
A Deep Networks to Functional Priors with DNN2GP

A.1 GP posteriors from the Minimiser of Linear Model

The posterior distribution of a linear model induces a GP posterior as shown by Rasmussen and
Williams [24]. We discuss this in detail now for the following linear model discussed in Sec. 3.1:

yi = fw(xi) + εi, where fw(xi) := φ(xi)
>w, εi ∼ N (εi|0,Λ−1), and w ∼ N (w|0, δ−1IP)

(11)

with a feature map φ(x). Rasmussen and Williams [24] show that the predictive distribution for a
test input x takes the following form (see Equation 2.11 in their book):

p(f(x)|x,D) = N (f(x) |Λφ(x)>A−1Φy, φ(x)>A−1φ(x)),

where A :=
∑
i

φ(xi) Λφ(xi)
> + δIP . (12)

where D is set of training points {yi,xi} for i, and Φ is a matrix with φ(xi) as columns.

Rasmussen and Williams [24] derive the above predictive distribution by using the weight-space
posterior N (w|wlin,Σlin) with the mean and covariance defined as below:

wlin := ΛA−1Φy, Σlin := A−1. (13)

The mean wlin is also the minimiser of the least-squares loss and A is the hessian at that solution.

Rasmussen and Williams [24] show that the predictive distribution in Eq. 12 corresponds to a GP
posterior with the following mean and covariance functions:

mlin(x) = Λφ(x)>A−1Φy = φ(x)>wlin = fwlin(x), (14)

κlin(x,x′) := φ(x)>Σlin φ(x′), (15)

This is the result shown in Eq. 2 in Sec. 3.1. We can also write the predictive distribution of the
observation y = f(x) + ε where ε ∼ N (0,Λ−1) as follows:

p(y|x,D) = N (y | fwlin(x)︸ ︷︷ ︸
mlin(x)

, φ(x)>Σlinφ(x)︸ ︷︷ ︸
κlin(x,x)

+Λ−1),

where Σ−1
lin :=

∑
i

φ(xi) Λφ(xi)
> + δIP . (16)

We will make use of Eqs. 14 to 16 to write the mean and covariance function of the posterior
approximation for neural networks, as shown in the next section.

A.2 GP Posteriors from the Minimiser of Neural Networks

Khan et al. [16] derive GP predictive distributions for the minimisers of a variety of loss functions
in Appendix B of their paper. We describe these below along with the resulting GP posteriors.
Throughout, we denote a minimiser of the loss by w∗.

A regression loss: For a regression loss function `(y, f) := 1
2Λ(y − f)2, they derive the following

expression for the predictive distribution for the observations y (see Equation 44, Appendix B.2 in
their paper):

p̂(y|x,D) := N (y | fw∗(x), Jw∗(x)Σ∗Jw∗(x)> + Λ−1),

where Σ−1
∗ :=

∑
i

Jw∗(xi)
> Λ Jw∗(xi) + δIP . (17)

We use p̂(y|x,D) since this predictive distribution is not exact and is obtained using a type of Laplace
approximation. Comparing this to Eq. 16, we can write the mean and covariance functions in a
similar fashion as Eqs. 14 and 15:

mw∗(x) := fw∗(x), κw∗(x,x′) := Jw∗(x) Σ∗ Jw∗(x′)>. (18)

13

This is the result shown in Eq. 5 in Sec. 3.1.

A binary classification loss: A similar expression is available for binary classification with y ∈
{0, 1}, considering the loss `(y, f) := −y log σ(f)− (1− y) log(1− σ(f)) = −yf + log(1 + ef)
where σ(f) := 1/(1 + e−f) is the sigmoid function. See Equation 48, Appendix B.2 in Khan et al.
[16]. The predictive distribution is given as follows:

p̂(y|x,D) := N (y |σ(fw∗(x)), Λw∗(x) Jw∗(x) Σ∗ Jw∗(x)>Λw∗(x) + Λw∗(x)),

where Σ−1
∗ :=

∑
i

Jw∗(xi)
> Λw∗(xi) Jw∗(xi) + δIP . (19)

where Λw∗(x) := σ (fw∗(x)) [1− σ (fw∗(x))]. The predictive distribution does not respect the fact
that y is binary and treats it like a Gaussian. This makes it comparable to Eq. 16. Comparing the two,
we can conclude that the above corresponds to the predictive posterior distribution of a GP regression
model with y = f(x) + ε where ε ∼ N (0,Λw∗(x)) with the mean and covariance function as shown
below:

mw∗(x) := σ(fw∗(x)), κw∗(x,x′) := Λw∗(x) Jw∗(x) Σ∗ Jw∗(x′)>Λw∗(x). (20)

This is the result used in Eq. 10 in Sec. 3.4 for binary classification. A difference here is that the mean
function is passed through the sigmoid function and the covariance function has Λw∗(x) multiplied
on the both sides. These changes appear because of the nonlinearity in the loss function introduced
due to the sigmoid link function.

