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Abstract

We revisit the problem of learning from untrusted batches introduced by Qiao and
Valiant [QV17]]. Recently, Jain and Orlitsky [JO19] gave a simple semidefinite
programming approach based on the cut-norm that achieves essentially information-
theoretically optimal error in polynomial time. Concurrently, Chen et al. [CLM19]
considered a variant of the problem where p is assumed to be structured, e.g.
log-concave, monotone hazard rate, t-modal, etc. In this case, it is possible to
achieve the same error with sample complexity sublinear in n, and they exhibited
a quasi-polynomial time algorithm for doing so using Haar wavelets.

In this paper, we find an appealing way to synthesize [JO19] and [CLM19] to
give the best of both worlds: an algorithm which runs in polynomial time and
can exploit structure in the underlying distribution to achieve sublinear sample
complexity. Along the way, we simplify the approach of [JO19] by avoiding the
need for SDP rounding and giving a more direct interpretation of it via soft filtering,
a powerful recent technique in high-dimensional robust estimation. We validate
the usefulness of our algorithms in preliminary experimental evaluations.

1 Introduction

In this paper, we consider the problem of learning structured distributions from untrusted batches.
This is a variant on the problem of learning from untrusted batches, as introduced in [QV17]. Here,
there is an unknown distribution p over {1, ..., n}, and we are given N batches of samples, each of
size k. A (1 — e)-fraction of batches are “good,” and consist of % i.i.d. samples from some distribution
1, at distance at most w from g in total variation distance, but an e-fraction of batches are “bad,” and
can be adversarially corrupted. The goal is to estimate y in total variation, equivalently L.

This problem models a situation where we get batches of data from different users, e.g. in a
crowdsourcing application. Each honest user provides a small batch of data, which is by itself
insufficient to learn a good model, and moreover, can come from slightly different distributions
depending on the user, due to heterogeneity. At the same time, a non-trivial fraction of data can come
from malicious users who wish to game our algorithm to their own ends. The high level question
is whether we can exploit the batch structure of our data to improve the robustness of our estimator.
There are three separate, but equally important, metrics under which we can evaluate our estimator:

Robustness How accurately can we estimate y in total variation distance?
Runtime Are there algorithms that run in polynomial time in all the relevant parameters?
Sample complexity How few batches do we need in order to estimate x?

In the original paper, Qiao and Valiant [QV 17]] focus primarily on robustness. They give an algorithm
for learning general i from untrusted batches that uses a polynomial number of batches, and estimates

1 to within O (w +e/ \/E) in total variation distance, and they proved that this is the best possible
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up to constant factors. However, their estimator runs in time 2". Qiao and Valiant [QV17] also gave
an algorithm based on low-rank tensor approximation that needs n* time and batches.

A natural question is whether or not this robustness can be achieved efficiently. Chen et al. [CLM19]]
2 . . . e
gave an n'°¢" 1/¢ time sum-of-squares algorithm that uses n/°¢ 1/€ batches and estimates y to within

O (w + ﬁ\/log 1/ e) in L. Concurrently and independently, Jain and Orlitsky [JO19|] gave a

polynomial time algorithm based on a much simpler SDP that achieves the same error. Their approach
was based on an elegant way to combine approximation algorithms for the cut-norm [ANO4] with the
filtering approach for robust estimation [DKK™ 17, [SCV18] [DKK 18, DKK* 19, [DHLI19].

To some extent, the results of [CLM19.JO19]] also address the third consideration, sample complexity.
[JO19] uses N = O(n/e?) batches to achieve the above error rate. Even without corruptions, for

general . any algorithm needs at least ©(n/€) batches of size k to learn to L; error O(w + €/Vk).
Thus, their sample complexity is nearly-optimal unless one makes additional assumptions.

