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Abstract

Continually learning new skills is important for intelligent systems, yet standard
deep learning methods suffer from catastrophic forgetting of the past. Recent
works address this with weight regularisation. Functional regularisation, although
computationally expensive, is expected to perform better, but rarely does so in
practice. In this paper, we fix this issue by using a new functional-regularisation
approach that utilises a few memorable past examples crucial to avoid forgetting.
By using a Gaussian Process formulation of deep networks, our approach enables
training in weight-space while identifying both the memorable past and a functional
prior. Our method achieves state-of-the-art performance on standard benchmarks
and opens a new direction for life-long learning where regularisation and memory-
based methods are naturally combined.

1 Introduction

The ability to quickly adapt to changing environments is an important quality of intelligent systems.
For such quick adaptation, it is important to be able to identify, memorise, and recall useful past
experiences when acquiring new ones. Unfortunately, standard deep-learning methods lack such
qualities, and can quickly forget previously acquired skills when learning new ones [18]. Such
catastrophic forgetting presents a big challenge for applications such as robotics, where new tasks
can appear during training, and data from previous tasks might be unavailable for retraining.

In recent years, many methods have been proposed to address catastrophic forgetting in deep neural
networks (DNNs). One popular approach is to keep network weights close to the values obtained
for the previous tasks/data [12, 18, 22, 37]. However, this may not always ensure the quality of
predictions on previous tasks. Since the network outputs depend on the weights in a complex way,
such weight-regularisation may not be effective. A better approach is to use functional-regularisation,
where we directly regularise the network outputs [5], but this is costly because it requires derivatives
of outputs at many input locations. Existing approaches reduce these costs by carefully selecting the
locations, e.g. by using a working memory [5] or Gaussian-Process (GP) inducing points [34], but
currently they do not consistently outperform existing weight-regularisation methods.
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(a) FROMP for continual deep learning (b) Most (left) vs least (right) memorable

Figure 1: (a) Our FROMP method consists of three main steps where we convert a DNN to GP using
Khan et al. [16], find memorable examples, and train weights with functional regularisation of those
examples. (b) Memorable past on MNIST – they are difficult to classify and close to the boundary.

To address this issue, we propose a new functional-regularisation method called Functional Regu-
larisation of Memorable Past (FROMP). Our key idea is to regularise the network outputs at a few
memorable past examples that are crucial to avoid forgetting. We use a GP formulation of DNNs to
obtain a weight-training method that exploits correlations among memorable examples in the function
space (see Fig. 1a). FROMP involves a slight modification of Adam and a minor increase in computa-
tion cost. It achieves state-of-the-art performance on standard benchmarks, and is consistently better
than both the existing weight-regularisation and functional-regularisation methods. Our work in this
paper focuses on avoiding forgetting, but it also opens a new direction for life-long learning methods
where regularisation methods are naturally combined with memory-based methods.1

1.1 Related Works

Broadly, existing work on continual learning can be split into three types of approaches: inference-
based, memory/rehearsal-based, and model-based. There have also been hybrid approaches attempting
to combine them. Inference-based approaches have mostly focused on weight regularisation [2, 9,
12, 18, 22, 37], with some recent efforts on functional regularisation [5, 19, 34]. Our work falls
in the latter category, but also imposes functional constraints at datapoints, thereby connecting to
memory-based approaches.

Our goal is to consistently outperform weight-regularisation which can be inadequate and brittle
for continual deep learning (see Fig. 6 and App. G for an example). The proposed method further
addresses many issues with existing functional-regularisation methods [5, 34]. Arguably the work
most closely related to ours is the GP-based method of Titsias et al. [34], but there are several key
differences. First, our kernel uses all the network weights (they use just the last layer) which is
important, especially in the early stages of learning when all the weights are changing (see App. G.4
for an example). Second, our functional prior regularises the mean to be close to the past mean, which
is lacking in the regulariser of Titsias et al. [34] (see the discussion after Eq. 7). Third, our memorable
past examples play a similar role as the inducing inputs, but are much cheaper to obtain (Titsias
et al. [34] requires solving a discrete optimisation problem), and have an intuitive interpretation (see
Fig. 1b). Due to these differences, our method outperforms the method of Titsias et al. [34], which,
unlike ours, performs worse than the weight-regularisation method of Swaroop et al. [33]. We also
obtain state-of-the-art performance on a larger Split CIFAR benchmark, a comparison missing in
Titsias et al. [34]. Our method is also different to Benjamin et al. [5], which lacks a mechanism to
automatically weight past memory and estimate uncertainty.

