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Abstract

Multi-Source Domain Adaptation (MSDA) deals with the transfer of task knowl-
edge from multiple labeled source domains to an unlabeled target domain, under a
domain-shift. Existing methods aim to minimize this domain-shift using auxiliary
distribution alignment objectives. In this work, we present a different perspective
to MSDA wherein deep models are observed to implicitly align the domains under
label supervision. Thus, we aim to utilize implicit alignment without additional
training objectives to perform adaptation. To this end, we use pseudo-labeled target
samples and enforce a classifier agreement on the pseudo-labels, a process called
Self-supervised Implicit Alignment (SImpAl). We find that SImpAl readily works
even under category-shift among the source domains. Further, we propose classifier
agreement as a cue to determine the training convergence, resulting in a simple
training algorithm. We provide a thorough evaluation of our approach on five
benchmarks, along with detailed insights into each component of our approach.

1 Introduction

The task of supervised learning for classification is based on the assumption that the training data and
the testing data are sampled from the same distributions. Thus, supervised learning methods achieve
state-of-the-art results when evaluated on popular benchmarks such as ImageNet [46]. However,
when such models are deployed in real-world, they yield sub-optimal results due to the inherent
distribution-shift (domain-shift [55]) between the training data and the real-world environment (a.k.a.
the target domain). While it is possible to obtain unlabeled samples from the target domain in most
cases, the huge costs of data annotation prohibit the creation of a reliable labeled training dataset. To
this end, Unsupervised Domain Adaptation (DA) methods have been proposed that aim to transfer
knowledge from a labeled "source" dataset to an unlabeled "target" dataset under a domain-shift.

A popular strategy in Unsupervised DA is to learn the task-specific knowledge using supervision from
the labeled source dataset, while learning a domain-invariant latent space where the features across
the source and the target domains align. Such an alignment is enforced using statistical discrepancy
minimization schemes [1, 12, 39, 43, 54] or via an adversarial objective [11, 30, 57, 61, 66], or by
employing domain-specific transformations [6, 26, 44]. This alignment minimizes the domain-shift in
the latent space, and improves the target generalization. However, the performance of Single-Source
Domain Adaptation (SSDA) methods is usually determined by the choice of the source dataset [24].

Recently, Multi-Source Domain Adaptation (MSDA) [35, 67] has garnered interest wherein multiple
labeled source domains are used to transfer the task knowledge to the unlabeled target domain. A
common approach [15, 43, 61] is to learn a shared feature extractor, along with domain-specific
classifier modules (Fig. 1a), which yield an ensemble prediction for the target samples. However,
an additional challenge in MSDA is to tackle the domain-shift and category-shift [61] between each
pair of source-domains (Fig. 1b). To this end, auxiliary losses are enforced encouraging the model to

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



b) c)Classical MSDA
Domain-specific classifiers with explicit Feature Alignment

Our Approach
Implicit Feature Alignment through classifier agreement

Disagreement region 
b/w decision boundaries

DB1

DB2

DB1

DB2

DB1 DB1

DB2
DB2

Alignment of target 
clusters in latent spaceLatent feature clusters for each class (    ) for each domain (        )  

a) Architecture

Feature
extractor

Classifier 
modules

f
hs1

hs2

Figure 1: An illustration of the proposed concept for two-class (c1, c2) classification, with two labeled source
domains (s1, s2) and one unlabeled target domain (t). Best viewed in color. (a) Architecture. Several works
employ a shared feature extractor (f ), and source-specific classifier modules. (b) Classical MSDA. Prior works
employ source-specific classifiers that learn distinct (domain-specific) decision boundaries (denoted as DBi).
This results in a large discrepancy in the classifier predictions (region shaded in yellow). Thus, an auxiliary
feature alignment loss is required for improving the classifier predictions. (c) Our approach. We enforce
classifier agreement on source-domain samples leading to an implicit alignment of latent features. Further,
imposing an agreement on the pseudo-labeled target samples improves the generalization to the target domain.

learn domain invariant but class-discriminative representations. Ultimately, an appropriate alignment
of all the domains in the latent space [43] improves the generalization on the target domain (Fig. 1b).

In this work, we approach the MSDA problem from a different perspective. Since deep models
are known to capture rich transferable representations [29, 38, 62], we ask, is an auxiliary feature
alignment loss really necessary? The motivation stems from the observation that deep models exhibit
a strong inductive bias to implicitly align the latent features under supervision. This is demonstrated
in Fig. 2. Following the prior approaches [43, 61], we train domain-specific classifiers (Fig. 1b) and
observe that the domains do not align in the latent space (Fig. 2a), which calls for an explicit feature
alignment loss. However, when we enforce a classifier agreement on the class label for each input
instance (Fig. 2b), we find that the domains tend to align, without requiring an explicit alignment loss.