Unfortunately, in many cases, domain size n can be very large, and sample complexity growing
strongly with n can render the estimator impractical. However in most applications, we have prior
knowledge about the shape of p that could in principle be used to drastically reduce the sample
complexity. For example, if x is log-concave, monotone, or multimodal with bounded number of
modes, ¢ can be approximated by a piecewise polynomial function, and sans corruptions, this can be
used to reduce the sample complexity to logarithmic in n [CDSS14bl]. An appealing aspect of the
relaxation in [CLM19] was that it could incorporate shape-constraints, via Haar wavelets, allowing
them to achieve sample complexity quasipolynomial in d and s, respectively the degree and number
of parts in the piecewise polynomial approximation, and quasipolylogarithmic in n. Unfortunately,
while [JO19] achieves better runtime and sample complexity in the unstructured setting, a priori their
techniques do not extend to obtain a similar sample complexity under structural assumptions.

This raises a natural question: can we build on [JO19] and [[CLM19]], to incorporate shape constraints
into a simple SDP approach that can achieve nearly-optimal robustness, polynomial runtime, and
sample complexity sublinear in n? In this paper, we answer this question in the affirmative:

Theorem 1.1. Let p be a distribution over [n] which is n-approximated by an s-part piecewise
polynomial with degree at most d. There is an algorithm which runs in time polynomial in all

parameters and estimates | to within O (7] +w+ ﬁ \/log1/ e) in total variation after drawing N
e-corrupted batches, each of size k, where N = O ((s*d? /€?) - log® (n)) is the number of batches.

Any algorithm for this problem must take at least €2(sd/€?) batches to achieve error O(n+w+¢/vVk),
and an interesting open question is whether there is a polynomial time algorithm that achieves these
bounds. For robust mean estimation for Gaussians, there is evidence for a ©2(y/log 1/¢) gap between
the best possible estimation error and what can be achieved by polynomial time algorithms [DKS17].

It seems plausible that the Q(1/log 1/¢) gap incurred by our result is unavoidable as well.

1.1 High-Level Argument

In this work we show how to unite the filtering of [JO19] with the Haar wavelet technology of
[CLM19]l to obtain a polynomial-time, sample-efficient algorithm for learning structured distributions
from untrusted batches. In this section, we will specialize to the case of w = 0 for the sake of clarity.

Learning via Filtering Given a batch of samples Y; = (Y}, ..., Y;/*) from a distribution p over
[n], the frequency vector {+ Zle 1Y/ = a]}aepn is distributed according to the normalized
multinomial distribution Muly (1) given by k draws from p (see Sectionfor notation). Note that

1 is precisely the mean of Muly (1), so the problem of estimating x from an e-corrupted set of N
frequency vectors is equivalent to that of robustly estimating the mean of a multinomial in L;.

As such, it is natural to try to adapt existing algorithms for robust mean estimation of other distri-
butions (in Euclidean norm); the fastest ones are based on the following simple filtering approach.
Maintain weights for each point, initialized to uniform. At every step, measure the maximum “skew”
of the weighted dataset in any direction, and if this skew is too high, update the weights by 1) finding
the direction v in which the corruptions skew the dataset the most, 2) giving a “score” to each point



based on how badly it skews the dataset in direction v, 3) downweighting or removing points with
high scores. Otherwise, if the skew is low, output the empirical mean of the weighted dataset.

To prove correctness, one must show three things for the particular skewness measure and score
function chosen: A) (Regularity) for any sufficiently large collection of e-corrupted batches, a
particular deterministic regularity condition holds (Definition [3.2]and Lemma[3.3), B) (Soundness)
under the regularity condition, if the skew of the weighted dataset is small, then the empirical mean
of the weighted dataset is sufficiently close to the true mean (Lemma , C) (Progress) under the
regularity condition, if the skew of the weighted dataset is large, then one iteration of the above
update scheme will remove more weight from bad batches than from good (Lemma [3.6).

For isotropic Gaussians, skewness is just given by the maximum variance of the weighted dataset in

any direction, i.e. max,cgn—1 (vv |, 3) where X is the empirical covariance of the weighted dataset.
Given maximizing v, the “score” of a point X is then simply its contribution to the skewness.

To learn in L; distance, the right set of test vectors v to use is the Hamming cube {0, 1}, so a natural
attempt at adapting the above skewness measure to robust mean estimation of multinomials is to
consider the quantity max, ¢ 9,1}~ {(vv™, ). But one of the key challenges in passing from isotropic
Gaussians to multinomial distributions is that this quantity is not very informative because we do

not have a good handle on the covariance of Muly, (). In particular, it could be that for a direction v,
(vv", %) is high simply because the good points have high variance to begin with.