Our method is based on a set of memorable past examples. Many such memory-based approaches
exist. These either maintain a memory of past data examples [9, 22, 25] or train generative models
on previous tasks to rehearse pseudo-inputs [30]. Recent work [3, 11] has focused on improving
memory-building methods while combining them with inference-based approaches, building on

1Code for all experiments is available at https://github.com/team-approx-bayes/fromp.

2

https://github.com/team-approx-bayes/fromp


Gradient-Episodic Memory [10, 20]. Compared to these approaches, an advantage of our method
is that the memory is obtained within the functional-regularisation framework and does not require
solving a separate optimisation problem. The computation is also straightforward, simply requiring
a forward-pass through the network followed by picking the top examples (see Sec. 3.2). Finally,
model-based approaches change the model architecture during training [13, 27, 29], and this can
be combined with other approaches [28]. It is possible to use similar features in our GP-based
framework. This is an interesting future direction to be pursued.

2 Continual Learning with Weight/Functional Regularisation

In deep learning, we minimise loss functions to estimate network weights. For example, in supervised
multi-class classification problems, we are given a dataset D of N input-output pairs with outputs yi,
a one-hot encoded vector of K classes, and inputs xi, a vector of length D. Our goal is to minimise a
loss which takes the following form: N ¯̀(w) + δR(w), where ¯̀(w) := 1

N

∑N
i=1 `(yi, fw(xi)) with

deep neural network fw(x) ∈ RK and its weights w ∈ RP , `(y, f) denotes a differentiable loss
function (e.g., cross entropy) between an output y and the network output f , R(w) is a regularisation
function (usually an L2-regulariser R(w) := w>w), and δ > 0 controls the regularisation strength.
Standard deep-learning approaches rely on an unbiased stochastic gradient of the loss ¯̀. This usually
requires access to all the data examples for all classes throughout training [8]. It is this unbiased,
minibatch setting where deep-learning excels and achieves state-of-the-art performance.

In reality, we do not always have access to all the data at once, and it is not possible to obtain unbiased
stochastic gradients. New classes may appear during training and old classes may never be seen again.
For such settings, vanilla mini-batch stochastic-gradient methods lead to catastrophic forgetting of
past information [18]. Our goal in this paper is to design methods that can avoid, or minimise, such
catastrophic forgetting. We focus on a particular setting where the classification task is divided into
several tasks, e.g., a task may consist of a classification problem over a subset of classes. We assume
that the tasks arrive sequentially one after the other, and task boundaries are provided to us. Once
the learning is over, we may never see that task again. Such continual-learning settings have been
considered in other works [18, 22, 37] with the goal to avoid forgetting of previous tasks. We also
allow storing some past data, which may not always be possible, e.g., due to privacy constraints.

Recent methods have proposed weight-regularisation as a way to combat catastrophic forgetting. The
main idea is to find the important weights for past tasks, and keep new weights close to them. For
example, when training on the task t while given weights wt−1 trained on the past tasks, we can
minimise the following loss: N ¯̀

t(w) + δ(w −wt−1)>Ft−1(w −wt−1), where ¯̀
t(w) is the loss

defined over all data examples from task t and Ft−1 is a preconditioning matrix that favours the
weights relevant to the past tasks more than the rest. The Elastic-Weight Consolidation (EWC) method
[18] and Ritter et al. [26], for example, use the Fisher information matrix as the pre-conditioner,
while variational continual learning (VCL) [22] employs the precision matrix of the variational
approximation. To reduce the computational complexity, it is common to use a diagonal matrix. Such
weight-space methods reduce forgetting but do not produce satisfactory results.

