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Abstract

Understanding the relationships between biomedical terms like viruses, drugs, and
symptoms is essential in the fight against diseases. Many attempts have been made
to introduce the use of machine learning to the scientific process of hypothesis
generation (HG), which refers to the discovery of meaningful implicit connections
between biomedical terms. However, most existing methods fail to truly capture
the temporal dynamics of scientific term relations and also assume unobserved
connections to be irrelevant (i.e., in a positive-negative (PN) learning setting). To
break these limits, we formulate this HG problem as future connectivity prediction
task on a dynamic attributed graph via positive-unlabeled (PU) learning. Then,
the key is to capture the temporal evolution of node pair (term pair) relations
from just the positive and unlabeled data. We propose a variational inference
model to estimate the positive prior, and incorporate it in the learning of node
pair embeddings, which are then used for link prediction. Experiment results on
real-world biomedical term relationship datasets and case study analyses on a
COVID-19 dataset validate the effectiveness of the proposed model.

1 Introduction

Recently, the study of co-relationships between biomedical entities is increasingly gaining attention.
The ability to predict future relationships between biomedical entities like diseases, drugs, and genes
enhances the chances of early detection of disease outbreaks and reduces the time required to detect
probable disease characteristics. For instance, in 2020, the COVID-19 outbreak pushed the world to a
halt with scientists working tediously to study the disease characteristics for containment, cure, and
vaccine. An increasing number of articles encompassing new knowledge and discoveries from these
studies were being published daily [1]]. However, with the accelerated growth rate of publications,
the manual process of reading to extract undiscovered knowledge increasingly becomes a tedious and
time-consuming task beyond the capability of individual researchers.

In an effort towards an advanced knowledge discovery process, computers have been introduced to
play an ever-greater role in the scientific process with automatic hypothesis generation (HG). The
study of automated HG has attracted considerable attention in recent years [41} 25|45, 47]]. Several
previous works proposed techniques based on association rules [25} [18} 147], clustering and topic
modeling [45. 144} 5], text mining [43]42], and others [28. 149, [39]]. However, these previous works
fail to truly utilize the crucial information encapsulated in the dynamic nature of scientific discoveries
and assume that the unobserved relationships denote a non-relevant relationship (negative).

To model the historical evolution of term pair relations, we formulate HG on a term relationship graph
G = {V, E}, which is decomposed into a sequence of attributed graphlets G = {G', G2, ..., GT},
where the graphlet at time ¢ is defined as,
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Definition 1. Temporal graphlet: A temporal graphlet G* = {V*, E* x!} is a temporal subgraph
at time step t, which consists of nodes (terms) V* satisfying V1 C V2, ....C VT and the observed
co-occurrence between these terms E satisfying E LC E? ..., CET. And mf, is the node attribute.

Example of the node terms can be covid-19, fever, cough, Zinc, hepatitis B virus etc. When two terms
co-occurred at time ¢ in scientific discovery, a link between them is added to E?, and the nodes are
added to V' if they haven’t been added.

Definition 2. Hypothesis Generation (HG): Given G = {G', G2, ..., GT'}, the target is to predict
which nodes unlinked in VT should be linked (a hypothesis is generated between these nodes).

We address the HG problem by modeling how E* was formed from ¢ = 1 to T' (on a dynamic graph),
rather than using only E7 (on a static graph). In the design of learning model, it is clear to us the
observed edges are positive. However, we are in a dilemma whether the unobserved edges are positive
or negative. The prior work simply set them to be negative, learning in a positive-negative (PN)
setting) based on a closed world assumption that unobserved connections are irrelevant (negative)
[39, 128} 4]. We set the learning with a more realistic assumption that the unobserved connections are
a mixture of positive and negative term relations (unlabeled), a.k.a. Positive-unlabeled (PU) learning,
which is different from semi-supervised PN learning that assumes a known set of labeled negative
samples. For the observed positive samples in PU learning, they are assumed to be selected entirely
at random from the set of all positive examples [16]. This assumption facilitates and simplifies both
theoretical analysis and algorithmic design since the probability of observing the label of a positive
example is constant. However, estimating this probability value from the positive-unlabeled data is
nontrivial. We propose a variational inference model to estimate the positive prior and incorporate
it in the learning of node pair embeddings, which are then used for link prediction (hypothesis
generation).