A multiclass classification loss: The above result straightforwardly extends to the multiclass classi-
fication case by using multinomial-logit likelihood (or softmax function). For this the loss can be
written as follows:

`(y, f) = −y>S(f) + log

(
1 +

K−1∑
k=1

efk

)
, where k’th element of S(f) is

efj

1 +
∑K−1
k=1 efk

(21)

where the number of categories is equal to K, y is a one-hot-encoding vector of size K − 1, f is
K − 1 length output of the neural network, and S(f) is the softmax operation which maps a K − 1
length real vector to a K−1 dimensional vector with entries in the open interval (0, 1). The encoding
in K − 1 length vectors ignores the last category which then ensures identifiability [35]. In a similar
fashion to the binary case, the predictive distribution of the K − 1 length output y for an input x can
be written as follows:

p̂(y|x,D) := N (y | S(fw∗(x)), Λw∗(x) Jw∗(x) Σ∗ Jw∗(x)>Λw∗(x)> + Λw∗(x)),

where Σ−1
∗ :=

∑
i

Jw∗(xi)
>Λw∗(xi) Jw∗(xi) + δIP . (22)

where Λw∗(x) := S (fw∗(x)) [1− S (fw∗(x))]
> is a (K − 1)× (K − 1) matrix and Jw∗(x) is the

(K − 1) × P Jacobian matrix. The mean function in this case is a K − 1 length matrix and the
covariance function is a square matrix of size K − 1. Their expressions are shown below:

mw∗(x) := S(fw∗(x)), Kw∗(x,x′) := Λw∗(x) Jw∗(x) Σ∗ Jw∗(x′)>Λw∗(x′). (23)

General case: The results above hold for a generic loss function derived from a generalised linear
model (GLM) with an invertible function h(f), e.g., `(y, f) := − log p(y|h(f)). For example, for
a Bernoulli distribution, the link function h(f) is equal to σ. In the GLM literature, h−1 is known
as the link function. Given such a loss, the only quantity that changes in the above calculations is
Λw∗(x,y) := ∇2

ff `(y, f), which is the second derivative of the loss with respect to f , and might
depend both on x and y.

A.3 GP Posterior from the Iterations of a Neural-Network Optimiser

The results of the previous section hold only at a minimiser w∗. Khan et al. [16] generalise this
to iterations of optimisers. They did this for a variational inference algorithm and also for its
deterministic version that resembles RMSprop. We now describe these two versions. We will only
consider binary classification using the setup described in the previous section. The results can be
easily generalised to multiclass classification.

14

GP posterior from iterations of a variational inference algorithm: Given a Gaussian variational
approximation qj(w) := N (w|µj ,Σj) at iteration j, Khan et al. [16] used a natural-gradient
variational inference algorithm called the variational-online Newton (VON) method [15]. Given
a qj(w), the algorithm proceeds by first sampling wj ∼ qj(w), and then updating the variational
distribution. Surprisingly, the procedure used to derive a GP predictive distribution for the minimiser
generalises to this update too. An expression for the predictive distribution is given below:

p̂j+1(y|x,D) := N (y |σ(fwj
(x)), Λwj

(x) Jwj
(x) Σj Jwj

(x)>Λwj
(x) + Λwj

(x)−1), (24)

where Σ−1
j+1 := (1− βj)Σ−1

j + βj

[∑
i

Jwj
(xi)

> Λwj
(xi) Jwj

(xi) + δIP

]
, (25)

µj+1 := µj − βjΣj+1

[
N∇w ¯̀(wj) + δµj

]
, (26)

where ¯̀(w) := 1
N

∑N
i=1 `(yi, fw(xi)). The predictive distribution takes the same form as before,

but now the covariance and mean are updated according to the VON updates. The VON updates
are essential to ensure the validity of the GP posterior, however, as Khan et al. [16] discuss, the
RMSprop/Adam have similar update which enable us to apply the above results even when running
such algorithms. We describe this next.

GP posterior from iterations of RMSprop/Adam: Khan et al. [16] propose a deterministic version
of the above update where wj is not sampled from qj(w) rather is set to be equal to µj , i.e., wj = µj .
This gives rise to the following update:

Σ−1
j+1 ← (1− βj)Σ−1

j + βj

[∑
i

Jwj
(xi)

> Λwj
(xi) Jwj

(xi) + δIP

]
, (27)

wj+1 ← wj − βjΣj+1

[
N∇w ¯̀(wj) + δwj

]
, (28)

with the variational approximation defined as qj(w) := N (w|wj ,Σj). The form of the predictive
distribution remains the same as Eq. 24.

As discussed in Khan et al. [15], the above algorithm can be made similar to RMSprop by using a
diagonal covariance. By reparameterising the diagonal of Σ−1 as s + δ1 where s is an unknown
vector, we can rewrite the updates to update µ and s. This can then be written in a form similar to
RMSprop as shown below:

sj+1 ← (1− βj)sj + βj

[∑
i

Λwj
(xi)

[
Jwj

(xi) ◦ Jwj
(xi)

]>]
(29)

wj+1 ← wj − βt
1

sj+1 + δ1
◦
[
N∇w ¯̀(wt) + δwj

]
, (30)

where ◦ defines element-wise product of two vectors, and the diagonal of Σ−1
j+1 is equal to (sj+1+δ1).

