Fast Fourier Convolution

Lu Chi', Borui Jiang?, Yadong Mu'*
!'Wangxuan Institute of Computer Technology, 2Center for Data Science
Peking University
{chilu, jbr,myd}@pku.edu.cn

Abstract

Vanilla convolutions in modern deep networks are known to operate locally and at
fixed scale (e.g., the widely-adopted 3 x 3 kernels in image-oriented tasks). This
causes low efficacy in connecting two distant locations in the network. In this work,
we propose a novel convolutional operator dubbed as fast Fourier convolution
(FFC), which has the main hallmarks of non-local receptive fields and cross-scale
fusion within the convolutional unit. According to spectral convolution theorem in
Fourier theory, point-wise update in the spectral domain globally affects all input
features involved in Fourier transform, which sheds light on neural architectural
design with non-local receptive field. Our proposed FFC is inspired to capsulate
three different kinds of computations in a single operation unit: a local branch that
conducts ordinary small-kernel convolution, a semi-global branch that processes
spectrally stacked image patches, and a global branch that manipulates image-level
spectrum. All branches complementarily address different scales. A multi-branch
aggregation step is included in FFC for cross-scale fusion. FFC is a generic
operator that can directly replace vanilla convolutions in a large body of existing
networks, without any adjustments and with comparable complexity metrics (e.g.,
FLOPs). We experimentally evaluate FFC in three major vision benchmarks
(ImageNet for image recognition, Kinetics for video action recognition, MSCOCO
for human keypoint detection). It consistently elevates accuracies in all above tasks
by significant margins.

1 Introduction

Deep neural networks have been the prominent driving force for recent dramatic progress in several
research domains. The goal of this paper is the exposition of a novel convolutional unit codenamed
fast Fourier convolution (FFC). Motivating our design of FFC, we consider two desiderata. First,
one of the core concepts in deep convolutional neural networks (CNNSs) is receptive field that is
deeply rooted in the visual cortex architecture. In convolutional networks, receptive field refers to
the image part that is accessible by one filter. A majority of modern networks have adopted the
architecture of deeply stacking many convolutions with small receptive field (3 x 3 in ResNet [[L1]
for images or 3 x 3 x 3 in C3D [27] for videos). This still ensures that all image parts are visible
to high layers, since stacking convolutional layers can increase the receptive field either linearly
or exponentially (e.g., using atrous convolutions [2]]). However, for context-sensitive tasks such as
human pose estimation, large receptive field in convolutions is highly desired. Recent endeavor on
enlarging receptive field includes deformable convolution [9] and non-local neural networks [31].

Secondly, CNNs typically admit a chain-like topology. Neural layers provide different levels of
feature abstraction. The idea of cross-scale fusion has celebrated its success in various scenarios.
For example, one can tailor and send high-level semantics to shallower layers for guiding more
accurate spatial detection, as shown in the seminal work of FPN [[18]]. Recent studies have considered
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to reinforce cross-scale fusion in more complex patterns, as exemplified by HRNet [29] and Auto-
DeepLab [19]. Our work is also partly inspired by GoogLeNet [26], which is among the early
exploration of capturing and fusing multi-scale information in an operation unit, rather than among
distant neural blocks.

We thus seek for a novel convolution operator that efficiently implements non-local receptive field
and fuses multi-scale information. The key tool for our development is the spectral transform theory.
In particular, we choose Fourier transform for incarnation, leaving further exploration of many other
choices (e.g., wavelet) as a future work. According to the spectral convolution theorem [15]] in Fourier
theory, updating a single value in the spectral domain globally affects all original data, which sheds
light on design efficient neural architectures with non-local receptive field (e.g., [34}[7]). In specific,
we design a collection of operations with varying receptive fields, among which non-local ones
are accomplished via Fourier transform. These operations are applied to disjoint subsets of feature
channels. Updated feature maps across scales are eventually aggregated as the output.