We highlight the contributions of this work as follows.

1) Methodology: we propose a PU learning approach on temporal graphs. It differs from other
existing approaches that learn in a conventional PN setting on static graphs. In addition, we estimate
the positive prior via a variational inference model, rather than setting by prior knowledge.

2) Application: to the best of our knowledge, this is the first the application of PU learning on
the HG problem, and on dynamic graphs. We applied the proposed model on real-world graphs of
terms in scholarly publications published from 1945 to 2020. Each of the three graphs has around
30K nodes and 1-2 million edges. The model is trained end-to-end and shows superior performance
on HG. Case studies demonstrate our new and valid findings of the positive relationship between
medical terms, including newly observed terms that were not observed in training.

2 Related Work of PU Learning

In PU learning, since the negative samples are not available, a classifier is trained to minimize the
expected misclassification rate for both the positive and unlabeled samples. One group of study
(32,131} 33 122]] proposed a two-step solution: 1) identifying reliable negative samples, and 2) learning
a classifier based on the labeled positives and reliable negatives using a (semi)-supervised technique.
Another group of studies [36} 130,261 |17,40] considered the unlabeled samples as negatives with label
noise. Hence, they place higher penalties on misclassified positive examples or tune a hyperparameter
based on suitable PU evaluation metrics. Such a proposed framework follows the SCAR (Selected
Completely at Random) assumption since the noise for negative samples is constant.

PU Learning via Risk Estimation Recently, the use of unbiased risk estimator has gained attention
[12, 114, [15] 48]]. The goal is to minimize the expected classification risk to obtain an empirical risk
minimizer. Given an input representation / (in our case the node pair representation to be learned), let
f: R? — R be an arbitrary decision function and I : R x {41} — R be the loss function calculating
the incurred loss I(f(h), y) of predicting an output f(h) when the true value is y. Function [ has a
variety of forms, and is determined by application needs [29} [13]. In PN learning, the empirical risk

minimizer fp is obtained by minimizing the PN risk R (f) w.r.t. a class prior of 7,
ﬁ'(f) :ﬂ-Pﬁ;(f)—’—ﬂ-N/l%]_V(f)? (1
where my = 1 — 7., RA(f) = 75 05 Uf(AD), +1) and Ryg(f) = 75 S5 U(f(AY), —1).

ny
The variables np and ny are the numbers of positive and negative samples, respectively.



PU learning has to exploit the fact that 7 p,, (h) = p(h) — 7., (h), due to the absence of negative
samples. The second part of Eq. can be reformulated as:

Ry (f) = Ry — 7pRu(f), (2)

where Ry, = Eppmy [[(f(R), —1)] and Rp = Epp(njy=+1)[[(f(h), —1)]. Furthermore, the classi-
fication risk can then be approximated by:

Reu(f) = mpRE(S) + Ry (f) = 7pRp(f), 3)
where Rp(f) = 7= SSr5 U(F(BD), =1), Ry (f) = 7= 1% (£ (AY), 1), and ny is the number
of unlabeled data sample. To obtain an empirical risk minimizer f py for the PU learning framework,
R pu(f) needs to be minimized. Kiryo et al. noted that the model tends to suffer from overfitting on

the training data when the model f is made too flexible [29]. To alleviate this problem, the authors
proposed the use of non-negative risk estimator for PU learning:

Rpu(f) = npRE(f) +max{0, Ry — 7pRp(f)}- @)
It works in fact by explicitly constraining the training risk of PU to be non-negative. The key challenge
in practical PU learning is the unknown of prior 7p.

