
A Additional HQA Results

Table 5: Additional CelebA interpolations of the HQA encoder output ze in the 9 bit 8x8 latent space.
Compression is from 98,304 to 576 bits (171x compression).

Table 6: CelebA reconstruction diversity when performing stochastic decodes from the 9 bit 4x4
latent space. Compression is from 98,304 to 144 bits (683x compression).

Original Stochastic Reconstructions

13

Table 7: CelebA 128x128 reconstructions at different compression rates using HQA, with number of
transmitted bits.

Original
393,216

11x
36,864

43x
9,216

171x
2,304

683x
576

2,731x
144

10,923x
36

43,690x
9

14

Figure 4: ‘Free’ samples obtained by exhaustively enumerating over all 256 codes from the 1x1 latent
space of the trained MNIST HQA stack and decoding into pixel-space.

Figure 5: Rows show pairs of test images that have been encoded to the top of the HQA MNIST
stack, interpolated across their codebook embeddings, quantized and then decoded.

15

Figure 6: Each row displays the diversity of stochastic decoding for a different held out MNIST
image. First column is the original, then 14 stochastic decodes, and then final column is 14 averaged
decodes. Class switching behaviour is displayed due to the high compression factor with a 1x1 latent
bottleneck.

Figure 7: Samples generated by training a vanilla VAE on top of the learnt HQA 2x2 latent space and
decoding first through the VAE then the HQA stack.

16

Table 8: Interpolations generated for each layer in HQA. The far left and right images are originals.
Others are decoded from the interpolated encoder output ze. Bottom row (HQA-1) has a compression
ratio of 4, each subsequent layer compresses by 4 again until the final layer (HQA-5) results in an 8
bit 1x1 latent space. Lower layers exhibit blurriness and overlapping versions of originals but higher
layers have increasingly dense support allowing realistic and coherent looking digits from anywhere
in the latent space.

System Orig Interpolation Orig

HQA-5

HQA-4

HQA-3

HQA-2

HQA-1

B Probabilistic VQ-VAE

B.1 Motivation

In this section we outline the probabilistic model that motivates the HQA loss:

L = − log p(x|z = k)−H[q(z|x)] + Eq(z|x)||ze(x)− ez||22 . (5)

A desired property of the HQA, motivated in Section 4.4, is the non-deterministic posterior q(z|x)
defined over codebook space. For the HQA, this is defined as a softmax with logits equal to the
negative squared Euclidean distances between the encoded points (ze(x)) and codebook vectors (ek):

q(z = k|x) ∝ exp−||ze(x)− ek||22 . (6)

This form of posterior occurs in a simple Gaussian Mixture Model (GMM), where they are referred
to as responsibilities. In the GMM, the observed variables x′ are generated from possible sources
z′ = 1, . . . , N . The responsibility of each source is then:

q(z′ = k|x′) ∝ exp−||x′ − ek||22 . (7)

This mirrors Equation 6 where the encoded point ze(x) is replaced by the observations x′. Therefore,
in order to derive a Evidence LOwer Bound (ELBO) for our model, we use a small extension to the
GMM that incorporates the encoder-decoder architecture.

B.2 Probabilistic Model

x

z

q(z|x)p(x|z)

(a) Gaussian Mixture Model Network

x

ze

z

q(ze|x)

q(z|ze)p(ze|z)

p(x|ze)

(b) A single layer of the HQA as a Bayesian Net-
work

Figure 8: Contrasting the probabilistic model of a GMM and a single layer of the HQA Inference
distributions are shown in red.

17

We introduce an additional latent variable ze into the standard GMM setup, so that the distribution
p(x|z) factorizes as:

p(x|z) = p(x|ze)︸ ︷︷ ︸
Decoder

p(ze|z)︸ ︷︷ ︸
GMM

. (8)

We contrast these two models in Figure 8. In this setup we treat ze as being generated from a GMM.
ze is then fed through the decoder neural network.

To then infer a value for z we first approximate the posterior p(ze|x) with a deterministic distribution
on the output of the encoder neural network. To emphasize this in our analysis we refer to the output
of the encoder as ze(x), whilst we refer to the latent variable as ze. The final stage of inference to
calculate p(z|ze) reduces to a simple GMM model with observed variables x′ in Equation 7 replaced
with ze(x). This leads exactly to the posterior probabilities given in Equation 6. As q(ze|x) is
deterministic we have that q(z|ze) = q(z|x) and so we use these expressions interchangeably.