The challenge in using weight-regularisation lies in the fact that the exact values of the weights
do not really matter due to parametric symmetries [5, 6]. Making current weights closer to the
previous ones may not always ensure that the predictions on the past tasks also remain unchanged.
Since the network outputs depend on the weights in a complex way, it is difficult to ensure the
effectiveness of weight-regularisation. A better approach is to directly regularise the outputs, because
what ultimately matters is the network output, not the values of the weights. For example, we can use
an L2-regulariser over the function values on data examples from past tasks (e.g., see [5]) :

min
w

N ¯̀
t(w) + δ

t−1∑
s=1

(f t,s − f t−1,s)
>(f t,s − f t−1,s), (1)

where f t,s and f t−1,s are vectors of function values fw(xi) and fwt−1(xi) respectively for all i ∈ Ds
with Ds being the dataset for the task s. Rather than making the weights w similar to wt−1, such
functional-regularisation approaches directly force the function values to be similar. Because of
this, we expect them to perform better. This is also expected for a Bayesian approach, as posterior
approximations in the function-space might be better than those in the weight-space.
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Unfortunately, such functional-regularisation is computationally infeasible because it requires us to
store all past data and compute function values over them. This computational issue is typically solved
by using a subset of inputs. Benjamin et al. [5] employ a working memory [20, 25] while Titsias et al.
[34] use the inducing point method based on a Gaussian process framework. As discussed earlier,
such approaches do not consistently perform better than existing weight-regularisation methods. This
could be due to the methods they use to build memory or enforce functional regularisation. Our
goal in this paper is to design a functional-regularisation method that is consistently better than
weight-regularisation. We build upon the method of Khan et al. [16] to convert deep networks into
Gaussian processes, as described next.

3 Functional-Regularisation of Memorable Past (FROMP)

3.1 From Deep Networks to Functional Priors

Khan et al. [16] propose an approach called DNN2GP to convert deep networks to Gaussian processes
(GPs). We employ such GPs as functional priors to regularise the next task. The DNN2GP approach
is very similar to the standard weight-space to function-space conversion for linear basis-function
models [24]. For example, consider a linear regression model on a scalar output yi = fw(xi) + εi
with a function output fw(xi) := φ(xi)

>w using a feature map φ(x). Assume Gaussian noise
N (εi|0,Λ−1) and a Gaussian prior N (w|0, δ−1IP ) where IP is the identity matrix of size P × P .
It can then be shown that the posterior distribution of this linear model, denoted by N (w|wlin,Σlin),
induces a GP posterior on function fw(x) whose mean and covariance functions are given as follows
(see App. A.1 or Chapter 2 in Rasmussen and Williams [24]):

mlin(x) := fwlin(x), κlin(x,x′) := φ(x)>Σlin φ(x′), (2)

where wlin is simply the Maximum A Posteriori (MAP) estimate of the linear model, and

Σ−1
lin :=

N∑
i=1

φ(xi) Λφ(xi)
> + δIP . (3)

DNN2GP computes a similar GP posterior but for a neural network whose posterior is approximated
by a Gaussian. Specifically, given a local minimum w∗ of the loss N ¯̀(w) + 1

2δw
>w for a scalar

output fw(x), we can construct a Gaussian posterior approximation. Following Khan et al. [16], we
employ a variant of the Laplace approximation with mean µ∗ = w∗ and covariance

Σ−1
∗ =

N∑
i=1

Jw∗(xi)
> Λw∗(xi, yi) Jw∗(xi) + δIP , (4)

where Λw∗(x, y) := ∇2
ff`(y, f) is the scalar Hessian of the loss function, and Jw∗(x) := ∇wfw(x)>

is the 1 × P Jacobian; all quantities evaluated at w = w∗. Essentially, this variant uses a Gauss-
Newton approximation for the covariance instead of the Hessian. Comparing Eqs. 3 and 4, we can
interpret Σ∗ as the covariance of a linear model with a feature map φ(x) = Jw∗(x)> and noise
precision Λ = Λw∗(x, y). Using this similarity, Khan et al. [16] derive a GP posterior approximation
for neural networks. They show this for a generic loss function (see App. B2 in their paper), e.g., for
a regression loss, the mean and covariance functions of the GP posterior take the following form:

mw∗(x) := fw∗(x), κw∗(x,x′) := Jw∗(x) Σ∗ Jw∗(x′)>. (5)

A similar equation holds for other loss functions such as those used for binary and multiclass
classification; see App. A.2 for details. We denote such GP posteriors by GP (mw∗(x), κw∗(x,x′)),
and use them as a functional prior to regularise the next task.