To our best knowledge, FFC is the first work that explores an efficient ensemble of local and non-local
receptive fields in a single unit. It can be used in a plug-and-play fashion for easily replacing vanilla
convolutions in mainstream CNNs without any additional effort. In contrast, existing non-local
operators can only be sparsely inserted into the network pipeline due to their expensive computational
cost. FFC consumes comparable GFLOPs and parameters with respect to vanilla convolutions, yet
conveys richer information. In the experiments, we apply FFC for tackling a variety of computer
vision tasks, including image recognition on ImageNet, video action recognition on Kinetics dataset,
and human keypoint detection on Microsoft COCO data. The reported performances consistently
outstrip previous models by significant margins. We strongly believe that FFC can make inroads
into domains of neural network design where uniform, local receptive field had previously reigned
supreme.

2 Related Work

Non-local neural networks. The theory of effective receptive field |21]] revealed that convolutions
tend to contract to the central regions. This questions the necessity of large convolutional kernels.
Besides, small-kernel convolutions are also favored in CNNss for mitigating the risk of over-fitting.
Recently, researchers gradually realized that linking two arbitrary distant neurons in a layer is crucial
for many context-sensitive tasks, such as classifying the action type in a spatio-temporal video tube
or jointly inferring the precise locations of human keypoints. This is addressed by recent research on
non-local networks. Early methods as in [31] rely on expensive self-convolutions, which incurs a
series of follow-up research that seeks for acceleration (e.g., [14]). Nonetheless, current paradigm of
using non-local operators are sparsely inserting them into some network pipelines. The way that they
can be densely knitted remains an unexplored research problem.

Cross-scale fusion. In CNNs, it is widely acknowledged that features extracted from different
locations in a network are highly complementary, providing low-level (edges, blobs etc), mid-level
(meaningful shapes) or high-level semantic abstraction. Cross-scale feature fusion has widely
celebrated effectiveness in numerous ways. For example, FCN [20] directly concatenated feature
maps of different scales, generating more accurate image segments. The visual object detection
task requires both accurate localization and prediction of object categories. To this end, FPN [[18]]
propagated features in a top-down manner, seamlessly bridging the high spatial resolution in lower
layers and semantic discriminative ability in higher layers. Recently-proposed HRNet [29]] conducted
cross-scale fusion among multiple network branches that maintain different spatial resolutions.

Spectral neural networks. Recent years have witnessed increasing research enthusiasm on spectral
neural networks. The spectral domain, previously harnessed only for accelerating convolutions, also
provides a powerful building block for constructing deep networks. For example, [23] proposed
spectral pooling that performs dimensionality reduction by truncating the representation in the
frequency domain. [34]] utilized wavelet based representation for restoring high-resolution images.
[7]] proposed paired spatial-spectral transforms and devised a number of new layers in the spectral
domain. Our work advances above-mentioned research front via designing an operation unit that
simultaneously uses spatial and spectral information for achieving mixed receptive fields.
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Figure 1: Left: Architecture design of Fast Fourier Convolution (FFC). “@)" denotes element-wise sum. Here
Qin = Qou = 0.5. Right: Design of spectral transform f,. See main text for more explanation.

3 Fast Fourier Convolution (FFC)

3.1 Architectural Design

The architecture of our proposed FFC is shown in Figure[T} Conceptually, FFC is comprised of two
inter-connected paths: a spatial (or local) path that conducts ordinary convolutions on a part of input
feature channels, and a spectral (or global) path that operates in the spectral domain. Each path can
capture complementary information with different receptive field. Information exchange between
these paths is performed internally.

Formally, let X € R¥*WX*C be the input feature map of some FFC, where H x W, C represent the
spatial resolution and the number of channels respectively. At the entry of FFC, we first split X along
the dimension of feature channels, namely X = {X', X9}. The local part X! € R¥*Wx(1=ain)C jg
expected to learn from local neighborhood and a second global part X9 € RH*WxainC jg designed
to capture long-range context. «;;, € [0, 1] represents the percentage of feature channels allocated
to the global part. To simplify the network, assume the output is same sized to the input. Use
Y € RTXWXC for the output tensor. Likewise, let Y = {Y'!, Y9} be a local-global split and the
ratio of global part for output tensor is controlled by a hyper-parameter a.,,,: € [0, 1]. The updating
procedure within FFC can be described by following formulas:

Y = Y pyert = (XY + fa(X9), (D
Y7 = Y Y0 = [y (X9) 1 fiy(XD). @

For the component Y!~! which aims to capture small scale information, a regular convolution is
adopted. Similarly, other two components (Y9! / Y!79) obtained via inter-path transition are also
implemented using regular convolutions to take full advantage of multi-scale receptive fields. Major
complication stems from the calculation of Y979, For statement clarity, we term f,; as spectral
transformer.