This algorithm differs from RMSprop in two ways. First, the scale vector sj is updated using the sum
of the square of the Jacobians instead of the square of the mini-batch gradients. Second, there is no
square-root in the preconditioner for the gradient in the second line. This algorithm is the diagonal
version of the Online Generalised Gauss-Newton (OGGN) algorithm discussed in Khan et al. [16].

In practice, we ignore these two differences and employ the RMSprop/Adam update instead. As a
consequence the variance estimates might not be very good during the iteration, even though the
fixed-point of the algorithm is not changed [15]. This is the price we pay for the convenience of using
RMSprop/Adam. We correct the approximation after convergence of the algorithm by recomputing
the diagonal of the covariance according to Eq. 29. Denoting the converged solution by w∗, we
compute the diagonal v∗ of the covariance Σ∗ as shown below:

v∗ = 1/
[
δ1 +

N∑
i=1

Λw∗(xi) [Jw∗(xi) ◦ Jw∗(xi)]
>
]
, (31)

B Detailed Derivation of FROMP Algorithm

In this section, we provide further details on Sec. 3.3.

15

L(q(w)) := Eq(w)

[
N

τ
¯̀
t(w) + log q(w)

]
−Eq̃wt (f)

[
log q̃wt−1

(f)
]
,

where wt ∼ q(w) and wt−1 ∼ qt−1(w). (32)

Optimising this objective requires us to obtain the GP posterior q̃wt
(f). This can be easily done

applying the DNN2GP result from Eq. 24 to this loss function. The VON update for the objective
above takes the following form:

Σ−1 ← (1− β)Σ−1 + β

[∑
i

Jwt(xi)
> Λwt(xi) Jwt(xi)− 2∇ΣEq̃wt (f)

[
log q̃wt−1(f)

]]
, (33)

µ← µ− βΣ

[
N

τ
∇w ¯̀

t(wt)−∇µEq̃wt (f)
[
log q̃wt−1

(f)
]]
. (34)

where ¯̀
t(w) := 1

N

∑
i∈Dt

`(yi, fw(xi)) and we have ignored the iteration subscript to simplify
notation.

Using the µ and Σ obtained with this iteration, we can define the following GP predictive posterior
at a sample wt ∼ q(w):

p̂t(y|x,D) := N (y |σ(fwt(x)), Λwt(x) Jwt(x) Σ Jwt(x)>Λwt(x) + Λwt(x)−1), (35)

Comparing this to Eq. 24, we can write the mean and covariance function as follows:

mwt
(x) := σ(fwt

(x)), κwt
(x,x′) := Λwt

(x) Jwt
(x) Σ Jwt

(x′)>Λwt
(x). (36)

The mean vector obtained by concatenating mwt
(x) at all x ∈M is denoted by mt. Similarly, the

covariance matrix Kt is defined as the matrix with ij’th entry as κwt
(xi,xj). The corresponding

mean and covariance obtained from samples from qt−1(w) are denoted by mt−1 and Kt−1.

Given these quantities, the functional regularisation term has an analytical expression given as
follows:

Eq̃wt (f)
[
log q̃wt−1(f)

]
= − 1

2

[
Tr(K−1

t−1Kt) + (mt −mt−1)>K−1
t−1(mt −mt−1)

]
, (37)

correct to a constant. Our goal is to obtain the derivative of this term with respect to µ and Σ. Both
mt and Kt are functions of µ and Σ through the sample wt = µ + Σ1/2ε where ε ∼ N (0, I).
Therefore, we can compute these derivative using the chain rule.

We note that the resulting algorithm is costly for large problems, and propose five approximations to
reduce the computation cost, as described below.

Approximation 1: Instead of sampling wt−1, we set wt−1 = µt−1 which is the mean of the
posterior approximation qt−1(w) until task t− 1. Therefore, we replace Eq̃wt (f)

[
log q̃wt−1

(f)
]

by
Eq̃wt (f)

[
log q̃µt−1

(f)
]
. This affects the mean mt−1 and Kt−1 in Eq. 37.

Approximation 2: When computing the derivation of the functional regulariser, we will ignore the
derivative with respect to Kt and only consider mt. Therefore, the derivatives needed for the update
in Eqs. 33 and 34 can be approximated as follows:

∇µEq̃wt (f)
[
log q̃wt−1

(f)
]
≈ − [∇µmt] K

−1
t−1(mt −mt−1), (38)

∇ΣEq̃wt (f)
[
log q̃wt−1

(f)
]
≈ − [∇Σmt] K

−1
t−1(mt −mt−1). (39)

This avoids having to calculate complex derivatives (e.g., derivatives of Jacobians).

Approximation 3: Instead of using the full Kt−1, we factorise it across tasks, i.e., we approximate
it by a block-diagonal matrix containing the kernel matrix Kt−1,s for all past tasks s as the diagonal.
This makes the cost of inversion linear in the number of tasks.