The above result holds at a minimiser w∗, but can be extended to a sequence of weights obtained
during optimisation [16]. For example, for Gaussian variational approximations q(w), we can
obtain GP posteriors by replacing w∗ by a sample w ∼ q(w) in Eq. 5. We denote such GPs by
GP (mw(x), κw(x,x′)). The result also applies to variants of Newton’s method, RMSprop, and
Adam (see App. A.3). As shown in [16], many DNN2GP posteriors are related to the Neural Tangent
Kernel (NTK) [14], e.g., the prior distribution to obtain the posterior in Eq. 5 corresponds to the NTK
of a finite-width network. A slightly different kernel is obtained when a variational approximation is
used. Unlike the method of Titsias et al. [34], the kernel above uses all the network weights, and uses
the Jacobians instead of the network output or its last layer.
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3.2 Identifying Memorable past

To reduce the computation cost of functional regularisation, we identify a few memorable past
examples. To do so, we exploit a property of linear models. Consider a linear model where different
noise precision Λi is assigned to each pair {xi, yi}. For MAP estimation, the examples with high
value of Λi contribute more, as is clear from the objective: wMAP = arg maxw

∑N
i=1 Λi(yi −

φ(xi)
>w)2 + δw>w. The noise precision Λi can therefore be interpreted as the relevance of the

data example i. Such relevant examples are crucial to ensure that the solution stays at wMAP or close
to it. These ideas are widely used in the theory of leverage-score sampling [1, 21] to identify the most
influential examples. Computation using such methods is infeasible since they require inverting a
large matrix. Titsias et al. [34] use an approximation by inverting smaller matrices, but they require
solving a discrete optimisation problem to select examples. We propose a method which is not only
cheap and effective, but also yields intuitive results.

We use the linear model corresponding to the GP posterior from Section 3.1. The linear model assigns
different noise precision to each data example. See Eqs. 3 and 4 where the quantity Λw∗(xi, yi) plays
the same role as the noise precision Λ. Therefore, Λw∗(xi, yi) can be used as a relevance measure,
and a simple approach to pick influential examples is to sort it ∀i and pick the top few examples. We
refer to such a set of examples as the memorable past examples. An example is shown in Fig. 1b
where our approach picks many examples that are difficult to classify. The memorable past can
be intuitively thought of as examples close to the decision boundary. An advantage of using this
approach is that Λw∗(xi, yi) is extremely cheap to compute. It is simply the second derivative of the
loss, which can be obtained with a forward pass to get `(yi, ŷi), followed by double differentiation
with respect to ŷi. For binary classification, our approach is equivalent to the “Confidence Sampling”
approaches used in the Active Learning literature [4, 36], although in general it differs from them.
After training on task t, we select a set of few memorable examples in Dt, which we denote byMt.

3.3 Training in weight-space with a functional prior

We will now describe the final step for weight-training with functional-regularisation. We use the
Bayesian formulation of continual learning and replace the prior distribution in weight space by a
functional prior. Given a loss of the form N ¯̀

t(w) +R(w), a Bayesian formulation in weight-space
employs a regulariser that uses the previous posterior, i.e., R(w) ≡ − log p(w|D1:t−1). Computing
the exact posterior, or a tempered version of it, would in theory avoid catastrophic forgetting, but that
is expensive and we must use approximations. For example, Nguyen et al. [22] use the variational
approximation from the previous task p(w|D1:t−1) ≈ qt−1(w) = N (w|µ,Σ) to obtain the weight
regulariser. Our goal is to replace such weight regulariser by a functional regulariser obtained by
using the GP posteriors described in Sec. 3.1.

We use functional regularisation defined over memorable examples. Denote by f the vector of func-
tion values defined at all memorable pastMs in all tasks s < t. Denoting a sample from q(w) by w,
we can obtain a GP posterior over f by using Eq. 5. We denote it by q̃w(f) = N (f |mt(w),Kt(w)),
where mt(w) and Kt(w) respectively denote the mean vector and kernel matrix obtained by evalu-
ating GP (mw(x), κw(x,x′)) at the memorable past examples. Similarly, denoting a sample from
qt−1(w) by wt−1, we can obtain another GP posterior, which we call the functional prior, denoted
by q̃wt−1

(f) = N (f |mt−1,Kt−1). Using these two GPs, we can replace the weight regulariser used
in [22] by a functional regulariser which is equal to the expectation of the functional prior:

min
q(w)

Eq(w)

[
(N/τ)¯̀

t(w) + log q(w)
]
− Eq(w) [log qt−1(w)]︸ ︷︷ ︸
≈Eq̃w(f)[log q̃wt−1

(f)]