An SDP for Skewness The clever workaround of [JO19] was to observe that we know exactly
what the projection of a multinomial distribution Mul(x) in any {0, 1}" direction v is, namely
Bin(k, (v, 1t)). And so to discern whether the corrupted points skew our estimate in a given direction
v, one should measure not the variance in the direction v, but rather the following corrected quantity:
the variance in the direction v, minus what the variance would be if the distribution of the projections
in the v direction were actually given by Bin(k, (v, 1)), where /i is the empirical mean of the weighted
dataset. We call this latter quantity a variance proxy. The new skewness measure can be written as
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T ~ ~\2
) — - — . 1
s {0 5) = L) = )} <>
Finding the direction v € {0, 1}" which maximizes this corrected quantity is some Boolean quadratic
programming problem which can be solved approximately by solving the natural SDP relaxation and
rounding to a Boolean vector v using the machinery of [ANO4]. Using this approach, [JO19] obtained
a polynomial-time algorithm for learning general discrete distributions from untrusted batches.

Structured Distributions: Beyond Boolean Test Vectors Learning structured distributions in the
classical sense is well-understood: if a distribution p is close in total variation distance to being
s-piecewise degree-d, then to estimate (s in total variation distance it is enough to approximate 4 in a
much weaker norm which we will denote by || - |4, , Where K is a parameter that depends on s and
d. We review the details for this in Section[L.3

The key challenge that [CLM19] had to address to port these techniques to the untrusted batches
setting was that unlike the Hamming cube or S”~!, it is unclear how to optimize over the set of test
vectors dual to the Ax norm. Combinatorially, this set is easy to characterize: ||t — fi]| 4, is small
if and only if (p — fi,v) is small for all v € V3, C {£1}", where V) is the set of all v € {1}
with at most 2K sign changes when read as a vector from left to right.

A key observation in [CLM19] was that vectors with few sign changes admit sparse representations
in the Haar wavelet basis, so instead of working with V3, one can simply work with a convex
relaxation of this Haar-sparsity constraint. As such, if we let  C R™*™ denote the relaxation of the
set of {vv " |v € Vi } to all matrices & whose Haar transforms are “analytically sparse” in some
appropriate, convex sense (see Section [2] for a formal definition), then as this set of test matrices
contains the set of test matrices vv ' for v € Vi, it is enough to learn 4 in the norm associated to C,
which is strictly stronger than the 4 x norm.

Our goal then is to produce ji for which [|fi — || £ supsex (2, (& — p)®2)1/2 is small. Even
though || - || is a stronger norm, it turns out /C’s metric entropy is still quite small. As we elaborate
on in the supplementary material, the analysis of this in [CLM19] left much room for tightening. A
refined analysis of C in the present work allows us to get nearly tight sample complexity bounds.



Putting Everything Together All the pieces are in place to instantiate the filtering framework: in
lieu of the quantity in (), which can be phrased as the maximization of some quadratic (vv ', M (w))
over {£1}", where M (w) € R™*™ depends on the dataset and the weights w on its points|'| we can
define our skewness measure as maxy e (3, M(w)) = ||M (w)]|x, and we can define the score for
each point in the dataset to be its contribution to the skewness measure (see (3))).

The reader may be wondering why, unlike [JO19] or applications of filtering in other contexts, we
never round 3 to an actual vector v € V3 before computing skewness and scores. We emphasize
that once restricted to bounded sign change vectors v € VI, the optimization problem in (I)
becomes significantly harder. Indeed, optimizing general quadratic forms v Av over Vi can
essentially capture the problem of densest 2K -subgraph: for any A’, take A £ T'" A’T where T
is the matrix which maps v to (0, vy — v1,v3 — Vg, ..., Uy — Up_1). Then optimizing v " Av over
v € V3 is equivalent to optimizing w' A'w over ¢-sparse vectors w € {0, £1}" whose nonzero
entries are alternating in sign. Modulo this alternating sign condition, this is at least as hard as densest
{-subgraph, for which it is impossible, under the Exponential Time Hypothesis, to efficiently achieve
any sub-poly(n) factor approximation [Man17]. In contrast, for the original optimization problem
(1) considered in [JO20], one can reduce to the question of computing cut-norm, which can be done
to within a constant factor via Krivine rounding.[ANO4]