Approximation 4: Similarly to Eqs. 27 and 28, we use a deterministic version of the VON update by
setting wt = µ, which corresponds to setting the random noise ε to zero in wt = µ+ Σ1/2ε. This
approximation simplifies the gradient computation in Eqs. 38 and 39, since now the gradient with
respect to Σ is zero. For example, in the binary classification case, mµ(x) := σ(fµ(x)), which does

16

not depend on Σ. The gradient of mt with respect to µ is given as follows using the chain rule (here
mt,s is the sub-vector of mt corresponding to the task s).

∇µmt,s[i] = ∇µ [σ (fµ(xi))] = Λµ(xi) Jµ(xi)
>, where xi ∈Ms, (40)

and where the second equality holds for canonical link functions. With these simplifications, we can
write the VON update as follows:

Σ−1 ← (1− β)Σ−1 + β

[∑
i

Jµ(xi)
> Λµ(xi) Jµ(xi)

]
, (41)

µ← µ− βΣ

[
N

τ
∇µ ¯̀

t(µ) +

t−1∑
s=1

[∇µmt,s] K
−1
t−1,s(mt,s −mt−1,s)

]
. (42)

Approximation 5: Similarly to Eqs. 29 and 30, our final approximation is to use a diagonal covariance
Σ and replace the above update by an RMSprop-like update where we denote µ by w:

s← (1− β)s + β

[∑
i

Λw(xi) [Jw(xi) ◦ Jw(xi)]
>

]
, (43)

w← w − β 1

s + δ1
◦

[
N

τ
∇w ¯̀

t(w) +

t−1∑
s=1

[∇wmt,s] K
−1
t−1,s(mt,s −mt−1,s)

]
, (44)

where we have added a regulariser δ to s in the second line to avoid dividing by zero. Previously [15],
this regulariser was the prior precision. Ideally, when using a functional prior, we would replace this
by another term. However, this term was ignored by making Approximation 4, and we use δ instead.
The final Gaussian approximation is obtained with the mean equal to w and covariance is equal to a
diagonal matrix with 1/(s + δ1) as its diagonal.

It is easy to see that the solutions found by this algorithm is the fixed point of this objective:

min
w
N ¯̀

t(w) + 1
2τ

t−1∑
s=1

(mt,s −mt−1,s)
>K−1

t−1,s(mt,s −mt−1,s), (45)

Ultimately, this is an approximation of the objective given in Eq. 32, and is computationally cheaper
to optimise.

We follow the recommendations of Khan et al. [16] and use RMSprop/Adam instead of Eqs. 27
and 28. This algorithm still optimises the objective given in Eq. 45, but the estimate of the covariance
is not accurate. We correct the approximation after convergence of the algorithm by recomputing the
diagonal of the covariance according to Eq. 43. Denoting the converged solution by w∗, we compute
the diagonal v∗ of the covariance Σ∗ as shown below:

v∗ = 1/
[
δ1 +

N∑
i=1

Λw∗(xi) [Jw∗(xi) ◦ Jw∗(xi)]
>
]
, (46)

C Multiclass setting

When there are more than two classes per task, we need to use multiclass versions of the equations
presented so far. We still make the same approximations as described in App. B.

Reducing Complexity in the Multiclass setting: We could use the full multiclass version of the
GP predictive (Eq. 22), but this is expensive. To keep computational complexity low, we employ an
individual GP over each of the K classes seen in a previous task, and treat the GPs as independent.

We have K separate GPs. Let y(k) be the k-th item of y. Then the predictive distribution over each
y(k) for an input x is:

p̂(y(k)|x,D) := N
(
y(k) | S(fw∗(x))(k), Λw∗(x)(k) Jw∗(x) Σ∗ Jw∗(x)>Λw∗(x)(k)>

+ Λw∗(x)(k,k)
)
, (47)

17

where S(fw∗(x))(k) is the k-th output of the softmax function, Λw∗(x)(k) is the k-th row of the
Hessian matrix and Λw∗(x)(k,k) is the k, k-th element of the Hessian matrix. The Jacobians Jw∗(x)
are now of size K × P . Note that we have allowed S and Λw∗(x) to be of size K instead of K − 1.
This is because we are treating the K GPs separately.

The kernel matrix Kt−1 is now a block diagonal matrix for each previous task’s classes. This allows
us to only compute inverses of each block diagonal (size M ×M), repeated for each class in each
past task (K(t− 1) times), where M is the number of memorable past examples in each task. This
changes computational complexity to be linear in the number of classes per task, K, compared to
Sec. 3.4 (which has analysis for binary classification for each task).

When choosing a memorable past (the subset of points to regularise function values over) for the
logistic regression case, we can simply sort the Λw∗(xi)’s for all {xi} ∈ Dt and pick the largest, as
explained in Sec. 3.2. In the multiclass case, these are now K ×K matrices Λw∗(xi). We instead
sort by Tr(Λw∗(xi)) to select the memorable past examples.