, (6)

where the last term is the weight regulariser, and τ > 0 is a tempering parameter. Fortunately, the
functional regulariser has a closed-form expression: Eq̃w(f)

[
log q̃wt−1

(f)
]

=

− 1
2

[
Tr(K−1

t−1Kt(w)) + (mt(w)−mt−1)>K−1
t−1(mt(w)−mt−1)

]
+ constant. (7)

This term depends onµ and Σ through the sample w ∼ q(w). The regulariser is an approximation for
reasons discussed in App. D. The regulariser has a similar form2 to Titsias et al. [34], but unlike their

2Their regulariser is Eq(ut−1)[log pw(ut−1)] = − 1
2
{Tr[K(w)−1Σt−1] + µ>t−1K(w)−1µt−1} where

pw(ut−1) = N (0,K(w)) with the kernel evaluated at inducing inputs ut−1 and q(ut−1) = N (µt−1,Σt−1).
This regulariser encourages K(w) to remain close to the second moment Σt−1 + µt−1µ

>
t−1.
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Algorithm 1: FROMP for binary classification on task t given qt−1(w) := N (µt−1, diag(vt−1)),
and memorable pastsM1:t−1. Additional computations on top of Adam are highlighted in red.

Function FROMP(Dt,µt−1,vt−1,M1:t−1):
Get mt−1,s,K

−1
t−1,s,∀ tasks s < t (Eq. 10)

Initialise w← µt−1
while not converged do

Randomly sample {xi, yi} ∈ Dt
g← N ∇w`(yi, fw(xi))
gf ← g_FR (w,mt−1,K

−1
t−1,M1:t−1)

Adam update with gradient g + τgf
end
µt ← w and compute vt (Eq. 9)
Mt← memorable_past(Dt,w)
return µt,vt,Mt

Function g_FR(w,mt−1,K
−1
t−1,M1:t−1):

Initialise gf ← 0
for task s = 1, 2, ..., t− 1 do

Compute mt,s (Eq. 10)
hi ← Λw(xi) Jw(xi)

>,∀xi ∈Ms

Form matrix H with hi as columns
gf ← gf + HK−1

t−1,s(mt,s −mt−1,s)

end
return gf

Function memorable_past(Dt,w):
Calculate Λw(xi), ∀xi ∈ Dt.
return M examples with highest Λw(xi).

regulariser, ours forces the mean mt(w) to be close to mt−1, which is desirable since it encourages
the predictions of the past to remain the same.

Optimising µ and Σ in Eq. 6 with this functional prior can be very expensive for large networks. We
make five approximations to reduce the cost, discussed in detail in App. B. First, for the functional
prior, we use the mean of qt−1(w), instead of a sample wt−1, which corresponds to using the GP
posterior of Eq. 5. Second, for Eq. 7, we ignore the derivative with respect to Kt(w) and only use
mt(w), which assumes that the Jacobians do not change significantly. Third, instead of using the
full Kt−1, we factorise it across tasks, i.e., let it be a block-diagonal matrix with Kt−1,s,∀s as the
diagonal. This makes the cost of inversion linear in the number of tasks. Fourth, following Khan et al.
[16], we propose to use a deterministic optimiser for Eq. 6, which corresponds to setting w = µ.
Finally, we use a diagonal Σ, which corresponds to a mean-field approximation, reducing the cost of
inversion. As shown in App. B, the resulting algorithm finds a solution to the following problem:

min
w
N ¯̀

t(w) + 1
2τ

t−1∑
s=1

[mt,s(w)−mt−1,s]
>

K−1
t−1,s [mt,s(w)−mt−1,s] , (8)

where mt,s is the sub-vector of mt corresponding to the task s. The above is a computationally-cheap
approximation of Eq. 6 and forces the network to produce similar outputs at memorable past examples.
The objective is an improved version of Eq. 1 [5]. For regression, the mean mt,s in Eq. 8 is equal to
the vector f t,s used in Eq. 1. Our functional regulariser additionally includes a kernel matrix Kt−1,s

to take care of the uncertainty and weighting of past tasks’ memorable examples.