3.2 Implementation Details

Spectral transformer. The goal of global path in Figure |1| is to enlarge the receptive field of
convolution to the full resolution of input feature map in an efficient way. We adopt discrete Fourier
transform (DFT) for this purpose, using the accelerated version with Cooley-Tukey algorithm [8].

Figure[I] depicts our proposed spectral transformer. Inspired by the bottleneck block in ResNet, in
order to reduce the computational cost, a 1 x 1 convolution is used at the beginning for halving the
channels. Another 1 x 1 convolution is included to restore the feature channel dimension. As seen,
between these two convolutions there are one Fourier Unit (FU) with global receptive field, a Local
Fourier Unit (LFU) that is designed to capture semi-global information and operates on a quarter of
feature channels, and a residual connection. The details of FU and LFU are given below.



def FU(x):

, y_i = FFT(x)
Concatenate([y_r, y_il, dim=1)
ReLU(BN(Conv(y)))

, y_i = Split(y, dim=1)
iFFT(y_r, y_i)

s R

N< < <<

return z

Figure 2: Pseudocode of Fourier Unit (FU). The variables N, C, H, W denote the sample number in a mini-batch,
feature channels, image height and image width respectively.
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Figure 3: Illustration of the computational pipeline of Local Fourier Unit (LFU). To perform a valid addition
with the output of FU (which has C' channels) in Figure[I] we spatially shift and replicate 4 copies of LFU’s
output (i.e., in the outputted feature map, features in light green are copies of the white one).

Fourier Unit (FU). The purpose of FU is to first transform original spatial features into some spectral
domain, conduct efficient global update on spectral data, and finally convert data back to the spatial
format. Since Fourier transform manipulates complex numbers, it it crucial to ensure the input /
output of FU are both real, such that it is compatible to other neural modules.

When applying 2-D Fast Fourier Transform (FFT) on some real signals, it is widely known that this
brings an Hermitian matrix which is perfectly conjugate symmetric. Critically, applying inverse 2-D
FFT operation on an Hermitian Matrix results in a matrix with only real elements [1]]. The above
properties can be utilized to ensure compatibility with other neural layers.

The pseudo-code of FU is shown in Figure [2l when FU is fed with real tensors, its results are
conjugate symmetric. Without loss of useful information, we can thus retain only half of the results
and trivially restore the other half by using conjugate symmetry. For ease of computation, we append
the imaginary part to the real part, forming an additional dimension for the feature tensor. Essentially,
the resultant tensor is treated as all reals. We can customize a series of new layers in the spectral
domain. Following the practice in [7]], a compilation of spectral 1x1 convolution, batch normalization
and ReL.U are conducted in our implementation of FU. Eventually the results are converted back to
complex numbers by splitting them into real part and imaginary part along the auxiliary dimension.
Inverse 2-D FFT operation creates an output tensor with all real numbers (i.e., the variable z in

Figure [2).

Local Fourier Unit (LFU). FU manipulates the entire image. To capture and circulate semi-local
information (e.g., discriminative texture patterns in upper left of the input feature map), we further
devise LFU, whose neural structure is shown in Figure [3] The key difference to FU lies in an
additional split-and-concatenate step, which halves both of the spatial dimensions and renders four
smaller feature maps. Standard FU is then applied to stacked feature maps. Inspired by the temporal
shift in TSM [17], the results of FU go through a spatial shift and replication for fully restoring to the
original resolution and channels.

LFU demands higher computational complexity compared with FU, mainly due to the increased
channels. The effect of LFU varies with specific tasks. Section [ clearly demonstrates that LFU
complements FU in the scenario of image classification.