As our subsequent analysis will show, it turns out that rounding is unnecessary, both in our setting
and in the unstructured distribution setting of [JO19]]. This should be quite surprising as the afore-
mentioned hardness of approximation [Manl7] suggests that the integrality gap of our relaxation
should be terrible. In particular, the norm || - ||« induced by our relaxation might be very distorted
relative to the A, norm we actually care about. However, if one examines the proof ingredients
enumerated above, it becomes evident that the filtering framework does not actually require finding
a concrete direction in R™ in which to filter, merely a skewness measure and score functions under
which regularity, soundness, and progress can be proven. That said, it becomes more challenging to
prove these ingredients when X is not rounded to an actual direction, though nevertheless possible.

We hope that this observation will prove useful in future applications of filtering.

1.2 Related Work

The problem of learning from untrusted batches was motivated by problems in reliable distributed
learning and federated learning [MMR ™17, [KMY"16]. The general question of learning from
batches has been considered in a number of settings [LRR 13, TKV17] in theory, but these algorithms
do not work in the presence of adversarial noise.

The study of univariate shape constrained density estimation has a long history in statistics and
computer science, and we cannot hope to do justice to it here. See [BBBB72] for a survey of classical
results in the area, and [O’B16, [Dial6] for a survey of more recent results in this area. Of particular
relevance to us are the techniques based on the classical piecewise polynomial (or spline) methods,
see e.g. [WW83|[Sto94] ISHKT97,[IWNO7|]. Recent work, which we build off of, demonstrates that
this framework is capable of achieving nearly-optimal sample complexity and runtime, for a large
class of structured distributions [CDSS13\[CDSS14b, [CDSS14a, |/ ADH™ 15, [ADLST17].

Our techniques are also related to a recent line of work on robust statistics [DKK™ 19, [CRV16,[CSV17,
DKK™ 17, [HLT8| [KSS18], a classical problem dating back to the 60s and 70s [Ans60} [Tuk60, [Hub92,
Tuk75]. See [Lil18,IStel8,IDK19|] for a more comprehensive survey of this line of work.

Concurrently and independently of this work, a newer work of Jain and Orlitsky [JO20|] obtains very
similar results, though our quantitative guarantees are incomparable: the number of batches N they
need scales linearly in s - d and independently of n, but also scales with v/% and 1 /3.

1.3 Technical Preliminaries

Notation Let A™ C R” be the simplex of probability distributions over [n]. Given y € A”™, let
Muly (1) denote the distribution over A™ given by sampling a frequency vector from the multinomial
distribution arising from & draws from the distribution over [n] specified by y, and dividing by k.

"Note that we have switched to {£1}™ in place of {0, 1}". The difference turns out to be immaterial, so we do
not belabor this point, and the former is more convenient for understanding how we handle V3, C {£1}".



Given matrix M € R™*", let || M || max denote the maximum absolute value of any entry in M, let
|[M]|1,1 denote the absolute sum of its entries, and let || M || denote its Frobenius norm.

Given batches X1, -+ , Xy ~ Mul,(u) and U C [N], define w(U) : [N] — [0, 1/N] to be the set
of weights which assigns 1 /N to all points in U and 0 to all other points. Also define its normalization
W(U) 2 w(U)/||lwl||;. Let W, denote the set of weights w : [N] — [0,1/N] which are convex
combinations of such weights for |U| > (1 — €)N. Given w, define p(w) £ SN X;, and

=1 HwH
define ;1(U) £ p(w(U)), that is, the empirical mean of the batches indexed by U.