Due to a full kernel matrix, the functional regulariser exploits the correlations between memorable
examples. This is in contrast with a weight-space approach, where modelling correlations is infeasible
since Σ is extremely large. Here, training is cheap since the objective in Eq. 8 can be optimised by
using Adam. Our approach therefore provides a cheap weight-space training method while exploiting
correlations in function-space. Due to these properties, we expect our method to perform better. We
can expect further improvements by relaxing these assumptions (see App. B), e.g., we can use a full
kernel matrix, use a variational approximation, or employ a block-diagonal covariance matrix. We
leave such comparisons as future work since they require sophisticated implementation to scale.

3.4 The final algorithm and computational complexity

The resulting algorithm, FROMP, is shown in Alg. 1 for binary classification (extension to multiclass
classification is in App. C). For binary classification, we assume a sigmoid σ(fw(x)) function and
cross-entropy loss. As shown in App. A.2, the Jacobian (of size 1× P ) and noise precision (a scalar)
are as follows: Jw(x) = ∇wfw(x)> and Λw(x) = σ (fw(x)) [1− σ (fw(x))]. To compute the
mean and kernel, we need the diagonal of the covariance, which we denote by v. This can be obtained
using Eq. 4 but with the sum over D1:t. The update below computes this recursively:

1

vt
=
[ 1

vt−1
+
∑
i∈Dt

diag
(
Jw(xi)

>Λw(xi)Jw(xi)
) ]
, (9)
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where ‘/’ denotes element-wise division and diag(A) is the diagonal of A. Using this in an expression
similar to Eq. 5, we can compute the mean and kernel matrix (see App. A.2 for details):

mt,s(w)[i] = σ (fw(xi)) , Kt,s(w)[i, j] = Λw(xi)
[
Jw(xi) Diag (vt) Jw(xj)

>]Λw(xj) , (10)

over all memorable examples xi,xj , where Diag(a) denotes a diagonal matrix with a as the
diagonal. Using these, we can write the gradient of Eq. 8, where the gradient of the func-
tional regulariser is added as an additional term to the gradient of the loss: N∇w ¯̀

t(w) +

τ
∑t−1
s=1(∇wmt,s(w))K−1

t−1,s(mt,s(w) − mt−1,s) where ∇wmt,s(w)[i] = ∇w [σ (fw(xi))] =

Λw(xi)Jw(xi)
>. The regulariser is computed in subroutine g_FR in Alg. 1.

The additional computations on top of Adam are highlighted in red in Alg. 1. Every iteration
requires functional gradients (in g_FR) whose cost is dominated by the computation of Jw(xi) at all
xi ∈ Ms,∀s < t. Assuming the size of the memorable past is M per task, this adds an additional
O(MPt) computation, where P is the number of parameters and t is the task number. This increases
only linearly with the size of the memorable past. We need three additional computations but they are
required only once per task. First, inversion of Ks,∀s < t, which has cost O(M3t). This is linear in
number of tasks and is feasible when M is not too large. Second, computation of vt in Eq. 9 requires
a full pass through the dataset Dt, with cost O(NP ) where N is the dataset size. This cost can be
reduced by estimating vt using a minibatch of data (as is common for EWC [18]). Finally, we find
the memorable pastMt, requiring a forward pass followed by picking the top M examples.

4 Experiments

To identify the benefits of the functional prior (step A) and memorable past (step B), we compare
FROMP to three variants: (1) FROMP-L2 where we replace the kernel in Eq. 5 by the identity matrix,
similar to Eq. 1, (2) FRORP where memorable examples selected randomly (“R” stands for random),
(3) FRORP-L2 which is same as FRORP, but the kernel in Eq. 5 is replaced by the identity matrix.
We present comparisons on four benchmarks: a toy dataset, permuted MNIST, Split MNIST, and
Split CIFAR (a split version of CIFAR-10 & CIFAR-100). Results for the toy dataset are summarised
in Fig. 5 and App. G, where we also visually show the brittleness of weight-space methods. In all
experiments, we use the Adam optimiser [17]. Details on hyperparameter settings are in App. F.

4.1 Permuted and Split MNIST

Permuted MNIST consists of a series of tasks, with each applying a fixed permutation of pixels to
the entire MNIST dataset. Similarly to previous work [18, 37, 22, 34], we use a fully connected
single-head network with two hidden layers, each consisting of 100 hidden units. We train for 10
tasks. The number of memorable examples is set in the range 10–200. We also test on the Split
MNIST benchmark [37], which consists of five binary classification tasks built from MNIST: 0/1,
2/3, 4/5, 6/7, and 8/9. Following the settings of previous work, we use a fully connected multi-head
network with two hidden layers, each with 256 hidden units. We select 40 memorable points per task.