FROMP for multiclass classification: The solutions found by the multiclass algorithm is the fixed
point of this objective (compare with Eq. 45):

min
w
N ¯̀

t(w) + 1
2τ

t−1∑
s=1

∑
k∈Cs

(mt,s,k −mt−1,s,k)>K−1
t−1,s,k(mt,s,k −mt−1,s,k), (48)

where we define Cs as the set of classes k seen in previous task s, mt,s,k is the vector of mwt
(x) for

class k evaluated at the memorable points {xi} ∈ Ms, mt−1,s,k is the vector of mwt−1(x) for class
k, and Kt−1,s,k is the kernel matrix from the previous task just for class k, always evaluated over just
the memorable points from previous task s. By decomposing the last term over individual outputs and
over the memorable past from each task, we have reduced the computational complexity per update.

D Functional prior approximation

We discuss why replacing weight space integral by a function space integral, as done below, results in
an approximation:

Eq(w)[log qt−1(w)] ≈ Eq̃wt (f)
[
log q̃wt−1

(f)
]
,

A change of variable in many cases results in an equality, e.g., for f = Xw with a matrix X and
given any function h(f), we can express the weight space integral as the function space integral:∫

h(Xw)N (w|µ,Σ)dw =

∫
h(f)N (f |Xµ,XΣX>)df . (49)

Unfortunately, log qt−1(w) can not always be written as a function of f := Jwtw. Therefore, the
change of variable does not result in an equality. For our purpose, as long as the approximations
provide a reasonable surrogate for optimisation, the approximation is not expected to cause issues.

E Further details on continual learning metrics reported

We report a backward transfer metric and a forward transfer metric on Split CIFAR (higher is better
for both). The backward transfer metric is exactly as defined in Lopez-Paz and Ranzato [20]. The
forward transfer metric is a measure of how well the method uses previously seen knowledge to
improve classification accuracy on newly seen tasks. Let there be a total of T tasks. Let Ri,j be the
classification accuracy of the model on task tj after training on task ti. Let Rind

i be the classification
accuracy of an independent model trained only on task i. Then,

Backward Transfer, BWT =
1

T − 1

T−1∑
i=1

RT,i −Ri,i,

Forward Transfer, FWT =
1

T − 1

T∑
i=2

Ri,i −Rind
i .

18

FROMP achieves 6.1± 0.7%, a much higher value compared to 0.17± 0.9% obtained with EWC
and 1.8± 3.1% with VCL+coresets. For backward transfer, we used the BWT metric defined in [20]
which roughly captures the difference in accuracy obtained when a task is first trained and its accuracy
after the final task. Again, higher is better and quantifies the gain obtained with the future tasks. Here,
FROMP has a score of −2.6± 0.9%, which is comparable to EWC’s score of −2.3± 1.4% but better
than VCL+coresets which obtains −9.2± 1.8%.

Table 2: Summary of metrics on Split CIFAR. FROMP outperforms the baselines EWC and
VCL+coresets. All methods are run five times, with mean and standard deviation reported.

Method Final average accuracy Forward transfer Backward transfer
EWC 71.6± 0.9% 0.17± 0.9% −2.3± 1.4%
VCL+coresets 67.4± 1.4% 1.8± 3.1% −9.2± 1.8%
FROMP 76.2± 0.4% 6.1± 0.7% −2.6± 0.9%

F Further details on experiments

F.1 Permuted MNIST

We use the Adam optimiser [17] with Adam learning rate set to 0.001 and parameter β1 = 0.99, and
also employ gradient clipping. The minibatch size is 128, and we learn each task for 10 epochs. We
use τ = 0.5N for all algorithms, with 200 memorable points: FROMP, FRORP, FROMP-L2 and
FRORP-L2. We use a fully connected single-head network with two hidden layers, each consisting
of 100 hidden units with ReLU activation functions. We report performance after 10 tasks.

F.2 Split MNIST

We use the Adam optimiser [17] with Adam learning rate set to 0.0001 and parameter β1 = 0.99,
and also employ gradient clipping. The minibatch size is 128, and we learn each task for 15 epochs.
We use τ = 10N for all algorithms, with 40 memorable points: FROMP, FRORP, FROMP-L2 and
FRORP-L2. We use a fully connected multi-head network with two hidden layers, each with 256
hidden units and ReLU activation functions.

Smaller network architecture from Swaroop et al. [33]. Swaroop et al. [33] use a smaller network
than the network we use for the results in Fig. 2a. They train VCL on a single-hidden layer network
with 100 hidden units (and ReLU activation functions). To ensure faithful comparison, we reran
FROMP (with 40 memorable points per task) on this smaller network, obtaining a mean and standard
deviation over 5 runs of (99.2± 0.1)%. This is an improvement from Fig. 2a, which uses a larger
network. We believe this is due to the pruning effect described in Swaroop et al. [33].

Sensitivity to the value of τ . We tested FROMP and FROMP-L2 with different values of the
hyperparameter τ . We found that τ can change by an order of magnitude without significantly
affecting final average accuracy. Larger changes in τ led to greater than 0.1% loss in accuracy.