Compatibility with vanilla convolutions. A vanilla convolution can be adequately defined
when specified from a few angles, including as kernel size, stride, channel grouping etc. Since
f1, fg—1, fi4 all rely on regular convolution, they naturally inherit the property of regular convo-
lutions. For spectral transformer f,, there are two major considerations. First, as the convolution
theorem reveals, large kernel size is not necessary for spectral transformer since any operation in
spectral domain has a global receptive field. As a result the kernel size inside it is always fixed as 1.



Table 1: Parameter counts and FLOPs for vanilla convolution, separate component in FFC, and entire FFC
respectively. C and C3 are the number of channels of input and output respectively. H and W collectively
define the spatial resolution. K is the convolutional kernel size. For clarity, here stride and padding are not
considered. ain = Qour = @, where « is some parameter in [0, 1].

| #Params | FLOPs
vanilla | C1C5K? \ C1CoK*HW
yt=! (1 —@)?C1C2K? (1—a)? C’ngK2HW
Y99 2 Ch(Ch + 3Cs) 2 OV CoHW + 822 C3HW
yi=e a(l — a)Ci1Ca K> a(l— a)CngKQHW
y9=! a(l — a)C1Co K2 a(l — a)C1C2K2HW

FFC | (1-0a”)C1CoK? +a?Ca(3C1 + 5C2) | (1 - o®)CLC2K*HW + o”Co HW (501 + 13C2)

Secondly, when mimicking the downsampling (i.e., convolutional stride > 1) behavior of a vanilla
convolution, inspired by OctConv [4]], we use an average pooling before the channel-reducing step in
Figure[I] which essentially does the job of downsampling with approximation.

The treatment of complex numbers in FU as previously stated ensures both input / output are real.
FFC is therefore fully differentiable and can be inserted to most regular convolutional neural networks
without additional modification.

Parameters o, ooy can vary at different neural layers and control instant contribution from the
semi-global and global branches. The shallowest layers are supposed to mainly exploit low-level
local patterns, therefore we set o, = 0 in practice. The topmost layers highly demand contextual
inference, which motivates the choice of oy, = 0, oyt = 1 (note that FFC boils down to vanilla
convolution under o, = 0). In intermediate neural layers, we stick to o, = e Without much
empirical tuning.

Extension to spatio-temporal video data. FFC can be trivially extended to high dimensions by
applying high-dimensional kernel (i.e. ¢ X h X w) to all convolutional layers in FFC. The cornerstone
for 3D-FFC is still 2D Fourier transform applied onto each individual feature channel.

3.3 Complexity analysis

Table [T] compares two major complexity metrics of FFC and vanilla convolution. Complexity of
FFT /inverse FFT is omitted since they are parameter-free and their time complexities are negligible
compared with other computation cost (e.g., O(CHW log(HW)) in FU). As seen, FFC admits
comparable cost with respect to vanilla convolution. Critically, FFC embodies its superiority when
the large kernel size is needed, since the spectral transformer f, can still learn with global receptive
field using 1 x 1 kernel size. Section[d] will provide more comparisons in real applications.

4 Experiments

We evaluate FFC on three visual tasks: image classification, video action classification and human
keypoint detection. The main scope of the first study on ImageNet [[16]] is to investigate replacing
vanilla convolutions in a number of modern CNNs using FFC, proving its versatility at different
network architectures. A second experiment on the Kinetics video data is an investigation on high-
dimensional data. The last task needs to precisely predict spatial locations of major human joints.
This experiment is designed to prove that FFC can strike good balance between spatial specificity
and global context.

4.1 Evaluation Protocols

Image classification. ImageNet [[L6] is widely adopted to pre-train network backbones for general-
ization to other more complex tasks. We validate FFC by replacing convolutions used in a variety
of modern networks. Following typical settings in prior work, the input size of all the models
is 224 x 224. Learning rate starts from 0.1 and decreases by a factor of 0.1 after 30, 60 and 80
epochs. Maximal training epochs are set to 90. Linear warm-up strategy is also adopted in the first 5
epochs. All the networks are optimized by SGD with a batch size of 256 on 4 GPUs. Common data



Table 2: The top-1 accuracy of FFC under different ratios on ImageNet. All models use ResNet-50 as their
backbones. Note that o = 0 is equal to using vanilla convolutions.