Prior Estimation The knowledge of the class prior 7p is quintessential to estimating the classifi-
cation risk. In PU learning for our node pairs, we represent a sample as {h, s, y}, where & is the node
pair representation (to be learned), s indicates if the pair relationship is observed (labeled, s = 1)
or unobserved (unlabeled, s = 0), and y denotes the true class (positive or negative). We have only
the positive samples labeled: p(y = 1|s = 1) = 1. If s = 0, the sample can belong to either the
positive or negative class. PU learning runs commonly with the Selected Completely at Random
(SCAR) assumption, which postulates that the labeled sample set is a random subset of the positive
sample set [[16, 16, 8]. The probability of selecting a positive sample to observe can be denoted as:
p(s = 1ly = 1, h). The SCAR assumption means: p(s = 1|y = 1,h) = p(s = 1]y = 1). However,
it is hard to estimate 7p = p(y = 1) with only a small set of observed samples (s = 1) and a large set
of unobserved samples (s = 0) [7]. Solutions have been tried by i) estimating from a validation set of
a fully labeled data set (all with s = 1 and knowing y = 1 or —1) [29,[10]; ii) estimating from the
background knowledge; and iii) estimating directly from the PU data [16, 16, [8, [27, [14]. In this paper,
we focus on estimating the prior directly from the PU data. Specifically, unlike the other methods, we
propose a scalable method based on deep variational inference to jointly estimate the prior and train
the classification model end-to-end. The proposed deep variational inference uses KL-divergence
to estimate the parameters of class mixture model distributions of the positive and negative class
in contrast to the method proposed in [14] which uses penalized L1 divergences to assign higher
penalties to class priors that scale the positive distribution as more than the total distribution.

3 PU learning on Temporal Attributed Networks

3.1 Model Design

The architecture of our Temporal Relationship Predictor (TRP) model is shown in Fig. [T} For a
given pair of nodes a”/ =< v;, v; > in any temporal graphlet G*, the main steps used in the training
process of TRP for calculating the connectivity prediction score p’(a®’) are given in Algorithm 1.
The testing process also uses the same Algorithm 1 (with t=T'), calculating p’' (a'/) for node pairs
that have not been connected in GT‘l. The connectivity prediction score is calculated in line 6 of
Algorithm 1 by p?(a™) = fo(h! aid’ 0¢c), where 0¢ is the classification network parameter, and the
embedding vector k! ,; for the pair a¥ is iteratively updated in lines 1-5. These iterations of updating
ht .i; are shown as the recurrent structure in Fig. ! (a) followed by the classifier fo(.;0¢).

The recurrent update function h7,; = fa(h7;;", 27, = v,304), 7 = 1..t, in line 4 is shown in Fig. I
(b), and has a Gated recurrent unit (GRU) network at 1ts core,

P_UQ(W fm( ’U7 v )+Uph7— 1+bP)’

T_UQ(W fm( v ) 2 )+Urh2771 +br)v
)
1

hli = o (W fm(2],,25,) + 7o UL +b),
hZij :Poh;i]’ ( —'P)Oh;j . (5)
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Figure 1: The proposed TRP model. Block (a) shows the outer view of the model framework. The
inner structure of the recurrent update block and neighborhood aggregation method are shown in
block (b) and (c), respectively.

Algorithm 1: Calculate the future connection score for term pairs a™/ =< v;,v; >

Input: G = {G*,G?,...,G"} with node feature x*,, a node pair a*/ =< v;,v; > in G*, and an
initialized pair embedding vector hgi, ; (e.g., by zeros)

Result: pta,v, ;» the connectivity prediction score for the node pair a7

fort < 1---tdo
Obtain the current node feature x;, (v = v;, v;) of both nodes (terms) v;, v;; as well as aﬁ\,r(“)

(v = v;, v;) for the node feature of sampled neighboring nodes for v;, v;;

Aggregate the neighborhood information of node v = vi, vj, 2y = fa (@7, Tx(v); 0c);
Update the embedding vector for the node pair h); ; = fa (hT, 1 Zus Zu;304) 5

end

Return p,;,; = fo(hyi50c)

where o denotes element-wise multiplication, o is a nonlinear activation function, and f,,(.) is an
aggregation function. In this study, we use a max pool aggregation. The variables {W, U} are the

weights. The inputs to function f4 include: h7;;", the embedding vector in previous step; {z v; b

the representation of node v; and v; after aggregation their neighborhood, 2] = fg (], 27} Nr(v)) 00),

given in line 3. The aggregation function f takes input the node feature x7, and the neighboring
node feature xJTVT(v) and goes through the aggregation block shown in Fig. E'I (c). The aggregation

ati *

network fa(;0¢q) is implemented following GraphSAGE [21]], which is one of the most popular
graph neural networks for aggregating node and its neighbors.