F.3 Split CIFAR

We use the Adam optimiser [17] with Adam learning rate set to 0.001 and parameter β1 = 0.99, and
also employ gradient clipping. The minibatch size is 256, and we learn each task for 80 epochs. We
use τ = 10N for all algorithms, with 200 memorable points: FROMP, FRORP, FROMP-L2 and
FRORP-L2.

Numerical results on Split CIFAR. We run all methods 5 times and report the mean and standard
error. For baselines, we train from scratch on each task and jointly on all tasks achieving (73.6±0.4)%
and (78.1± 0.3)%, respectively. The final average validation accuracy of FROMP is (76.2± 0.4)%,
FROMP-L2 is (75.6± 0.4)%, SI is (73.5± 0.5)% (result from Zenke et al. [37]), EWC is (71.6±
0.9)%, VCL + random coreset is (67.4± 1.4)%.

Longer task sequence: 11 tasks of Split CIFAR. We also run Split CIFAR for 11 tasks instead
of the standard 6 tasks, and compare FROMP with FROMP-L2 and FRORP for different sizes of

19

10 40 70 100
Number of Examples

0.4

0.5

0.6

0.7

V
al

id
at

io
n

A
cc

ur
ac

y

FROMP

FRORP

FROMP-L2

Figure 4: Results on Split CIFAR with 11 tasks as the number of memorable examples changes.
A careful selection of memorable examples in FROMP gives better (/more consistent) results than
random examples in FRORP, especially when the memory size is small.

(i) After Task 1

Class 0 datapoint

Class 0 memorable

Class 1 datapoint

Class 1 memorable

(ii) After Task 2 (iii) After Task 5

Figure 5: This figure demonstrates our approach on a toy dataset. Figure (i) shows the result of
training on the first task where memorable past examples are shown with big markers. These points
usually are the ones that support the decision boundary. Figure (ii) shows the result after training on
the second task where we see that the new network outputs are forced to give the same prediction on
memorable past examples as the previous network. The new decision boundary classifies both task 1
and 2 well. Figure (iii) shows the result after training on five tasks, along with the memorable-past of
each task. With our method, the performance over past tasks is maintained.

memorable past (Fig. 4). We find similar results to Fig. 3b in the main text, with FROMP typically
out-performing FRORP, especially at smaller memorable sizes, but being similar to FROMP-L2.

F.4 Fewer memorable past examples

When we have fewer memorable past examples (for Figs. 3b and 3c), we increase τ to compensate for
the fewer datapoints. For example, for Split CIFAR, when we have 40 memorable past examples per
task (instead of 200), we use τ = (200/40) ∗ 10N = 50N (instead of τ = 10N for 200 memorable
past points).

G Toy data experiments

In this section, we use a 2D binary classification toy dataset with a small multi-layer perceptron to (i)
demonstrate the brittleness and inconsistent behaviour of weight-regularisation, (ii) test FROMP’s
performance on different toy datasets of varying difficulty. As shown in Fig. 5 in App. G, we
find that weight-regularisation methods like VCL (+coresets) perform much worse than functional-
regularisation, with lower accuracy, higher variance over random seeds, and visually bad decision
boundaries.

The toy dataset we use is shown in Fig. 5, along with how FROMP does well. In App. G.1, we show
weight-space regularisation’s inconsistent behaviour on this dataset, with results and visualisations. In
App. G.2, we show that FROMP performs consistently across many variations of the dataset. Finally,
hyperparameters for our experiments are presented in App. G.3. For all these experiments, we use a
2-hidden layer single-head MLP with 20 hidden units in each layer.

20

G.1 Weight-space regularisation’s inconsistent behaviour

Table 3: Train accuracy of FROMP, VCL (no coresets), VCL+coresets and batch-trained Adam (an
upper bound on performance) on a toy 2D binary classification dataset, with mean and standard
deviations over 5 runs for VCL and batch Adam, and 10 runs for FROMP. ‘VCL’ is without coresets.
VCL-RP and FRORP have the same (random) coreset selections. VCL-MP is provided with ‘ideal’
coreset points as chosen by an independent run of FROMP. VCL (no coreset) does very poorly,
forgetting previous tasks. VCL+coresets is brittle with high standard deviations, while FROMP is
stable.

FROMP FRORP VCL-RP VCL-MP VCL Batch Adam
99.6± 0.2% 98.5± 0.6% 92± 10% 85± 14% 68± 8% 99.70± 0.03%

Table 3 summarises the performance (measured by train accuracy) of FROMP and VCL+coresets
on a toy dataset similar to that in Fig. 5. FROMP is very consistent, while VCL (with coresets) is
extremely brittle: it can perform well sometimes (1 run out of 5), but usually does not (4 runs out of 5).
This is regardless of the coreset points chosen for VCL. Note that coresets are chosen independently
of training in VCL. Without coresets, VCL forgets many past tasks, with very low performance.