Given batches X1, --- , Xy ~ Mulg(u), weights w, and v, ..., vy € A™, define the matrices
®2 ®2
v; wi(X; — ;) and B({v ez .
{ Z { N ZXNMulk (vi) ) ]
When vy = -+ = vy = v, denote these matrices by A(w, v) and B(v) and note that
B(v) = (dlag( v) — v¥?)

k
Also define M (w, {v;})) £ A(w, {v;}) — B({v;}) and M (w,v) £ A(w,v) — B(v). We will also
denote M (w, u(w)) by M (w) and M (w(U)) by My .

Generative Model Lete,w > 0, n,k, N € N, and let 4 € A™ be any distribution over [n].
Y1, ..., Yy is an e-corrupted w-diverse set of N batches of size k from y if it is generated as follows:

1. Foreveryi € [(1 — €)N], Y; = (Y;',...,Y}*) is a set of k iid draws from p1;, where 1; € A™ is
some probability distribution over [n] for which drv (g, p;) < w.

2. A computationally unbounded adversary inspects 571, . 37(1,6) ~ and adds eV arbitrarily chosen
f/(l,ewﬂ, ..., Yx € [n]*, and returns the entire collection of tuples in any order as Y1, ..., Y.

Let Si, Sp C [N] denote the indices of the uncorrupted (good) and corrupted (bad) batches. Given
batch Y; € [n]¥, define X; € A" to be the frequency vector whose a-th entry is 1 Zk 1Y = al.

2
For each i € S¢, X; is i.i.d. from Mulg (u;). We work solely in this frequency vector perspective.

Ax Norms and VC Complexity We review basics about learning structured distributions.

Definition 1.2 (Ax norms, see e.g. [DLO1I). For positive integers K < n, define Ak to be the
set of all unions of at most K disjoint intervals over [n], where an interval is any subset of [n]
of the form {a,a + 1,--- ;b — 1,b}. The Ak distance between two distributions p,v over [n] is
It — vl 4 = maxsea, |1(S) — u(S)|. Equivalently, say that v € {£1}" has 2K sign changes if
there are exactly 2K indices i € [n—1] for which v, 41 # v;. Then if Vi denotes the set of all such v,
we have || —v|| 4, = 5 maxyevy, (n—v,v). Note that ||-[|.a, < ||-[la, < -+ < (|-l = |- [l7v-

Definition 1.3. A distribution i over [n] is (n, s)-piecewise degree-d if there is a partition of [n]
into t disjoint intervals {[a;, b;]}1<i<t, together wzth univariate degree-d polynomials 1, - - - ,r; and
distribution ', such that dry(u, 1) < nand, for all i € [t], i/ (z) = r;(x) forall x € [n] in [ai, b;].

A proof of the following lemma, a consequence of [ADLS17], can be found in [[CLM19].

Lemma 1.4 (Lemma 5.1 in [CLM19], follows by [ADLS17]). Let K = s(d + 1). If p is (1, s)-
piecewise degree-d and || — fi|| o, < C, then there is an algorithm which, given the vector fi, outputs
a distribution p* for which dry(u, p*) < 2¢ + 41 in time poly (s, d, 1/n).

In light of this, to show Theoremﬂ;f]it suffices to get good error in Ay /5 norm, where

02 25(d+1). 2)

2 Semidefinite Program for Finding the Direction of Largest Variance

Haar Wavelets and V' We briefly recall the definition of Haar wavelets. See [CLM19] for details.



Definition 2.1. Let m be a positive integer and let n = 2™ . The Haar wavelet basis is an orthonormal
basis over R™ consisting of the father wavelet ¥, o = n~ /% - 1, the mother wavelet ,,,,.,.0 =

n~2. (1,1, —1,---,—1) (where (1, - - ,1,=1,---,=1) contains n/2 I’s and n/2 -1’s), and
foreveryi,j forwhich1l <i <mand0 < j <2, the wavelet 1; j whose 2™~" - 5 +1,... 2Mm7".
j 42"~ L th coordinates are 2~ " ~)/2 and whose 2 j4 (27 L4 1), - 2Tl 4 2m g
coordinates are —2~(M=9/2 and whose remaining coordinates are 0.