The final average accuracy is shown in Fig. 2a where FROMP achieves better performance than weight-
regularisation methods (EWC, VCL, SI) as well as the function-regularisation continual learning
(FRCL) method [34]. FROMP also improves over FRORP-L2 and FROMP-L2, demonstrating the
effectiveness of the kernel. The improvement compared to FRORP is not significant. We believe this
is because a random memorable past already achieves a performance close to the highest achievable
performance, and we see no further improvement by choosing the examples carefully. However, as
shown in Fig. 3c, we do see an improvement when the number of memorable examples are small
(compare FRORP vs FROMP). Finally, Fig. 1b shows the most and least memorable examples chosen
by sorting Λw(x, y). The most memorable examples appear to be more difficult to classify than the
least memorable examples, which suggests that they may lie closer to the decision boundary.

We also run FROMP on Split MNIST on a smaller network architecture [33], obtaining (99.2±0.1)%
(see App. F.2). Additionally, in App. H, we show that, when the task-boundary information is
unavailable, it is still possible to automatically detect the boundaries within our method. When new
tasks are encountered, we expect the prediction using current network and past ones to be similar. We
use this to detect task boundaries by performing a statistical test; see App. H for details.
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Method Permuted Split
DLP [32] 82% 61.2%
EWC [18] 84% 63.1%
SI [37] 86% 98.9%
Improved VCL [33] 93± 1% 98.4± 0.4%

+ random Coreset 94.6± 0.3% 98.2± 0.4%
FRCL-RND [34] 94.2± 0.1% 97.1± 0.7%
FRCL-TR [34] 94.3± 0.2% 97.8± 0.7%
FRORP-L2 87.9± 0.7% 98.5± 0.2%
FROMP-L2 94.6± 0.1% 98.7± 0.1%
FRORP 94.6± 0.1% 99.0± 0.1%
FROMP 94.9± 0.1% 99.0± 0.1%

(a) MNIST comparisons: for Permuted, we use 200 examples
as memorable/coreset/inducing points. For Split, we use 40. (b) Most (left) vs least (right) memorable

Figure 2: (a) On MNIST, FROMP obtains better accuracy than weight-regularisation (EWC, SI,
VCL) and functional-regularisation (FRCL). Note that FRCL does not outperform ‘Improved VCL +
random coreset’ while FROMP does. The standard errors are reported over 5 runs.

4.2 Split CIFAR

Split CIFAR is a more difficult benchmark than MNIST, and consists of 6 tasks. The first task
is the full CIFAR-10 dataset, followed by 5 tasks, each consisting of 10 consecutive classes from
CIFAR-100. We use the same model architecture as Zenke et al. [37]: a multi-head CNN with 4
convolutional layers, then 2 dense layers with dropout. The number of memorable examples is set in
the range 10–200, and we run each method 5 times. We compare to two additional baselines. The
first baseline consists of networks trained on each task separately. Such training cannot profit from
forward/backward transfer from other tasks, and sets a lower limit which we must outperform. The
second baseline is where we train all tasks jointly, which would yield perhaps the best results and
which we would like to match.

The results are summarised in Fig. 3a, where we see that FROMP is close to the upper limit while
outperforming all the other methods. The weight-regularisation methods EWC and SI do not perform
well on the later tasks while VCL forgets the earlier tasks. Poor performance of VCL is most
likely due to the difficulty of using Bayes By Backprop [7] on CNNs3 [23, 31]. FROMP performs
consistently better across all tasks (except the first task where it is close to the best). It also improves
over the lower limit (‘separate tasks’) by a large margin. In fact, on tasks 4-6, FROMP matches the
performance to the network trained jointly on all tasks, which implies that there it completely avoids
forgetting. The average performance over all tasks is also the best (see the ‘Avg’ column).

Fig. 3b shows the performance with respect to the number of memorable past examples. Similarly
to Fig. 3c, carefully selecting memorable example improves the performance, especially when the
number of memorable examples is small. For example, with 10 such memorable examples, a careful
selection in FROMP increases the average accuracy to 70% from 45% obtained by FRORP. Including
the kernel in FROMP here unfortunately does not improve significantly over FROMP-L2, unlike
the MNIST experiment. Fig. 2b shows a few images with most and least memorable past examples
where we again see that the most memorable might be more difficult to classify.