This model is a Variational Autoencoder with a simple Mixture of Gaussians prior. In the prior, each
Gaussian is assumed to be independent and have constant variance. Similar, more complex models
are considered in Dilokthanakul et al. [7], Nalisnick et al. [26], Tomczak and Welling [37].

B.3 Deriving the ELBO

Finally, as we have recovered the posterior probabilities we desire, we now derive the ELBO loss.
For a general latent variable model with observation x this is formulated as:

LELBO = Eq(z|x) log pθ(x|z)− KL[q(z|x)||p(z)] (9)
where q(z|x) is our approximate posterior distribution. However, in our case we have two latent
variables, giving the loss:

LELBO = Eq(z,ze|x) log pθ(x|z, ze)− KL[q(z, ze|x)||p(z, ze)] . (10)
We can then make use of the factorization in Equation 8 to rearrange this as:

LELBO = Eq(z|ze)q(ze|x) log pθ(x|ze)︸ ︷︷ ︸
Reconstruction Loss

−KL[q(z|ze)q(ze|x)||p(z)p(ze|z)]︸ ︷︷ ︸
KL to prior

. (11)

We now consider each of these terms separately.

B.3.1 Prior KL Loss

The Prior KL Loss is given by:
Lprior = KL[q(z|ze)q(ze|x)||p(z)p(ze|z)] . (12)

This factorizes into two separate KL terms
Lprior = KL[q(z|x)||p(z)] + Eq(z|x)KL[q(ze|x)||p(ze|z)] . (13)

As we define a uniform prior over mixture parameters p(z), the first term becomes the entropy term
H(q(z|x)) as given in Equation 5. The next term is then:

Eq(z|x)KL[q(ze|x)||p(ze|z)] = −Eq(z|x) log
(
e−||ze(x)−ez||

2
2

)
= Eq(z|x)||ze(x)− ez||22 (14)

which is the final part of Equation 5. We omit two details: the constant terms and the factor of 0.5
multiplied by the variance that usually occurs in the Gaussian density function as this is reweighted
before training.

B.3.2 Reconstruction Loss

The reconstruction loss is given by:
Lrecon = Eq(z|ze)q(ze|x) log pθ(x|ze) = Eq(ze|x)Eq(z|ze) log pθ(x|ze) . (15)

In order to train with the quantized behaviour we require, we don’t follow this calculation when
calculating the reconstruction loss. Instead we sample from q(z|ze(x)) and feed this back through
the decoder. This modification gives

L′recon = log p(x|ze = k) (16)
where k is sampled from q(z|ze(x)). To clarify, whilst training, instead of using the encoded point ze
as the input to the decoder, we feed the codebook vector sampled from the posterior q(z|x).

18

B.4 VQ-VAE as a limiting case

If we include a temperature parameter in our softmax posterior

q(z = k|x) ∝ exp

(
−1

τ
||ze(x)− ek||22

)
(17)

then as τ → 0, the posterior converges to a deterministic distribution:

q(z = k|x) =
{
1 for k = argminj ||ze(x)− ej ||2
0 otherwise

(18)

This is precisely the posterior that arises in the VQ-VAE. In addition, the KL prior terms then become:

H(q(z|x)) = 0 (19)

Eq(z|x)||ze(x)− ez||22 = ||ze(x)− ek||22 (20)
If then stop gradient operators are applied to (20), the commitment and codebook loss from the
VQ-VAE are recovered.

C Architecture, training and hyper-parameters

C.1 HQA

Each layer in the HQA stack is composed of an encoder, decoder and vector quantization layer.
Encoders and decoders are feed forward networks composed of convolutional layers with 3x3 filters.
Optional dilated convolutions are used in the decoder to increase the decoder’s receptive field. Each
code in the VQ layer codebook is represented by a 64 dimensional vector. The input ẑe to layers 2
and above are normalized using running statistics, which was shown to stabilise training. A sigmoid
activation is applied to the output of the decoder in the first layer.

The downsampling needed for compression is achieved through a strided convolution in the encoder
and upsampling through nearest neighbour interpolation in the decoder. Each HQA layer is trained
greedily with an MSE loss; gradients are only back-propagated through that single layer. For the first
layer, the loss is taken between input pixels and decoder outputs, while all other layers calculate the
loss between the input embedding ze and the predicted ẑe.