Ratio | 0 0.125 025 0.75 1
GFLOPs 4.1 42 42 5.0 5.6
#Params 25.6 25.7 26.1 304 342

Top-1 Accuracy | 76.3 71.3 77.6 716 752

Table 3: Investigation of LFU on ImageNet. ResNet-50 serves as the backbone for all.

Ratio LFU ‘ GFLOPs  #Params ‘ Top-1 Accuracy
0.25 42 26.1 77.6

0.25 v 4.3 26.7 77.8

0.5 4.5 27.7 77.8

0.5 v 4.6 30.2 71.9

augmentation is utilized, such as scale jittering and random flipping. The validation accuracies are
calculated in the same way as [[11, |33 [12] based on 224 x 224 single center crop.

Video action classification. We choose Kinetics-400 as the testbed, which is a large-scale trimmed
video dataset with more than 300K video clips and 400 categories in total. Following [31], ResNet-50
C2D and ResNet-50 I3D are selected as the backbones, with key convolutions replaced by 3D-FFC.
All models use 8-frame video snippet with a temporal stride of 8, covering 64 frames in the temporal
scale. Frame resolution is fixed as 224 x 224. All the models are initialized from the pretrained
weights on ImageNet and trained on 4 GPUs with a batch size of 64 for total 100 epochs. The learning
rate starts from 0.01 and decreases by a factor of 10 after 40 and 80 epochs. Dropout (0.5) after the
global average pooling and weight decay (0.0001) are adopted to reduce over-fitting during training
process. Identical data augmentation as [30, 31] is adopted, Following common practice in [24, 30],
top-1 accuracy is reported by evenly sampling 25 clips per video with ten crops.

Human keypoint detection. The evaluations are fully conducted on Microsoft COCO keypoint
benchmark (http://cocodataset.orqg). Recent sophisticated models (such as HRNet [29])
contain many distracting engineering tricks, thus not suitable for ablative study. Instead, we adopt
SimpleBaseline [32] as the base model, and follow the experimental settings therein (e.g., a spatial
resolution of 256 x 192 or 384 x 288). For fairness, we also use the same person detector with
detection AP 56.4 for the person category on COCO val2017 and several other treatments during
inference. For example, averaging the heatmaps of the original and flipped images to get the
final heatmap, and adjusting each keypoint’s location via a quarter offset in the direction from the
highest-value location to the second highest response.

4.2 Experiments on ImageNet

Ablation studies on ratios o;,,, a,,:. For intermediate layers, we set o, = oyt = . The ratio a
is varied from O to 1 to explore the best ratio between local and global paths based on ResNet-50
backbone. As shown in Table [2] two observations can be drawn. First, global path can bring a
significant improvement to a model with only few additional GFLOPs or parameters. Secondly, the
performance is not sensitive to a. Large o implies more global operations and higher complexity,
a = 0.5 leads to a best accuracy, implying a good tradeoff. Considering the tradoff between
performance and complexity, we set a = (.25 in the remaining experiments.

Impact of cross-scale fusion. FU and LFU differ in the scales that they operate. It is interesting to
investigate how they complement one another. The ablation study is reported in Table[3] As seen,
LFU consistently improves FU with moderate additional cost, although the accuracy elevation is
marginal for this task.

Additionally, on ImageNet, using same parameters (e.g., & = 0.25), FFC with all cross-scale fusion
achieves a top-1 accuracy of 77.6%. Removing global-to-local fusion or local-to-global fusion
reduces the accuracy to 76.6%, 76.2% respectively. Removing f;_,, and f,_,; in Figureonly strikes
an accuracy of 75.6%. This well validates the value of inter-path transitions.

Plug-and-play with more CNNs. We replace convolutions in more state-of-the-art networks using
FFC to verify its generality. The results are shown in Table 4 As we can see, FFC can bring
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Table 4: Investigation of plugging FFC into more state-of-the-art networks on ImageNet. The first two
sets are top-1 accuracy scores obtained by various state-of-the-art methods, which we transcribe from the
corresponding papers. Deeper models are listed in the second set. The last set reports the performances of
plugging FFC into specific models (e.g., FFC-ResNet-50 implies the use of a base model ResNet-50).