We will use the following notation when referring to Haar wavelets:

* Let H,, denote the n x n matrix whose rows consist of the vectors of the Haar wavelet basis for
R™. When the context is clear, we will omit the subscript and refer to this matrix as H.

* For v € [n], if the v-th Haar wavelet in R™ is ¢); ;, define the weight h(*) £ 2~ (m=9/2,

* For any index i € {Ofaher, Omothers 1, - -+ ,m — 1}, let T; C [n] denote the set of indices v for which
the v-th Haar wavelet is of the form 1); ; for some j.

* Given any p > 1, define the Haar-weighted L? norm || - || p:n on R” by ||w||,m = '], where for
every a € [n], v, £ h(®w,. Likewise, given any norm || - ||, on R"*", define the Haar-weighted
%-00rm || - [|;n on R™™ by [[M|[.;n £ ||M||., where for every a, b € [n], M/, , £ h(Vh()M, ;.
We refer to Section 2.1 of [CLM19] for a discussion of why this weighting is crucial.

The key observation is that any v € {£1}" with at most ¢ sign changes, where ¢ is given by (@),
has an (¢logn -+ 1)-sparse representation in the Haar wavelet basis. We will use the following
fundamental fact about Haar wavelets, a cruder version of which appears as Lemma 6.3 in [CLM19].

Lemma 2.2. Let v € V}. Then Hv has at most {logn + 1 nonzero entries, and furthermore
[ HV||oom < 1. In particular; ||H |3, [|Hv[|1;n < £logn + 1.

Relaxing to Analytic Sparsity Recall that in [JO19], the authors consider the binary optimization
problem max,¢ (9,1}~ |v T Myv|. We would like to form a convex relaxation of the more challenging

v Myv|. Motivated by Lemma we consider the following:

optimization problem max,eyy

Definition 2.3. Ler £ be given by 2). Let K denote the (convex) set of matrices 3 € R™*™ for which
DY =0,2) |S]max <L 3) [HSH |10 < Llogn+1,4) [HSH |3, < Llogn + 1, and 5)
|HEH T ||max:n < 1. Let || - || denote the associated norm given by | M| £ sups,cxc |(M, Z)].
By abuse of notation, for vectors v € R™ we will also use ||v||xc to denote |[vv " H,1C/2.

Because K has an efficient separation oracle, one can compute || - || c in polynomial time.

A standard way to relax a sparsity constraint of the form ||v||p < s is to require “analytic sparsity,”
namely that ||v||?/||v||3 < s. Constraints 3 and 4 should be thought of as a matrix analogue of

analytic sparsity in the Haar basis. Constraint 2 is to ensure that || - || is weaker than L. Constraint
5 will appear in a delicate way in the proof of the metric entropy bound (Lemma [3.4).

Remark 2.4. Besides not being a sum-of-squares program like the one considered in [CLM19)], this
relaxation is also different because of Constraints 3 and 5. These will be crucial for getting refined
sample complexity bounds (see the proof of Lemma in the supplementary material).

Corollary 2.5 (Corollary of Lemma . v € K foranyv € Vi

3 Filtering Algorithm and Analysis

In this section we describe our algorithm LEARNWITHFILTER and prove Theorem [I.1] We will
maintain weights w : [N] — Rx( for each of the batches. In every iteration, we compute ¥ € K
maximizing [(M (w), Z)|. If [(M (w), )| < O (£1log1/e), then output y(w). Otherwise, update
the weights as follows: for every batch X;, compute the score 7; given by

7 2 (X — p(w))®?,3), 3)
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and set the weights to be the output of a basic univariate filtering subroutine, 1 DFILTER(7, w). The
pseudocode for LEARNWITHFILTER and 1DFILTER is given in Algorithm [T|and 2]

Algorithm 1: LEARNWITHFILTER (batches { X };<[n7, corruption fraction ¢)

Initialize w < w([N])

while || M (w)|[x > Q(w + 1 log 1/¢) do
¥ ¢ argmaxyy, ¢ [(M (w), X)|
Compute scores 7 : [N] — R>¢ according to (3).
w < 1DFILTER(T, w)

Using the algorithm of [ADLS17] (Lemma, return the s-piecewise, degree-d distribution w
minimizing ||(w) — fil[s(a+1) (up to additive error 7).