The loss function in our problem [(p'(a®), y) evaluates the loss incurred by predicting a connectivity
p'(a’) = fe(hl.;;0c) when the ground truth is y. For constructing the training set for our PU

learning in the dynamic graph, we first clarify the label notations. For one pair ¢/ from a graph
G, its label yzj = 1 (positive) if the two nodes have a link observed in G (they have an edge

€ E'*!, observed in next time step) ie., s’ = = 1. Otherwise when no link is observed between them
in G**1, ¥ is unlabeled, i.e., s’ = 0, since y;” can be either 1 or -1. Since we consider insertion



only graphlets sequence, V! C V2, ... C VT and E' C E2,...,C ET, y = 1 maintains for all
future steps after ¢ (once positive, always positive). At the final step ¢ = T, all pairs with observed
connections already have y7/ = 1, our objective is to predict the connectivity score for those pairs

with siTj = 0. Our loss function is defined following the unbiased risk estimator in Eq. (3),
£ = mpRE(fo) + Ry(fo) — mrRy(fo), (©)

where ﬁ;(fc) = ﬁ Eaijeﬁp /(1 + ea?p(pt(aij)» 7%E(f(i) = \leﬂ Zaijef)U /(1 +

exp(—pt(a?))), and Rp(fc) = ﬁ Yaiies. 1/(1+ exp(—p'(a™))) with the positive samples
P P

$, and unlabeled samples §,,, when taking [ as sigmoid loss function. £ can be adjusted with the

non-negative constraint in Eq. (4), with the same definition of R5(f), R;, and Rp(f).

3.2 Prior Estimation

The positive prior 7p is a key factor in L% to be addressed. The samples we have from G are only
positive §3, and unlabeled §),, . Due to the absence of negative samples and of prior knowledge, we
present an estimate of the class prior from the distribution of h, which is the pair embedding from
fa. Without loss of generality, we assume that the learned h of all samples has a Gaussian mixture
distribution of two components, one is for the positive samples, while the other is for the negative
samples although they are unlabeled. The mixture distribution is parameterized by £, including
the mean, co-variance matrix and mixing coefficient of each component. We learn the mixture
distribution using stochastic variational inference [24]] via the “Bayes by Backprop” technique [9]].
The use of variational inference has been shown to have the ability to model salient properties of
the data generation mechanism and avoid singularities. The idea is to find variational distribution
variables 6* that minimizes the Kullback-Leibler (KL) divergence between the variational distribution
q(3]0) and the true posterior distribution p(3|h):

0* = argminy L (7
where, £ = K L(q(810)||p(8|h)) = K L(q(B10)|[p(8)) — Eq(s)0) [log p(h| B)].

The resulting cost function £ on the right of Eq. (7) is known as the (negative) “evidence lower
bound” (ELBO). The second term in £ is the likelihood of h fitting to the mixture Gaussian with
parameter (3: E;(/9)[log p(h|3)], while the first term is referred to as the complexity cost [9]. We
optimize the ELBO using stochastic gradient descent. With 6, the positive prior is then estimated as

mp = q(B7107),1 = arg max |Cy| (8)
where O = {h € 9,,,p(h|B') > p(h|B?)} and Cy = {h € H,.,p(h|5?) > p(h|3')}.

3.3 Parameter Learning

To train the three networks fa(.;04), fa(:;0c), fo(.;0c) for connectivity score prediction, we
jointly optimize £ = Zthl LE 4+ £F, using Adam over the model parameters. Loss L is the PU
classification risk as described in section and L is the loss of prior estimation as described in

section Note that during training, yg ;= yf;l since we do not observe G in training. This is
to enforce prediction consistency.