This motivates us to further explore implicit alignment of latent features for MSDA. We aim to
leverage the labeled data from multiple source domains, and the multi-classifier setup (Fig. 1a)
employed in MSDA to perform alignment, without incorporating auxiliary components such as a
domain discriminator [61, 66]. In contrast to learning domain-specific classifier modules, we enforce
an agreement among the classifiers (Fig. 1c) to align the domains in the latent space.

Since the target domain is unlabeled, we resort to the class labels predicted by the model being trained
(a.k.a. pseudo-labels [25]). The adaptation step encourages the classifiers to agree upon these pseudo-
labels which enables alignment of the target features with the source features that have classifier
agreement owing to label supervision. Accordingly, we name the approach as Self-supervised
Implicit Alignment, abbreviated as SImpAl (pronounced "simple"). We observe that even under
category-shift, implicit alignment can be leveraged to align the shared categories, without requiring
additional components (e.g. fine-grained alignment [5, 22, 42], adversarial discriminator [61]) or
cumbersome training strategies (e.g. to handle arbitrary category-shifts [23, 61, 63]). We also find
that classifier agreement can be leveraged as a cue to determine adaptation convergence.

To summarize, we demonstrate successful MSDA by leveraging implicit alignment exhibited by deep
classifiers, corroborating the potential for designing simple and effective adaptation algorithms. We
conduct extensive evaluation of our approach over five benchmark datasets, with two popular CNN
backbone models (ResNet-50, ResNet-101 [16]) and derive insights from the empirical analysis.

2 Related Work

Here, we briefly review the related works and refer the reader to [67] for an extensive survey.

a) Single-Source Domain Adaptation (SSDA). Motivated by the seminal work by Ben-David et al.
[2, 3], a large number of SSDA methods [6, 10, 11, 12, 28, 29, 32] have been proposed, that aim to
learn domain-agnostic but class-discriminative representations. Inspired by the GAN framework [13],
a popular strategy is to employ adversarial learning [18, 20, 51, 52, 56, 57, 58] that aims to confuse a
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Figure 2: t-SNE plot of the features at the pre-classifier space, showing the feature distribution after learning
a fully supervised model. Best viewed in color. (a) Learning domain-specific classifiers. We train a model
(with ResNet-50 [16] backbone) with full label supervision from all the three domains on Office-31 [47], while
keeping the classifier heads unique to each domain. Although we find that class discrimination is achieved, each
domain forms separate sub-clusters, and does not align in the latent space. (b) Enforcing classifier agreement.
Instead of learning domain-specific classifiers, we enforce the classifiers to agree upon the labels for all the
samples. We observe that all the domains tend to align, without enforcing an explicit alignment objective, even
under a domain-shift. We aim to leverage this inductive bias of deep models, to perform adaptation.

domain-discriminator, thereby aligning the latent features of the domains. Saito et al. [50] formulate
an adversarial objective employing classifier discrepancy. In contrast, we aim to study a simpler
approach which circumvents the training difficulties encountered in adversarial learning paradigms.
Recently, consistency based regularizers [8, 21, 36, 20] were proposed for domain adaptation. In our
work, classifier agreement can be interpreted as a form of consistency at the output space which acts
both as an implicit regularizer and as a means to perform latent space alignment for adaptation.

b) Multi-Source Domain Adaptation (MSDA). Several methods [15, 43, 61, 68] learn domain-
specific classifier modules and obtain a weighted ensemble prediction for the target samples, motivated
by the distribution weighted combining rule [17, 34, 35]. Zhe et al. [68] employ an alignment loss
between each source-target pair in domain-specific feature spaces. In addition, Peng et al. [43] align
each pair of source domains using kernel based moment matching and also propose a variant based
on adversarial learning [50]. Xu et al. employ multiple domain discriminators to achieve latent
space alignment. In this work, we aim to explore a simple adaptation scheme that leverages implicit
alignment in deep models. As a result, our approach is applicable even under category-shift among
the source domains, while most prior methods [15, 43, 68] consider only a shared category set.

c) Self-training methods. Pseudo-labeling [25] is a popular semi-supervised learning approach
where "pseudo" class labels are assigned to unlabeled samples, typically using classifier confidence [7,
49, 61, 69, 70] or nearest neighbor assignment [22, 40, 48, 65], while the model is retrained using
such samples. Confidence thresholding [27, 49, 61] is commonly applied to minimize the noise in
pseudo-labels. This introduces a sensitive threshold hyperparameter, requiring labeled target samples
or domain expertise for precise tuning. Works such as Zou et al. [69, 70], Li et al. [27] and Chen et
al. [8] propose various regularizers to improve pseudo-label predictions. Xu et al. [61] incorporate an
adversarial alignment loss to mitigate the performance degradation arising from noisy pseudo-labels.
In contrast, we aim to exploit classifier agreement to perform adaptation and improve the reliability
of pseudo-labels without incorporating additional hyperparameters.