For VCL-MP, the coreset is chosen as the memorable past from an independent run of FROMP, with
datapoints all on the task boundary. This selection of coreset is intuitively better than a random
coreset selection. The results we show here are not specific to coreset selection. Any coreset selection
(whether random or otherwise) all show the same inconsistency when VCL is trained with them. We
provide visualisations of the brittleness of VCL in Fig. 6.

Figure 6: Three runs of VCL-MP on toy 2D data. These are the middle performing 3 runs out of 5
runs with different random seeds. VCL’s inconsistent behaviour is clear.

G.2 Dataset variations

Figs. 7 to 11 visualise the different dataset variations presented in Table 4. We pick the middle
performing FROMP run (out of 5) and batch Adam run to show.

Table 4: Train accuracy of FROMP and batch-trained Adam (upper bound on performance) on
variations of a toy 2D binary classification dataset, with mean and standard deviations over 10
runs (3 runs for Adam). FROMP performs well across variations. VCL (with coresets) performs
significantly worse even on the original dataset (92± 10%). See App. G.2 for further experiments
and for visualisations.

Dataset variation FROMP Batch Adam
Original dataset 99.6± 0.2% 99.7± 0.0%
10x less data (400 per task) 99.9± 0.0% 99.7± 0.2%
10x more data (40000 per task) 96.9± 3.0% 99.7± 0.0%
Introduced 6th task 97.8± 3.3% 99.6± 0.1%
Increased std dev of each class distribution 96.0± 2.4% 96.9± 0.4%
2 tasks have overlapping data 90.1± 0.8% 91.1± 0.3%

21

Figure 7: FROMP (middle performing of 5 runs) and batch Adam on a dataset 10x smaller (400
points per task).

Figure 8: FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset 10x larger
(40,000 points per task).

G.3 VCL and FROMP hyperparameter settings for toy datasets

FROMP. We optimised the number of epochs, Adam learning rate, and batch size. We optimised by
running different hyperparameter settings for 5 runs on the toy dataset in Fig. 5, and picking the set-
tings with largest mean train accuracy. We found the best settings were: number of epochs=50, batch
size=20, learning rate=0.01. The hyperparameters were then fixed across all toy data experimental
runs, including across dataset variations (number of epochs was appropriately scaled by 10 if dataset
size was scaled by 10).

VCL+coresets. We optimised the number of epochs, the number of coreset epochs (because
VCL+coresets trains on non-coreset data first, then on coreset data just before test-time: see Nguyen
et al. [22]), learning rate (we use Adam to optimise the means and standard deviations of each
parameter), batch size, and prior variance. We optimised by running various settings for 5 runs and
picking the settings with largest mean train accuracy. We found the best settings were: number of
epochs=200, number of coreset epochs=200, a standard normal prior (variance=1), batch size=40,
learning rate=0.01. VCL is slow to run (an order of magnitude longer) compared to the other methods
(FROMP and batch Adam).

G.4 Importance of kernel being over all layer weights

In this section, we show the importance of using all weights of the neural network, instead of just
the last layer. Our kernel is over all weights from all layers. We run the same toy experiment, and
consider the entropies of the Gaussian distributions for weights in each layer. We plot the histogram
of these entropies in Fig. 12. As can be seen, all layers have weights with high uncertainty (high
entropy), especially for the first few tasks. Note that as we train for more tasks, we expect the
uncertainties to reduce as our network parameters become more certain having seen more data.

22

Figure 9: FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset with a
new, easy, 6th task.

Figure 10: FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset with
increased standard deviations of each class’ points, making classification tougher.

Therefore, by considering uncertainties across weights in all layers, instead of just the last layer, we
might expect better performance.

H Task boundary detection

In this section, we consider the case where data is separated into tasks, but we are not provided task
boundaries during training. Our goal is to detect the task boundaries. Many of the ideas in this section
are inspired from Titsias et al. [34] Section 3.

We consider 10 tasks of Permuted MNIST, with minibatches arriving without task ID information.
We wish to automatically detect when a new minibatch belongs to a new task. We use the same
network and hyperparameters as in App. F.

The key insight is that, when we first see data from a new task, we expect this data to be far (in input
space) from data we have observed so far. Therefore, predictions over this new data with our current
network parameters, mt, should be similar to predictions with our prior network parameters, mt−1.
This is in contrast to when we see data from the current task, when predictions with our current
network parameters will be very different to our prior network parameters.

Using this insight, we perform a test on every new minibatch of data, in order to determine whether it
is from a new task or not. This test is performed before training on the minibatch.

For every new minibatch, we:

1. Calculate (mt,i −mt−1,i)
2 for each sample i in the minibatch where mt,i and mt−1,i are

predictive mean obtained using current and past networks respectively. When we see a new
task, we expect this value to be small.

23

Figure 11: FROMP (middle performing of 5 runs), left, and batch Adam, right, on a dataset with 2
tasks having overlapping data, which is not separable.