4 Experimental Evaluation

4.1 Dataset and Experimental Setup

The graphs on which we apply our model are constructed from the title and abstract of papers
published in the biomedical fields from 1949 to 2020. The nodes are the biomedical terms, while the
edges linking two nodes indicate the co-occurrence of the two terms. Note that we focus only on the
co-occurrence relation and leave the polarity of the relationships for future study. To evaluate the
model’s adaptivity in different scientific domains, we construct three graphs from papers relevant to
COVID-19, Immunotherapy, and Virology. The graph statistics are shown in Table[I] To set up the



training and testing data for TRP model, we split the graph by year intervals (5 years for COVID-19
or 10 years for Virology and Immunotherapy). We use splits of {G', G2, ..., GT=1} for training, and
use connections newly added in the final split G” for testing. Since baseline models do not work
on dynamic data, hence we train on GT—1 and test on new observations made in GT. Therefore in
testing, the positive pairs are those linked in G* but not in GT 1, i.e., ET \ ET~!, which can be
new connections between nodes already existing in G7 !, or between a new node in G* and another
node in G”~1, or between two new nodes in G All other unlinked node pairs in GT are unlabeled.

Ateacht = 1,..,T — 1, graph G? is incrementally updated from G*~! by adding new nodes
(biomedical terms) and their links. For the node feature vector xf,, we extract its term description
and convert to a 300-dimensional feature vector by applying the latent semantic analysis (LSI). The
missing term and context attributes are filled with zero vectors. If this node already exists before
time ¢, the context features are updated with the new information about them in discoveries, and
publications. In the inference (testing) stage, the new nodes in G”' are only presented with their

feature vectors z. The connections to these isolated nodes are predicted by our TRP model.

We implement TRP using the Tensorflow library. Each GPU based experiment was conducted
on an Nvidia 1080TI GPU. In all our experiments, we set the hidden dimensions to d = 128.
For each neural network based model, we performed a grid search over the learning rate Ir =
{le—2,5¢—3,1e—3,5e—2}, For the prior estimation, we adopted Gaussian, square-root inverse
Gamma, and Dirichlet distributions to model the mean, co-variance matrix and mixing coefficient
variational posteriors respectively.

4.2 Comparison Methods and Performance Matrices

We evaluate our proposed TRP model in several variants and by comparing with several competitors:

1) TRP variants: a) TRP-PN - the same framework but in PN setting (i.e., treating all unobserved
samples as negative, rather than unlabeled); b) TRP-nnPU - trained using the non-negative risk
estimator Eq. (4) or the equation defined in section 3.1 for our problem; and c) TRP-uPU - trained
using the unbiased PU risk estimator Eq. (3), the equation defined in section 3.1 for our problem.
The comparison of these variants will show the impact of different risk estimators.

2) SOTA PU learning: the state-of-the-art (SOTA) PU learning methods taking input & from
the SOTA node embedding models, which can be based on LSI [11], node2vec [20], DynAE
[19] and GraphSAGE [21]. Since node2vec learns only from the graph structure, we concatenate
the node2vec embeddings with the text (term and context) attributes to obtain an enriched node
representation. Unlike our TRP that learns % for one pair of nodes, these models learn embedding
vectors for individual nodes. Then, h of one pair from baselines is defined as the concatenation of the
embedding vector of two nodes. We observe from the results that a concatenation of node2vec and
LSI embeddings had the most competitive performance compared to others. Hence we only report
the results based on concatenated embeddings for all the baselines methods. The used SOTA PU
learning methods include [16] by reweighting all examples, and models with different estimation of
the class prior such as SAR-EM [8]] (an EM-based SAR-PU method), SCAR-KM2 [38]], SCAR-C
[8], SCAR-TICE [6], and pen-L1 [14].

3) Supervised: weaker but simpler logistic regression applied also h.

