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Supplementary material

1 Proof of Proposition 1

We define the following kernels for comparing two trajectories y ∈ Rd×τ and z ∈ Rd×τ :

Kshape(y, z) = e−γ DTWγ(y,z) (1)

Ktime(y, z) =
1

Z

∑
A∈Aτ,τ

〈A,Ω〉 exp−
〈A,∆(y,z)〉

γ (2)

where DTWγ(y1,y2) := −γ log
(∑

A∈Aτ,τ exp−
〈A,∆(y1,y2)〉

γ

)
.

Proposition 1. Providing that κ is a positive semi-definite (PSD) kernel κ such that κ
1+κ is also

PSD, if we define the cost matrix ∆ with general term δ(yi, zj) = −γ log κ(yi, zj), then Kshape and
Ktime defined respectively in Equations (1) and (2) are PSD kernels.

Proof. The proof for Kshape is a direct consequence of Theorem 1 in [CVBM07]. Under the
conditions that κ and κ

1+κ are PSD kernels, Theorem 1 in [CVBM07] states that for any alignment
π = (π1, π2) that respects the warping conditions, the following kernel K is also PSD:

K(y, z) :=
∑
π

|π|∏
i=1

κ
(
yπ1(i), zπ2(i)

)
=
∑
π

|π|∏
i=1

exp−
δ(yπ1(i),zπ2(i))

γ

=
∑
π

exp−
∑|π|
i=1

δ(yπ1(i),zπ2(i))
γ

=
∑

A∈Aτ,τ

exp−
〈A,∆(y,z)〉

γ

= exp−γ DTWγ(y,z)

= Kshape(y, z)
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Let a1, ..., aN ∈ R and y1, ...,yN ∈ Rd×τ . If Ω is non-zero on the diagonal (e.g. Ω(a, b) =

µ+ (a−b)2

k2 with µ > 0), then there exists ε > 0 such that 〈A,Ω〉Z ≥ ε ∀A ∈ Aτ,τ . Then:∑
i

∑
j

aiaj Ktime(yi,yj) =
∑
i

∑
j

aiaj
1

Z

∑
A∈Aτ,τ

〈A,Ω〉 exp−
〈A,∆(yi,yj)〉

γ

≥
∑
i

∑
j

aiaj
∑

A∈Aτ,τ

ε exp−
〈A,∆(yi,yj)〉

γ

= ε
∑
i

∑
j

aiaj Kshape(yi,yj) ≥ 0

The last inequality holds since we have already proven that Kshape is a PSD kernel. This proves that
Ktime is a PSD kernel.

The particular choice κ(u, v) = 1
2e
− (u−v)2

σ2 (1 − 1
2e
− (u−v)2

σ2 )−1 fullfills Prop 1 requirements: κ is
indeed PSD as the infinite limit of a sequence of PSD kernels

∑∞
i=1 k

i = k
1−k = κ, where k is a

halved Gaussian PSD kernel: k(u, v) = 1
2e
− (u−v)2

σ2 .

For this choice of κ, the corresponding parwise cost matrix writes

δ(yi, zj) = γ

[
(yi − zj)2

σ2
− log

(
2− e

−(yi−zj)2

σ2

)]

2 Derivation of Ldiversity

Determinantal Point Processes (DPPs) [KT+12] are a probabilistic tool for describing the diversity
of a ground set of items S = {y1, ...,yN}. Diversity is controlled via the choice of a positive
semi-definite (PSD) kernel K for comparing items. A DPP is a probability distribution over all
subsets of S that assigns the following probability to a random subset Y:

PK(Y = Y ) =
det(KY )∑

Y ′⊆S det(K′Y )
=

det(KY )

det(K + I)
(3)

where K denotes the kernel in matrix form and KA is its restriction to the elements indexed by A :
KA = [Ki,j ]i,j∈A.

Intuitively, a DPP encourages the selection of diverse elements from the ground set Y . If Y is more
diverse, a random subset Y ∼ DPP (K) sampled from the DPP will select more items, i.e. will have
a larger cardinality. This idea is embedded into the diversity loss Ldiversity proposed in [YK20]:

Ldiversity(K) = −EY∼DPP (K)|Y | = −Trace(I− (K + I)−1) (4)

3 Experiments

3.1 Datasets and implementation details

Synthetic dataset We use a synthetic dataset similar to [LGT19] that consists in predicting sudden
changes (step functions) based on a two-peaks input signal. For each time series, the 20 first
timesteps are the inputs, and the last 20 steps the targets to forecast. In each series, the input range
is composed of 2 peaks at random temporal positions i1 and i2 and random amplitudes j1 and j2
between 0 and 1, and the target range is composed of a step of amplitude j2− j1 at stochastic position
i2 + (i2 − i1) + randint(−3; 3). All time series are corrupted by an additive Gaussian white noise
of variance 0.01.

The difference with [LGT19] is that for each input series, we generate 10 different future series
of length 20 by adding noise on the step amplitude and localisation. The dataset is composed of
100× 10 = 1000 time series for each train/valid/test split.
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Neural network architectures For the synthetic dataset, we use a stochastic predictive model
based on a conditional variational autoencoder (cVAE).The encoder of the cVAE is a RNN with 1
layer of 128 GRU units, followed by a MLP which outputs the mean and variance of the latent state
Gaussian distribution. We fixed by cross-validation the size of the latent state to k = 16. The decoder
is another RNN with 128 + 16 = 144 GRU units responsible for producing the future trajectory.