Optimization is performed using RAdam [20] with a learning rate of 4e-4 which is cosine annealed
in the final third of training. Each layer was trained with distributed training across 8 Nvidia TITAN
RTX’s for CelebA, whilst MNIST was trained on a single TITAN X. During training, the Gumbel
softmax temperature is linearly annealed to 0.01, with an initial temperature of 0.4 and 0.66 for
CelebA and MNIST respectively.

Table 9: Hyper parameters of HQA network used for CelebA experiment
L1 L2 L3 L4 L5 L6 L7

Input size 64 64 32 16 8 4 2
Batch size 1024 1024 1024 1024 1024 1024 1024
Encoder layers 3 3 3 3 3 3 3
Decoder layers 6 6 6 6 6 6 6
Encoder hidden units 64 64 512 512 512 512 512
Decoder hidden units 64 64 512 512 512 512 512
Codebook size 512 512 512 512 512 512 512
βe (entropy loss coefficient) 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
βc (commitment loss coefficient) 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5 5e-5
Training steps 100k 100k 100k 100k 60k 30k 30k
Dropout 0.0 0.0 0.0 0.5 0.5 0.5 0.5

C.2 HAMs

The implemented HAMs architecture follows Fauw et al. [8]. Notably, it implements an MSE loss on
pixels but all other layers use cross entropy for the reconstruction term. Separate commitment and

19

Table 10: Hyper parameters of HQA network used for MNIST experiment
L1 L2 L3 L4 L5

Input size 32 16 8 4 2
Batch size 512 512 512 512 512
Encoder layers 3 3 3 3 3
Decoder layers 3 3 3 3 3
Encoder hidden units 16 16 32 48 80
Decoder hidden units 16 32 48 80 128
Codebook size 256 256 256 256 256
βe (entropy loss coefficient) 1e-3 1e-3 1e-3 1e-3 1e-3
βc (commitment loss coefficient) 1e-3 1e-3 1e-3 1e-3 1e-3
Training steps 18k 18k 18k 18k 18k

codebook loss terms are also used. The codebook is not learnt directly, but updated via an online
exponential moving average version of k-means. For the CelebA experiment a smaller batch sizes
where used than the 1024 used for HQA. This is because we found training of HAMs to be very
unstable if large batch sizes were used.

Table 11: Hyper parameters of HAMs network used for CelebA experiment
L1 L2 L3 L4 L5 L6 L7

Input size 64 64 32 16 8 4 2
Batch size 32 64 64 64 64 64 64
Encoder conv layers 3 3 3 3 3 3 3
Decoder conv layers 3 3 3 3 3 3 3
Encoder hidden units 64 80 256 256 256 256 512
Decoder hidden units 64 80 512 512 512 512 512
Encoder residual blocks 2 2 2 3 3 2 1
Decoder residual blocks 2 2 2 3 3 2 1
Codebook size 512 512 512 512 512 512 512
β (commitment loss coefficient) 1 50 50 50 50 50 10
Learning rate 4e-4 4e-4 4e-4 4e-4 1e-4 1e-4 1e-4
Training steps 250k 300k 50k 50k 50k 50k 25k

Table 12: Hyper parameters of HAMs network used for MNIST experiment
L1 L2 L3 L4 L5

Input size 32 16 8 4 2
Batch size 256 256 256 256 256
Encoder conv layers 3 3 3 3 3
Decoder conv layers 3 3 3 3 3
Encoder hidden units 16 16 32 48 80
Decoder hidden units 16 26 40 58 96
Encoder residual blocks 0 0 0 0 0
Decoder residual blocks 0 0 0 0 0
Codebook size 256 256 256 256 256
β (commitment loss coefficient) 0.02 0.02 0.02 0.02 0.02
Learning rate 4e-4 4e-4 4e-4 4e-4 1e-4
Training steps 18k 18k 18k 18k 18k

C.3 VQ-VAE

The implemented VQ-VAE [39] architecture is comparable to HAMs, with the noticeable exception
that there is no hierarchy. The same compression rates are achieved through downsampling multiple
times. The entire network is trained end-to-end as a single layer, instead of greedily with local losses.
The layers denoted in the table below refer VQ-VAE systems with equivalent compression factors to
the same HQA and HAM layers. In all instances predictions are made in pixel space. The residual
block implementation is based on the original VQ-VAE. As with HAMs, small batch sizes had to be
used for the CelebA experiment as large batch sizes lead to instability.