We measure the performance using four different metrics. These metrics are the Macro-F1 score
(F1-M), F1 score of observed connections (F1-S), F1 score adapted to PU learning (F1-P) [7, 30],
and the label ranking average precision score (LRAP), where the goal is to give better rank to the
positive node pairs. In all metrics used, higher values are preferred.

4.3 Evaluation Results

Table [2] shows that TRP-uPU always has the superior performance over all other baselines across the
datasets due to its ability to capture and utilize temporal, structural, and textual information (learning
better h) and also the better class prior estimator. Among TRP variants, TRP-uPU has higher or equal
F1 values comparing to the other two, indicating the benefit of using the unbiased risk estimator. On
the LRAP scores, TRP-uPU and TRP-PN have the same performance on promoting the rank of the
positive samples. Note that the results in Table [2) are from the models trained with their best learning
rate, which is an important parameter that should be tuned in gradient-based optimizer, by either
exhaustive search or advanced auto-machine learning [35]]. To further investigate the performance of



Table 1: Three graph dataset statistics, with their number of nodes and edges

Graphs until 7' Node pairs in evaluation at 1T’
#nodes | #edges #Positive £ \E' | #Unlabeled mPled from {Vx VI ET
COVID-19 27,325 | 2,474,624 655,649 1,019,458
Immunotherapy | 28,823 919,004 303,516 1,075,659
Virology 38,956 | 1,117,118 446,574 1,382,856

Table 2: Evaluation results on the COVID-19, Immuniotherapy and Neurology datasets, respectively

COVID-19 Virology Immunotherapy
FI-S | FI-M | FI-P | LRAP | FI-S | FI-M | FI-P | LRAP | FI-S | FI-M | FI-P | LRAP
Supervised 0.82 0.86 1.73 0.77 0.57 0.73 1.42 0.43 0.67 0.80 2.18 0.56
SCAR-C [8] 0.82 0.86 1.73 0.77 0.56 0.72 1.40 0.43 0.66 0.79 2.14 0.56

SCAR-KM2 [38] 0.76 0.82 1.52 0.73 0.49 0.61 1.21 0.33 0.53 0.66 1.50 0.36
SCAR-TICE [6] 0.57 0.30 1.01 0.39 0.38 0.22 1.02 0.23 0.35 0.19 1.01 0.22

SAR-EM [6] 0.78 0.83 1.68 0.76 0.60 0.75 1.52 0.60 0.67 0.80 2.18 0.62
Elkan [16] 0.82 0.86 1.74 0.81 0.58 0.73 1.47 0.58 0.69 0.81 2.26 0.65
TRP-PN 0.84 0.87 1.80 0.91 0.73 0.83 2.31 0.81 0.71 0.81 2.33 0.77
penL1-nnPU 0.71 0.70 1.35 0.45 0.61 0.71 1.83 0.63 0.53 0.63 1.62 0.73
TRP-nnPU 0.80 0.82 1.68 0.89 0.73 0.82 2.38 0.83 0.67 0.78 2.18 0.76
penL1-uPU 0.85 0.88 1.86 0.89 0.74 0.83 2.45 0.81 0.70 0.81 2.33 0.72
TRP-uPU 0.86 0.88 1.88 0.91 0.74 0.83 2.38 0.81 0.71 0.82 2.35 0.77

TRP variants, we show in Figure 2] their F1-S at different learning rate in trained from 1 to 10 epochs.
We notice that TRP-uPU has a stable performance across different epochs and learning rates. This
advantage is attributed to the unbiased PU risk estimation, which learns from only positive samples
with no assumptions on the negative samples. We also found interesting that nnPU was worse than
uPU in our experimental results. However, it is not uncommon for uPU to outperform nnPU in
evaluation with real-world datasets. Similar observations were found in the results in [14}[17]. In
our case, we attribute this observation to the joint optimization of the loss from the classifier and
the prior estimation. Specifically, in the loss of uPU (Eq. (3)), wp affects both 7@?( f) and 7@; (f).