0 5
0.0

2.5

5.0

7.5

10.0

La
ye

r 1

0 5
0.0

2.5

5.0

7.5

10.0

0 5
0.0

2.5

5.0

7.5

10.0

0 5
0.0

2.5

5.0

7.5

10.0

0 5
0.0

2.5

5.0

7.5

10.0

0 5
0

25

50

75

100

La
ye

r 2

0 5
0

25

50

75

100

0 5
0

25

50

75

100

0 5
0

25

50

75

100

0 5
0

25

50

75

100

0 5
Task 1

0

5

10

15

20

La
ye

r 3

0 5
Task 2

0

5

10

15

20

0 5
Task 3

0

5

10

15

20

0 5
Task 4

0

5

10

15

20

0 5
Task 5

0

5

10

15

20

Figure 12: Histogram of entropy of distribution the distribution of weights for different layers (row)
and task (columns). For each layer, we take all weights and plot the histogram of their entropies.
Left-most is after the first task, and right-most is after the last task. We see that the entopy is high
across layers, implying that there is significant uncertainties about the weights for all of them, not
only the last layer (layer 3 in this case).

2. Calculate Welch’s t-test statistic between the current and the previous minibatch’s samples.
For the multi-class setup of Permuted MNIST, we repeat this for each function, and average
this statistic across the functions.

3. If the statistic is sufficiently high (above a threshold), we detect a new task.

We find that this method is very good at determining task boundaries. We always successfully
recognise a task change, with no mistakes, over a wide range of thresholds. Note that we do not
conduct the test for the first 10 iterations of training on a new task.

24

We plot the Welch’s t-test statistic between minibatches in Fig. 13 for a specific run. As can be seen,
we can use a range of threshold values (approximately 0.9 to 1.8, limited by detecting the very first
task change) to successfully recognise that the task has changed.

We found that using just mean predictions to be good enough for determining task boundaries in
this setting. Ideally, in more complicated scenarios, we might want to use the full GP predictive
distribution, and compare that to the predictive distribution from the GP prior. We could then use a
divergence to determine how similar the two distributions are, with the expectation that new tasks
have small divergence.

0 1 2 3 4 5 6 7 8 9
Task ID

0.00

0.05

0.10

0.15

Sq
ua

re
d

di
ffe

re
nc

e

(a) Square of difference in mean predictions

0 1 2 3 4 5 6 7 8 9
Task ID

0

2

4

W
el

ch
's

t-t
es

t s
ta

tis
tic

(b) Welch’s t-test statistic

Figure 13: Detecting task boundary changes in 10 tasks of Permuted MNIST. (a) The square of the
difference in means reduces noticeably whenever a minibatch from a new task is seen for the first
time. (b) We can perform Welch’s t-test to detect these changes, and threshold on this value to detect
a new task.

I Changes in the camera-ready version compared to the submitted version

• We expanded the Related Works section.

• We added the task boundary detection experiment (App. H).

• We ran Split CIFAR on 11 tasks (App. F).

• Added App. G.4 discussing (with a toy visualisation) the importance of using all layer
weights in the kernel matrix, not just the last layer weights.

• We updated Fig. 3b and Fig. 3c in the main text using the newest hyperparameters we found.
The new plot shows that FROMP and FROMP-L2 are similar in Fig. 3b, but slightly further
apart in Fig. 3c. The old figures are in Fig. 14, which we believe should be attainable with
different hyperparameters.

J Author Contributions Statement

List of Authors: Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard E.
Turner, Mohammad Emtiyaz Khan.

P.P, S.S., and M.E.K. conceived the original idea of using DNN2GP for continual learning. This was
then discussed with R.E., R.T., and A.I. The DNN2GP result from Section 3.1 is due to A.I. The
memorable past method in Section 3.2 is due to M.E.K. The FROMP algorithm in Algorithm 1 was
originally conceived by P.P., S.S. and M.E.K. The idea of functional prior was conceived by S.S.
and M.E.K. Based on this idea, S.S. and M.E.K. wrote a derivation using the variational approach,
which is currently written in Section 3.3. R.E., A.I. and R.T. regularly provided feedback for the
main methods.

P.P. conducted all experiments, with feedback from M.E.K., A.I., R.E, and S.S. S.S. made corrections
to some of the code, fixed hyperparameter reporting, and also did baseline comparisons.

25

10 20 40 70 100
Number of Examples

0.65

0.70

0.75

V
al

id
at

io
n

A
cc

ur
ac

y

FROMP

FRORP

FROMP-L2

(a) Split CIFAR

10 40 70 100
Number of Examples

0.7

0.8

0.9

V
al

id
at

io
n

A
cc

ur
ac

y

FROMP

FRORP

FROMP-L2

(b) Permuted MNIST

Figure 14: Previous figures for average accuracy with respect to the number of memorable examples.

The first version of the paper was written by M.E.K. with some help from the other authors. S.S
revised the paper many times and also rewrote many new parts. Detailed derivation in Appendix is
written by S.S. and M.E.K. The authors A.I., R.E. and R.T. provided feedback during the writing of
the paper.

M.E.K. and S.S. led the project.

26