Finally, we analyse the forward and backward transfer obtained by FROMP. Forward transfer means
the accuracy on the current tasks increases as number of past tasks increases, while backward transfer
means the accuracy on the previous tasks increases as more tasks are observed. As discussed in
App. E, we find that, for Split CIFAR, FROMP’s forward transfer is much better than VCL and EWC,
while its backward transfer is comparable to EWC. We define a forward transfer metric as the average
improvement in accuracy on a new task over a model trained only on that task (see App. E for an
expression). A higher value is better and quantifies the performance gain by observing past tasks.
FROMP achieves 6.1± 0.7%, a much higher value compared to 0.17± 0.9% obtained with EWC
and 1.8 ± 3.1% with VCL+coresets. For backward transfer, we used the BWT metric defined in
Lopez-Paz and Ranzato [20] which roughly captures the difference in accuracy obtained when a task

3Previous results by Nguyen et al. [22] and Swaroop et al. [33] are obtained using multi-layer perceptrons.
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Figure 3: Fig. (a) shows that FROMP outperforms weight-regularisation methods (see App. F.3 for
numerical values). ‘Tx’ means Task x. Figs. (b) and (c) show average accuracy with respect to the
number of memorable examples. A careful selection of memorable examples in FROMP gives better
results than random examples in FRORP, especially when the memory size is small. For MNIST, the
kernel in FROMP improves performance over FROMP-L2, which does not use a kernel.

is first trained and its accuracy after the final task. Again, higher is better and quantifies the gain
obtained with the future tasks. Here, FROMP has a score of −2.6± 0.9%, which is comparable to
EWC’s score of−2.3±1.4% but better than VCL+coresets which obtains−9.2±1.8%. Performance
of FROMP is summarised in Table 1.

Split MNIST Permuted MNIST Split CIFAR
FWD BWD FWD BWD FWD BWD

−0.07± 0.05% −0.5± 0.2% −1.9± 0.1% −1.0± 0.1% 6.1± 0.7% −2.6± 0.9%

Table 1: Forward and Backward transfer metrics (see App. E for precise definitions and more results)
for FROMP on benchmarks. Higher is better.

5 Discussion

We propose FROMP, a functional-regularisation approach for continual learning while avoiding
catastrophic forgetting. FROMP uses a Gaussian Process formulation of neural networks to convert
weight-space distributions into function-space. With this formulation, we proposed ways to identify
relevant memorable past examples, and functionally regularise the training of neural network weights.
FROMP achieves state-of-the-art performance across benchmarks.

This paper takes the first step in a direction to combine the ideas from neural network and GP
communities, while maintaining the simplicity of the training methods. There are plenty of future
directions to explore. Would using VI instead of a Laplace approximation result in better accuracy?
What are some ways to choose memorable examples? Is there a common principle behind them?
How many memorable examples should one use, and how can we ensure that increasing their
numbers substantially increases the performance? Do we obtain improvements when we relax some
assumptions, and what kind of improvements? Will this approach work at large scale, e.g., on the
ImageNet dataset? Are there better methods to automatically detect task boundaries? And finally
how can all of these ideas fit in a Bayesian framework, and can we obtain theoretical guarantees for
such methodologies?

These are some of the questions of future interest. We believe that functional regularisation is
ultimately how we want to train deep learning algorithms. We hope that the methods discussed in this
paper open new methodologies for knowledge transfer in deep learning.
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Broader Impact

The focus of this paper is on continual deep learning which is related to the field of life-long learning.
Designing such algorithms is a bottleneck for deep learning which heavily relies on the offline setting
where all the data is available at once. Life-long learning methods, such as ours, will extend the
application of deep learning to problems where data is limited and needs to be collected slowly over
time. This could bring a positive change in fields such as robotics, medicine, healthcare, and climate
science. A shortcoming currently is the lack of theoretical guarantees, which is essential to ensure a
positive change. Life-long learning methods, such as ours, should not be applied to mission-critical
problems, until such guarantees are available.

One could imagine negative outcomes too, e.g., if life-long learning methods are perfected, machines
could then learn in a sequential fashion, similar to living beings and humans. It is possible that their
learning will catch up with ours, which will have a huge affect on the society and economy. We do
not see this happening any time soon, and in the short term we see a net positive effect on the society.
It is important to perform research to understand effects on society in case life-long learning methods
are successful.
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