However, in the loss of nnPU (Eq. (4)), 7p only weighted R} (f) when Ry, — mpR 5 (f) is negative.
In real-world applications, especially when the true prior is unknown, the loss selection affects the
estimation of 7 p, and thus the final classification results. TRP-PN is not as stable as TRP-uPU due to
the strict assumption of unobserved samples as negative.
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Figure 2: Stability comparison of TRP-PN, TRP-nnPU and TRP-uPU, showing the F1-S performance
of the models (Y-axis) with different learning rates (X-axis) on 10 epochs.



4.4 Incremental Prediction

In Figure 3] we compare the performance of the top-performing PU learning methods on different
year splits. We train TRP and other baseline methods on data until ¢ — 1 and evaluate its performance
on predicting the testing pairs in t. It is expected to see performance gain over the incremental
training process, as more and more data are used. We show F1-P due to the similar pattern on other
metrics. We observe that the TRP models display an incremental learning curve across the three
datasets and outperformed all other models.

COVID-19 Virology
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Figure 3: F1-P per year. The models are incrementally trained with data before the evaluation year.

4.5 Qualitative Analysis

We conduct qualitative analysis of the results obtained by TRP-uPU on the COVID-19 dataset. This
investigation is to qualitatively check the meaningfulness of the paired terms, e.g., can term covid-19
be paired meaningfully with other terms. We designed two evaluations. First, we set our training
data until 2015, i.e., excluding the new terms in 2016-2020 in the COVID-19 graph, such as covid-19,
sars-cov-2. The trained model then predicts the connectivity between covid-19 as a new term and
other terms, which can be also a new term or a term existing before 2015. Since new terms like
covid-19 were not in training graph, their term feature were initialized as defined in Section .1}
The top predicted terms predicted to be connected with covid-19 are shown in Table [3|top, with the
verification in COVID-19 graph of 2016-2020. We notice that the top terms are truly relevant to
covid-19, and we do observe their connection in the evaluation graph. For instance, Cough, Fever,
SARS, Hand (washing of hands) were known to be relevant to covid-19 at the time of writing this
paper.

In the second evaluation, we trained the model on the full COVID-19 data (< 2020) and then predict
to which terms covid-19 will be connected, but they haven’t been connect yet in the graph until ZOZ(ﬂ
We show the results in Table [3|bottom, and verified the top ranked terms by manually searching the
recent research articles online. We did find there exist discussions between covid-19 and some top
ranked terms, for example, [3]] discusses how covid-19 affected the market of Chromium oxide and
discusses about caring for people living with Hepatitis B virus during the covid-19 spread.

4.6 Pair Embedding Visualization

We further analyze the node pair embedding learned by TRP-uPU on the COVID-19 data by visualiz-
ing them with #-SNE [34]]. To have a clear visibility, we sample 800 pairs and visualize the learned
embeddings in Figure ] We denote with colors the observed labels in comparison with the predicted

'Dataset used in this analysis was downloaded in early March 2020 from https: //www.semanticscholar
org/cord19/download
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Table 3: Top ranked terms predicted to be connected with term covid-19, trained until 2015 (the top
table) and until 2020 (the bottom table). Verification of existence (Ex) was conducted in the graph
in 2020 when trained until 2015, and by manual search otherwise. Sc is the predicted connectivity
score.

Terms Sc Ex Terms Sc Ex Terms Sc Ex Terms Sc Ex

Leukocyte count 0.98 Yes Air 0.85 Yes Infection control 0.96 Yes Serum 0.84 Yes
Fever 0.94 Yes Lung 0.81 Yes Population 0.93 Yes Ventilation 0.76 Yes
Hand 0.91 Yes SARs 0.70 Yes Public health 0.88 Yes Cough 0.71 Yes
Terms Sc Ex Terms Sc Ex Terms Sc Ex Terms Sc Ex
Antibodies 0.99 Yes Lymph 0.99 Yes Tobacco 0.99 Yes Adaptive immunity 0.99 Yes
A549 cells 0.99 Yes ‘White matter 0.99 Yes Serum albumin 0.99 Yes Allopurinol 0.99 Yes
Hepatitis b virus 0.99 No Alkaline phosphatase 0.99 Yes Macrophages 0.99 Yes Liver function tests 0.99 Yes
Mycoplasma 0.99 Yes Zinc 0.99 Yes Bacteroides 0.99 No Chromium dioxide 0.96 No