For the real-world datasets, we use a deterministic predictive Seq2Seq model with 1 layer of 128
GRU units for the encoder, and 128 + 16 = 144 units for the decoder.

In all experiments, the STRIPE-shape proposal module is composed of a RNN with a layer of
128 GRU units followed by an MLP with 3 layers of 512 neurons (with BatchNormalization and
LeakyReLU activations) and a final linear layer to produce N = 10 latent codes of dimension
k/2 = 8 (corresponding to the proposals for zs or zt).

The STRIPE-time proposal module has a similar architecture except that as input to the MLP, we
concatenate the zs variable (of dimension 8) to condition the time variables on the current shape
variable.

STRIPE hyperparameters We cross-validated the relevant hyperparameters of STRIPE:

• λ : tradeoff between Lquality and Ldiversity . When increasing λ (see Figure 1), the diversity
increases and stabilizes starting from 10−3, without loosing on quality. We fixed λ = 1 in
all experiments.

• k: dimension of the diversifying latent variables z. This dimension should be chosen
relatively to the hidden size of the RNN encoders and decoders (128 in our experiments).
We fixed k = 16 in all cases.

• N : the number of future trajectories to sample. We fixed N = 10. We performed a
sensibility analysis to this parameter in paper section 4.4.

For computing the DILATE loss, we used the parameters recommended in paper [LGT19] (γ =
0.01, α = 0.5).

Figure 1: Influence of the hyperparameter λ balancingLquality andLdiversity for the synthetic dataset.
Quality (resp. diversity) are represented by −Hquality(DILATE) (resp. −Hdiversity(DILATE)),
higher is better. When λ increases, diversity increases without deteriorating quality.

3.2 Full state-of-the-art comparison results

We provide here (Table 1) the full results of the state-of-the-art comparison (Table 3 in paper). We
report the additional CRPS metric. We observe that STRIPE S+T obtains the best results evaluated in
CRPS on the Electricity dataset (equivalent to DeepAR [SFGJ20]), and the second best results on the
Traffic dataset (only behind DeepAR that is otherwise far worse in diversity and quality).
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Table 1: Forecasting results on the Traffic and Electricity datasets, averaged over 5 runs (mean ± std).
Metrics are scaled for readability. Best equivalent method(s) (Student t-test) shown in bold.

Traffic Electricity
MSE (× 1000) DILATE (× 100) MSE DILATE

Method mean best mean best CRPS mean best mean best CRPS
Nbeats MSE [OCCB20] - 7.8 ± 0.3 - 22.1 ± 0.8 37.1 ± 0.9 - 24.6 ± 0.9 - 29.3 ± 1.3 36.3 ± 0.6

Nbeats DILATE - 17.1 ± 0.8 - 17.8 ± 0.3 51.0 ± 2.6 - 38.9 ± 1.9 - 20.7 ± 0.5 47.5 ± 0.5
Deep AR [? ] 15.1 ± 1.7 6.6 ± 0.7 30.3 ± 1.9 16.9 ± 0.6 24.6 ± 1.1 67.6 ± 5.1 25.6 ± 0.4 59.8 ± 5.2 17.2 ± 0.3 34.5 ± 0.3

cVAE DILATE 10.0 ± 1.7 8.8 ± 1.6 19.1 ± 1.2 17.0 ± 1.1 34.4 ± 2.5 28.9 ± 0.8 27.8 ± 0.8 24.6 ± 1.4 22.4 ± 1.3 39.2 ± 0.5
Variety loss [TB19] 9.8 ± 0.8 7.9 ± 0.8 18.9 ± 1.4 15.9 ± 1.2 32.4 ± 1.4 29.4 ± 1.0 27.7 ± 1.0 24.7 ± 1.1 21.6 ± 1.0 39.5 ± 0.8

Entropy regul. [DRBT19] 11.4 ± 1.3 10.3 ± 1.4 19.1 ± 1.4 16.8 ± 1.3 37.0 ± 2.7 34.4 ± 4.1 32.9 ± 3.8 29.8 ± 3.6 25.6 ± 3.1 42.4 ± 2.3
Diverse DPP [YK20] 11.2 ± 1.8 6.9 ± 1.0 20.5 ± 1.0 14.7 ± 1.0 30.9 ± 2.0 31.5 ± 0.8 25.8 ± 1.3 26.6 ± 1.0 19.4 ± 1.0 36.6 ± 0.9

STRIPE S+T 10.1 ± 0.4 6.5 ± 0.2 19.2 ± 0.8 14.2 ± 0.2 29.8 ± 0.3 29.7 ± 0.3 23.4 ± 0.2 24.4 ± 0.3 16.9 ± 0.2 34.8 ± 0.4

3.3 Additional visus

Wee provide additional visualizations for the Traffic and Electricity datasets that confirm that STRIPE
S+T predictions are both diverse and sharp.

3.3.1 Electricity

3.3.2 Traffic
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