20

Table 13: Hyper parameters of VQ-VAE network used for CelebA experiment
L1 L2 L3 L4 L5 L6 L7

Input size 64 64 32 16 8 4 2
Batch size 32 64 64 64 64 64 64
Encoder conv layers 2 3 4 5 6 7 8
Decoder conv layers 3 4 5 6 7 8 9
Encoder hidden units 64 80 256 256 384 400 512
Decoder hidden units 64 80 256 512 512 512 512
Encoder residual blocks 2 3 4 4 4 4 2
Decoder residual blocks 2 3 4 4 4 4 2
Codebook size 512 512 512 512 512 512 512
β (commitment loss coefficient) 0.05 0.25 0.25 0.25 0.25 0.25 0.25
Learning rate 4e-5 4e-5 4e-5 1e-4 1e-4 1e-4 1e-4
Training steps 250k 250k 250k 150k 150k 150k 50k

Table 14: Hyper parameters of VQ-VAE network used for MNIST experiment
L1 L2 L3 L4 L5

Input size 32 16 8 4 2
Batch size 512 512 512 512 512
Encoder conv layers 2 3 4 5 6
Decoder conv layers 3 4 5 6 7
Encoder hidden units 22 40 50 62 78
Decoder hidden units 16 18 20 22 22
Encoder residual blocks 0 0 0 0 0
Decoder residual blocks 0 0 0 0 0
Codebook size 256 256 256 256 256
β (commitment loss coefficient) 0.125 0.125 0.125 0.125 0.125
Learning rate 4e-4 4e-4 4e-4 4e-4 4e-4
Training steps 18k 18k 18k 18k 18k

C.4 Codebook Resetting

During training, the total number of times that ze is quantized to each code is accumulated over 20
batches. After these 20 batches, the most and least used code, em and el respectively, are found. If
the usage of el is less than 3% than that of em, the position of el is reset such that el := em+ ε where
ε ∼ N(0, 0.01). This scheme is activate for the first 75% of training.

21

D Algorithm description

Algorithm 2 HQA Training

1: e: codebook embeddings, ek: embdding for code k, N : number of codes in each layer
2: L: number of layers in stack
3: θi ← Initialize network parameters for encoders (Encoderi) and decoders (Decoderi) ∀i ∈ L
4: for l in 1, . . . , L do . Train each layer greedily
5: τ ← 0.4 . Set initial codebook temperature
6: while not converged do
7: X ← Random minibatch
8: if l = 1 then
9: ze−lower ← X

10: else
11: ze−lower ← Encoder0..l−1(X) . Encode up through pre-trained lower layers - no

quantization
12: end if
13: ze ← Encoderl(ze−lower)

14: p(k|ze) = exp
(
− 1

2 ||ze − ek||22
)
/
∑N
i=1 exp

(
− 1

2 ||ze − ei||22
)
) . Distribution over

codes
15: softonehot ∼ RelaxedCategorical(τ, p(k|ze)) . Reparameterized Gumbel-softmax

sample
16: zq−soft ← softonehot ∗ e . Soft quantized codebook lookup
17: ẑe−lower ← Decoderl(zq−soft)

18: L′recon = (ẑe−lower − ze−lower)
2

19: Lentropy =
∑
k p(k|ze) log p(k|ze)

20: Lcommit =
∑
k p(k|ze)||ze − ek||22

21: θi ← θi − η∇θi(L′recon + βeLentropy + βcLcommit))
22: τ ← anneal(τ) . Anneal linearly
23: end while
24: end for

Algorithm 3 HQA Reconstruction

1: e: codebook embeddings
2: L: number of layers in stack
3: Trained encoders (Encoderi) and decoders (Decoderi) ∀i ∈ L
4: x: Datapoint to reconstruct
5: ze ← Encoder0..l(x)
6: for l in L, . . . , 1 do
7: p(k|ze) = exp

(
− 1

2 ||ze − ek||22
)
/
∑N
i=1 exp

(
− 1

2 ||ze − ei||22
)
) . Distribution over codes

8: onehot ∼ p(k|ze)
9: zq ← onehot ∗ e . Hard-quantized codebook lookup

10: ze ← Decoderl(zq)
11: end for
12: return ze

Note that for hard reconstructions at fixed rates, we do not necessarily need to perform hard-quantized
codebook lookups except on the very top codebook. For simplicity, and to provide a single hierarchy
where each layer can provide compression at a fixed rate, we anneal the temperature close to zero and
at test time always perform hard quantization operations at each layer as outlined in Algorithm 3.

22

