈R

∑
i∈C0

∑
c∗∈Ci

E[Regret | c∗, Ci, r∗, β0]

· P(Ci | r∗, β0) · P(c∗ | Ci, r∗, β0)

We plot the results in Figure 6 averaged over 50 randomly sampled reward functions and beta0 ∈
[0.0, 10.0]. We notice that when the human does not metareason (β∗0 = 0.0, the KL divergence in
the belief distribution update is large. In comparison, with any moderate level of metareasoning
β∗0 = 2.5, 5.0, 7.5, the KL divergence is very low. We notice this too in the expected regret. Note
that the minimum expected regret is not achieved by β0 = β∗0 . This is because β∗0 is used to compute
the frequency at which the human provides each type of feedback as an answer. Simply matching
β0 with β∗0 doesn’t guarantee minimum expected regret (the optimal β0 for minimizing expected
regret is a function of β∗0). These experiments suggest that if we detect that the human is poor at
metareasoning (low β∗0), it is safer to drop the metareasoning assumption. However, if the human is
displaying metareasoning, we can leverage this to improve learning.

21

	Bounded rationality, maximum entropy, and Boltzmann-rational policies
	A case study on combining feedback types
	Actively selecting which type of feedback to use
	Meta-choice: a new source of information
	Formalizing meta-choice
	Comparing the literal interpretation to meta-choice
	What happens when metarationality is misspecified?