The basic guarantee of 1DFILTER is that if the weighted average of the scores of the good points is
less than that of the bad, then it will decrement the weights so that the bad points lose more weight
than the good points overallﬂ

Lemma 3.1. For scores 7 : [N] — Rxq and weights w : [N] — Rxo, if > e, wiTi <
> icsy WiTi, then the output w' of 1DFILTER(T, w) satisfies (a) w; < w; for all i € [N], (b)
the support of w' is a strict subset of the support of w, and (c) 3 ;g Wi — Wi < e g Wi — Wj.

Algorithm 2: 1DFILTER(scores 7, weights w)

i

return weights w’ given by w; < (1 - ) wj for all i € [N], where Typax < MaX;., >0 T

Tmax

We now formally state what we need in terms of the three main ingredients (regularity, soundness,
progress) sketched in Section[I.T]

Regularity We need the following deterministic conditions to hold:
Definition 3.2 (e-goodness). Take a set of points U C [N], and let {j1;}icu be a collection of
distributions over [n). For any W C U, define iy, = Wll > icw M- Denote Ti = Jiy;.

We say U is e-good if it satisfies that for all W C U for which |W| = €|U
1. (Cone. of mean) ||u(U) — Fillx < O(Jz+/log 1/e). |n(W) = Fiwllxc < O(z+/log1/e)

2. (Cone. of covar) | M(w(U), {i bicv)llc < O(LEXE), |A((W), {pi}iew e < O(ES)
3. (Conc. of variance proxy) | B(i(U)) — B({pi}icv)llc < O(w?/k + €/k)

s

Note, we ignore the variance proxy for W in 2. because its contribution is negligible, as |W| = €|U]|.
Also, when w > 0, we need another condition which is rather technically involved, see the supplement.

Lemma 3.3 (Regularity). If U is a set of Q (log(1/8)(¢%/€?) - log*(n)) independent batches from
Muly,(p1), ..., Muly (7)), then U is e-good with probability at least 1 — 4.

The key component in the proof of Lemma [3.3] that lets us get sample complexity quadratic in £ is the
existence of a suitable net over .

Lemma 3.4. Forevery( < 1 < 1, there exists a net N' C R™ ™ of size O(n>(? log® n/n)(¢ 18 n+1)®
of matrices such that for every ¥ € K, there exists some ¥ = Y 37 for ¥ € N such that the
following holds: 1) ||X —X|p <1, 2) >, <1, and 3) || E} || max < O(1).

Soundness For soundness, we will show the following key geometric property, namely a bound on
the accuracy of an estimate p(w) given by weights w in terms of || M (w)||x. It can be interpreted as
saying that if the skewness || M (w)||c of the dataset weighted by w is low, then the weighted average
w(w) is close to the empirical mean of the good points. The contrapositive of this says that if the
weighted average is still far from the empirical mean of the good points, then the solution to the SDP
in the definition of || - || is a certificate that this is the case.

2See Lemma 4.5 from [CSV17] or Lemma 17 from [SCV18] for similar downweighting schemes and analysis.



Lemma 3.5 (Soundness). If Sg is e-good and |Sg| > (1 — €)N, then for any w € W,,

,u(w)—i Z i ) SO(\;% logl/e—|—e-w+\/e (||M(w)||/c +w2+210g1/e)>.

We emphasize that because we are working directly with the SDP-based norm || - || and avoiding
any sort of rounding, the proof of Lemma 3.3]introduces various technical complications that do not
manifest in analogous results for other settings of robust mean estimation [Lil8, DKKT19].

Progress The following says as long as we remain in the main loop of LEARNWITHFILTER and
have so far thrown out more bad weight than good, we will continue to do so in the next iteration.

Lemma 3.6 (Progress). Let w and w' be the weights at the start and end of a single iteration of the
main loop of LEARNWITHFILTER. There is an absolute constant C > 0 such that if | M (w)||xc >
/

€ 1 1 /
C-flogl/eand )y ;cg. § — Wi <D jcs, N — Wi then Y g wi—w; <D g w; —w.