Method | #Params | Top-1 Acc.
ResNet-50 [L1] 25.6 76.3
SE-ResNet-50 [12] 28.1 76.9
A2-Net [3] - 77.0
Oct-ResNet-50 [4] 25.6 77.3
DenseNet-201 [[13] 20.0 77.4
ResNeXt-50 (32 x 4d) [33] 25.0 77.8
Res2Net-50 (14w x 8s) [10] - 78.1
ResNet-101 [L1] 44.6 77.4
ResNet-152 [T1] 60.2 78.3
SE-ResNet-152 [[12] 67.2 78.4
ResNeXt-101 (32 x 4d) [33] 88.8 78.8
AttentionNeXt-56 [28] 31.9 78.8
FFC-ResNet-50 26.7 77.8
FEC-ResNext-50 (32 x4d) 28.0 78.0
FFC-ResNet-101 46.1 78.8
FFC-ResNet-152 62.6 78.9

Table 5: Experimental results on Kinetics-400. Three sets from top to bottom: recent state-of-the-art video
models, our re-implemented base models, and models enhanced with FFC. All the models adopt ResNet-50 as
backbones and read 8-frame input. “{" represents the model is finetuned with TSN framework [30].

Method | GFLOPs  #Params | Top-1
TSM [17] 32.8 243 74.1
A%Net [3] 40.8 - 74.6
Oct-I3D [4] 25.6 - 74.6
GloRe [6] 28.9 . 75.1

C2D 19.6 243 71.9

13D 284 28.4 72.6

13D + NL 395 354 73.5
C2D + NL 30.7 31.7 73.8
FFC-C2D 20.2 249 73.5
FFC-C2D + NL 31.4 322 74.9
FFC-I3D + NL 40.2 359 75.1
FFC-I3D + NL 1 40.2 35.9 76.1

significant improvement to various networks, even on powerful networks such as ResNeXt [33].
Surprisingly, FFC-ResNet-50 shows 0.4% better accuracy than ResNet-101 while costing only 60%
parameters. The mixed, non-local receptive fields brought by FFC proves to significantly reduce
the required depth for reaching a high level of accuracy. Additionally, FFC is also effective for
deeper networks (+1.4% for ResNet-101 and +0.6% for ResNet-152), although these networks can
achieve large receptive field by stacking many convolutiaonl layers, which shows that our method is
complementary to traditional convolution.

4.3 Experiments of Video Classification

Training spatio-temporal deep models requires tremendous parameters and GPU memory for large
video snippet. Limited by our GPU resources, here we only verify the proposed technique on ResNet-
50 with 8-frame input. For fair comparisons, we only focus on comparing with recent state-of-the-art
methods with the same backbone and input length. We also re-implement the popular models C2D,
I3D and NL networks in [31]] under the same settings as ours. All the results can be found in Table E}

As can be seen, FFC can consistently improve the performance over baselines with only a few
additional computations and parameters. For example, compared with C2D baseline, simply replacing
some traditional convolutional layers with FFC can improve the accuracy from 71.9% to 73.5%,
which is more effective and efficient than inflating 2D-convolution to 3D-convolution (achieving
0.9% higher accuracy, costing 29% less GFLOPs and 12% fewer parameters than 13D). Additionally,
our method is complementary to the powerful non-local block [31]. Inserting non-local block to our
models can further improve the performance. Comparing with other recent state-of-the-art methods,



Table 6: Comparisons on the COCO val2017 dataset for human keypoint detection. OHKM means Online
Hard Keypoints Mining.