Pair embedding scatter plot
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Figure 4: Pair embedding visualization. The blue color denotes the true positive samples, the red
points are unobserved negative, the green points are unobserved positive.

labels. We observe that the true positives (observed in GT and correctly predicted as positives - blue)
and unobserved negatives (not observed in GT and predicted as negatives - red) are further apart.
This clear separation indicates that the learned h appropriately grouped the positive and negative
(predicted) pairs in distinct clusters. We also observe that the unobserved positives (not observed
in G but predicted as positives - green) and true positives are close. This supports our motivation
behind conducting PU learning: the unlabeled samples are a mixture of positive and negative samples,
rather than just negative samples. We observe that several unobserved positives are relationships
like between Tobacco and covid-19. Although they are not connected in the graph we study, several
articles have shown a link between terms [2} 46, [37].

5 Conclusion

In this paper, we propose TRP - a temporal risk estimation PU learning strategy for predicting the
relationship between biomedical terms found in texts. TRP is shown with advantages on capturing
the temporal evolution of the term-term relationship and minimizing the unbiased risk with a positive
prior estimator based on variational inference. The quantitative experiments and analyses show that
TRP outperforms several state-of-the-art PU learning methods. The qualitative analyses also show the
effectiveness and usefulness of the proposed method. For the future work, we see opportunities like
predicting the relationship strength between drugs and diseases (TRP for a regression task). We can
also substitute the experimental compatibility of terms for the term co-occurrence used in this study.
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6 Broader Impact

TRP can be adopted to a wide range of applications involving node pairs in a graph structure. For
instance, the prediction of relationships or similarities between two social beings, the prediction of
items that should be purchased together, the discovery of compatibility between drugs and diseases,
and many more. Our proposed model can be used to capture and analyze the temporal relationship of
node pairs in an incremental dynamic graph. Besides, it is especially useful when only samples of a
given class (e.g., positive) are available, but it is uncertain whether the unlabeled samples are positive
or negative. To be aligned with this fact, TRP treats the unlabeled data as a mixture of negative and
positive data samples, rather than all be negative. Thus TRP is a flexible classification model learned
from the positive and unlabeled data.

While there could be several applications of our proposed model, we focus on the automatic biomedi-
cal hypothesis generation (HG) task, which refers to the discovery of meaningful implicit connections
between biomedical terms. The use of HG systems has many benefits, such as a faster understanding
of relationships between biomedical terms like viruses, drugs, and symptoms, which is essential in
the fight against diseases. With the use of HG systems, new hypotheses with minimum uncertainty
about undiscovered knowledge can be made from already published scholarly literature. Scientific
research and discovery is a continuous process. Hence, our proposed model can be used to predict
pairwise relationships when it is not enough to know with whom the items are related, but also learn
how the connections have been formed (in a dynamic process).

However, there are some potential risks of hypothesis generation from biomedical papers. 1)
Publications might be faulty (with faulty/wrong results), which can result in a bad estimate of
future relationships. However, this is a challenging problem as even experts in the field might be
misled by the faulty results. 2) The access to full publication text (or even abstracts) is not readily
available, hence leading to a lack of enough data for a good understanding of the studied terms, and
then inaccurate h in generation performance. 3) It is hard to interpret and explain the learning process,
for example, the learned embedding vectors are relevant to which term features, the contribution of
neighboring terms in the dynamic evolution process. 4) For validating the future relationships, there
is often a need for background knowledge or a biologist to evaluate the prediction.

Scientific discovery is often to explore the new nontraditional paths. PU learning lifts the restriction
on undiscovered relations, keeping them under investigation for the probability of being positive,
rather than denying all the unobserved relations as negative. This is the key value of our work in this

paper.
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