We can now combine Lemma [3.5]and Lemma 3.]to get a proof of Theorem [I.1]

Proof of Theorem|[I 1) Let ji be the output of LEARNWITHFILTER. By Lemma|T.4] the definition
of || - [|¢/2, and Corollary , it is enough to show that || — ullx < O(w + Tz Vlog 1/€e). By
Lemma|3.5]and the termination condition of the loop in LEARNWITHFILTER, we just need to show
that the algorithm terminates (in polynomial time) and that w € Wg(). But by induction and
Lemma 3.6 every iteration removes more bad weight than good, and by Lemma 3.1} the support of
w goes down by at least one every time 1 DFILTER is run. So the loops terminates after at most N
iterations, each of which can be implemented in polynomial time. At the end, at most € fraction of
the total mass on S¢ has been removed, so the final weights w satisfy w € Wa,. O]

4 Numerical Experiments

We empirically evaluated our algorithm on synthetic data. We compared our algorithm LEARN-
WITHFILTER, the empirical mean of all samples, and the “oracle” i.e. the empirical mean of the

CEINNT3

uncorrupted samples (in Figures|Taand[Th] these are labeled “filter”, “naive”, “oracle” respectively).
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Figure 1: Synthetic experiments

By definition, the oracle dominates the algorithms of [CLM19,JO19]| for the unstructured case, as
they search for a subset of the data and output that subset’s empirical mean. But by Theorem [T.T}
LEARNWITHFILTER should outperform the oracle when p is structured and there are too few samples
for the empirical mean of the good batches to concentrate. We confirm this empirically.

Our experiments fall under two types: (a) learning an arbitrary distribution in Ay norm and B)
learning a structured distribution in total variation distance. Experiments of type (a) (resp. (b))
show that LEARNWITHFILTER can be used to learn from untrusted batches in .4, norm even for
distributions which are not structured (resp. that LEARNWITHFILTER can outperform the oracle).



Throughout, w = 0 and ¢ = 10. For the domain sizes n we work with, enumerating over V' would
be prohibitively expensive, necessitating the use of our SDP.

For each trial, we randomly generated 1, either by sampling uniformly from [0, 1] for (a) or by
choosing a random /-wise constant function, and normalizing. We drew the corrupted batches from
Mul (v) for v chosen at an appropriate distance from . We examined the effect of varying one of
the following four parameters at a time: (i) domain size n, (ii) batch size k, (iii) corruption fraction e,
and (iv) total number of batches N. Each data point in Figure |l|corresponds to a median of ten trials.

In (i), we fixed & = 1000, € = 0.4, N ~ ¢/¢2. Note that while NN is independent of n, our algorithm
is competitive with the oracle for type (a) and superior for type (). In (ii), we fixed ¢ = 0.4, n = 64,
N = (/€. Note that while our algorithm’s error and the oracle’s error decay with k, the empirical
mean’s error remains fixed. In (iii) we fixed n = 64, k = 1000, N ~ ¢/0.4%; in (iv) we fixed
n = 128, k = 1000, e = 0.4. Again, we are either competitive with or superior to the oracle.

The experiments were conducted on a MacBook Pro with 2.6 GHz Dual-Core Intel Core i5 processor
and 8 GB of RAM. For the implementation, we used the SCS solver in CVXPY for our semidefinite
programs. Over a domain of size 128, LEARNWITHFILTER takes roughly 7-10 minutes. See the
supplement for further implementation details. All code can be found at https://github.com/
secanth/federated.


https://github.com/secanth/federated
https://github.com/secanth/federated

Broader Impact

The goal for this work is to lay theoretical foundations for some basic problems in federated learning.
As such, it may be of general societal benefit because it may lead to better systems for pooling data
that cannot be manipulated by small groups with ulterior motives. Our algorithms do not leverage
biases in data, but on the contrary seek to efficiently identify them and mitigate their effect. The main
negative is that even algorithms with provable guarantees can be used outside of settings they are
intended, in which case they can have unpredictable behavior. However our theoretical analysis also
provides guidance on when using our algorithms ought to be appropriate.
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