Method |  Backbone | TnputSize | AP AP®® AP™® APM AP AR
8-stage Hourglass [22]] | 8-stage Hourglass | 256 x 192 | 66.9 -
CPN [3] ResNet-50 256 x 192 | 68.6 -
CPN + OHKM [3] ResNet-50 256 x 192 | 69.4 -
CPN + OHKM [3] ResNet-50 384 x 288 | 71.6 -
CSM + OHKM (23] ResNet-50 384 x 288 | 73.8 -

ResNet-50 256 x 192 | 704 886 78.3 67.1 772 763

384 x 288 | 722 893 78.9 68.1 797 716

SimpleBaseline [32] ResNet-101 256 x 192 | 714 893 79.3 68.1 781 771

S 384 x 288 | 73.6 896 80.3 69.9 8.1 79.1

ResNet-152 256 x 192 | 720 893 79.8 68.7 789 778

esivet: 384 x 288 | 743 896 81.1 705 81.6 797

ResNet-50 256 x 192 | 709  89.1 78.5 67.4 779 768

384 x 288 | 733 895 80.0 69.4 80.6  78.6

SRL-FFT (7] ResNet101 256 x 192 | 71.8 893 79.6 68.4 787 716

384 x 288 | 743 90.1 813 70.5 81.5 797

256 x 192 | 72.1 895 79.7 68.8 791 780

‘ ResNet-152 ‘ 384 x 288 ‘ 746 897 817 708 819  80.I

RecNet-50 256 x 192 | 71.8 893 79.5 68.5 787 717

384 x 288 | 739 895 80.6 70.2 813 794

FFC-SimpleBaseline ResNet-101 256 x 192 | 72.7 89.4 80.4 69.4 79.6 78.6

384 x 288 | 745  89.6 81.8 70.8 819  80.1

ResNet.152 256 x 192 | 729  89.6 80.5 69.6 799 787

; 384 x 288 | 748 896 82.2 711 821 803

our method is competitive. FFC-I3D with non-local blocks is able to achieve a new state-of-the-art
result.

4.4 Experiments of Human Keypoint Detection on COCO

The task of human keypoint detection demands more fine-grained prediction compared with classifi-
cation tasks in two other experiments, since finding human joints needs accurately localized feature
semantics. It thus serves a good testbed for mixing local / non-local receptive fields.

All results measured in mean-average-precision (mAP) are in Table[6] Deeper models tend to suffer
from saturated receptive fields, which offsets the benefits of plugging FFC. This explains that the
most significant improvement is observed by ResNet-50, rather than deeper ones. As our second
observation, larger spatial resolution of the input images arguably complicates the acquisition of
large receptive field for standard CNNs. With FFC plugged in, much salient improvement can be
seen compared with those cases with reduced resolution. Compared with the most recent model
SRL-FFT [7], our method can achieve higher performance under all the experimental settings, which
is mainly because our method can make full use of the local and global information. It should be
noted that our method can achieve comparable performance with more deeper models. For example,
under an input size of 256 x 192, FFC-ResNet-101 can perform better than SRL-FFT-ResNet-152.

5 Conclusion

We have proposed a novel convolutional operator dubbed as FFC. It harnesses the Fourier spectral
theory for achieving non-local receptive fields in deep models. The proposed operator is also carefully
designed to implement cross-scale fusion. Our comprehensive experiments on three representative
computer vision tasks consistently exhibit large performance improvement that is clearly attributed to
FFC. We strongly believe that FFC paves a new research front for designing non-local, scale-fused
neural networks.

Acknowledgement: This work is supported by National Key R&D Program of China
(2020AAA0104400), National Natural Science Foundation of China (61772037) and Beijing Natural
Science Foundation (Z190001).



6 Broader Impact

Modern neural networks have evolved for decades, from the primary LeNet to recent Resnet,
DenseNet etc. The deployment of neural network based models has greatly spurred the development
of more industrial products, particularly for visual data oriented. Nonetheless, as our proposed
FFC shows, a few key concepts in the architectural design of neural networks (such as receptive
field) are still inadequately explored. This work presents a general technique FFC, with successful
demonstrations in several crucial computer vision tasks, including image classification, video action
recognition and human keypoint detection. A large body of context-sensitive computing tasks may
benefit from FFC, as it can bring and fuse multi-scale neural receptive fields in a unified convolutional
unit and thus help to capture richer contextual information.

Moreover, for deep learning research community, FFC may inspire more rethinking of neural network
from a spectral aspect and lead to the development of more network backbones with boosted efficacy
and accuracy. We believe that FFC has significant positive impact to both industry (particularly
computer vision and natural language processing) and academia.
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