
We thank the reviewers for their feedback and their time. (References here point to the submitted file’s bibliography.)1

Novelty of the work. We believe that R2 and R3 omitted key contributions that previous work has been unable to2

achieve: (i) our local reparameterization allows us to scale correlated Gaussian posteriors beyond what was thought to3

be possible previously, (ii) we show that a variational posterior ‘LR + isotropic diag’ outperforms existing VI methods4

for BNNs in most experiments, (iii) we show that correlated Gaussian posteriors offer a systematic solution to the5

underfitting of MF-VI, but this is limited only to small networks due to computational constraints, (iv) we identify6

problems with algorithms derived in previously published works [29, 32, 39, 41]. As R1 says, we believe these7

contributions to be significant for the community, and hope they will catalyze research on reparametrizing BNNs.8

R2: Predictive performance benefit of ELRG-VI vs original low-rank parametrization. The original, naive, low-9

rank parametrization [41, 32, 39] is computationally expensive. This then requires sharing variational samples among10

inputs, leading to worse predictive performance (see Fig 4 (left)). Other benefits of separate variational samples are11

extensively studied in the literature (see references in Section 2) this was the primary motivation for work [19, 43].12

R2: “MAP can give more accurate predictions”. Although this is true, our results show that MAP has bad uncertainty13

calibration (as R4 says). We show problems with MAP estimation with calibration curves (Figure 3) and an out-of-14

distribution experiment. Losing slightly sometimes in accuracy but gaining a much better predictive distribution is often15

key for strong performance on real world tasks [4, 17]. Specifically, [11] shows overfitting to data yields better accuracy.16

R2 and R4: Why does ELRG-VI have a better predictive performance than ELRG-D-VI, with a more expressive17

non-isotropic diagonal? We believe this confusing result arises due to a poor choice of prior over weights (see18

“Bayesian Deep Learning and a Probabilistic Perspective of Generalization”, section 9.1), which becomes more apparent19

for large NNs. The general unintuitive problem that more expressive posteriors can yield worse predictions is an open20

research problem. For MF-VI, many units’ variances converge to values close to prior variance, as shown in Figure 121

(densities), which is causing underfitting (see Appendix A7 for reasons). Adding low-rank (LR) terms mitigates this,22

but only for small networks. For larger networks, as K is small compared to matrix size, the described mechanism is23

negligible, and we need to resort to using a simpler posterior where units cannot converge to the prior. R2 also asked24

why LR + isotropic diagonal is a better choice for specifically CNNs. As per line 130, for CNNs, LRT cannot be applied25

[43], but the LR component can still be reparametrized. In practice, many authors still use LRT for CNNs, claiming this26

is an approximation. Using LR + isotropic diagonal with a tiny diagonal scale reduces the effect of this approximation27

as the problematic diagonal term is very small (see Appendix A.3). We will improve this writing in the paper.28

R3 (and R1): Comparison to Swiatkowski et al., 2020, “k-tied”. We provide a comparison on a toy experiment here29

(see Figure) and will provide a more extensive comparison for the camera-ready version. However, we feel one should be30

careful about excessively focussing on the conclusions from such a comparison.K-tied approach lowers the complexity31

of the posterior, whereas our paper adds low-rank terms to increase the expressiveness. In theory our approach should32

yield better predictions than k-tied if ELBO is correlated with predictive performance. If this is not happening, it is likely33

we face issues with problem formulation, possibly due to a poor prior distribution (see discussion above for details). In34

terms of ELBO values, ELRG-D-VI ≥ MF-VI ≥ k-tied, assuming we find the global maximizer. As R1 says, it is hard to35

compare with ELRG-VI’s ELBO value. We also note that k-tied + our approach will yield higher ELBO than k-tied alone.36

Here, we test on the same setup for Figure 1 in the main paper. We find that k-tied results in higher ELBO than ELRG-VI37

(ELRG-VI value worse by a factor of 10 than other algorithms, hence not plotted), but ELRG-VI achieves the best predic-38

tive performance. For small NNs, we observe that k-tied performance matches standard MF-VI and does not change with39

K. Also, we compare (Figure 2b) to another work [42] by increasing the complexity of WN posterior discussed there.40
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41 R3: Questions about the out-of-distribution (OOD) experiment.42

R3 has misunderstood the context of this experiment. We specif-43

ically refer to confidence for test and train data (not OOD data)44

corresponding to the dataset used to train the model. Lack of con-45

fidence for test/train data means poor predictive performance (such46

as with MF-VI). As R3 notes, we then expect high uncertainty for47

OOD data. MF-VI gives high uncertainty both on test data and OOD48

data but offers weak predictions due to underfitting. We will clarify49

these points in the text. The OOD experiment closely follows the related paper [33] and matches their conclusions.50

R4: ELRG-VI vs MF-VI predictive uncertainty. From our experiments, it is visible MF-VI yields poor predictions51

and predictive uncertainty compared to ELRG-VI (Table 3 and Fig 4). We will improve the discussion of this point.52

R4: Shape and convergence of curves in Figure 2. In Fig 2, the experiments for ≈400K optimization steps. This53

number is a highly excessive number of updates for MNIST, many more than other papers (≈100K more than Bayes by54

Backprop). Learning curves will change insignificantly if optimization is run for longer. R4 asked about the shape55

of curves in Figure 2 (a,b). The momentum in the ADAM optimizer causes the bump (please note the curves show56

validation performance, not the optimized quantity). R4 also asked about the equivalence of approaches without LR in57

Figure 2(a). It turns out that isotropic diagonal has slightly better performance, in line with conclusions in [42].58