3 Self-supervised Implicit Alignment (SImpAl)

Notations. Let X and Y denote the input and the output spaces. We consider nd labeled source
domain datasets {Dsi}

nd
i=1, where Dsi = {(x

cj
si , y

cj
si ) ∈ X ×Y} and a single unlabeled target domain

dataset Dt = {xt ∈ X}. Each source domain has a label-set Csi , and the target label-set is defined
as C = ∪nd

i=1Csi with nc classes. We learn a deep neural network model having a CNN based
feature extractor f : R224×224×3 → R256, and nd classifier modules h : R256 → Rnd×nc . For
convenience, we denote the output of the network as a matrix M = h ◦ f(x), where ◦ represents
function composition. M is obtained by stacking the logits produced by each classifier (see Fig. 3).

Overview. As is conventional in the MSDA methods [15, 61], the multi-classifier setup is treated
as an ensemble of diverse classifiers, and the class probabilities are obtained through a convex
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Figure 3: Architecture of the proposed approach. The network contains a common feature extractor f having a
CNN backbone followed by fully-connected layers. The multi-classifier module h contains nd classifiers.

combination of each classifier’s prediction. The model is first trained with the categorical cross-
entropy loss imposed on the combined data from all source domains. After a "warm-start", we
introduce pseudo-labeled target samples into the training process. The adaptation is performed by
enforcing the classifiers to agree on these pseudo-labels. We now describe the approach in detail.

3.1 Warm-start with source domains

To adapt the network to the target domain, we use pseudo-labeled target samples. Thus, we first aim
to achieve a reliability in pseudo-labels by training the model on all source domains. We call this as
the warm-start process, which is performed as follows.

a) Learning with source domains. For each source-domain instance x
cj
si , we obtain the output

matrix M = h ◦ f(xcj
si ) (see Fig. 3) and define the class probability vector p as a convex combination

of the probabilities assigned by each classifier,

p =
1

nd

nd∑
i=1

σ(M[i·]) (1)

where, M[i·] represents the ith row vector of the matrix M (i.e. the logits of the ith classifier), and
σ(v)[j] = exp (v[j])/

∑nc

j′=1 exp (v[j′]) is the softmax function. Treating p as the class probability
vector, we minimize the categorical cross entropy loss (lce) using the labeled source samples,

lce(p, y
cj
si ) = − log(p[j]) = − log

( 1

nd

nd∑
i=1

σ(M[i·])[j]

)
≤ 1

nd

nd∑
i=1

− log(σ(M[i·])[j]) (2)

The last term in Eq. 2 represents an upper bound for the categorical cross-entropy loss of the ensemble,
and is obtained by applying the Jensen’s inequality for convex functions. We consider the formulation
in Eq. 2 to drive the classifiers to agree upon the label ycjsi for xcj

si . Thus, the training objective is,

min
f,h

E
D∈{Ds

i′
}nd
i′=1

E
(x

cj
si

,y
cj
si

)∈D

1

nd

nd∑
i=1

− log(σ(M[i·])[j]) (3)

The objective in Eq. 3 is minimized by mini-batch stochastic optimization. Each mini-batch contains
an equal number of samples from each source domain. In practice, each classifier is given a distinct
random initialization, and is trained with the same set of training samples at each mini-batch.
Intuitively, this process gradually enables a higher degree of similarity among the classifiers (Fig. 1c)
through an agreement in the predicted class labels for source samples. Note that, both the feature
extractor f and the multi-classifier module h are shared across all source domains. This step provides
a warm-start to introduce pseudo-labeled target samples into the training.

b) Determining the convergence of warm-start. The next question we address is, how to tell if a
model is trained sufficiently for the target domain? Intuitively, we would like to train the model until
there is a saturation in the target (pseudo-label) accuracy. However, with unlabeled target samples
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measuring the pseudo-label accuracy is out of bounds. Thus, we propose the classifier agreement as a
criterion to determine the convergence. The classifier agreement for an instance x is defined as,

a(x, f, h) =
∏

i 6=i′
I( argmax

j∈C
M[ij] = argmax

j∈C
M[i′j] ) (4)

where M = h ◦ f(x), and I(·) is the indicator function that returns 1 when the condition is true, else
returns 0. Intuitively, when each classifier predicts the same class for a given sample x, we say that
the classifiers "agree". Thus, a(x, f, h) = 1 when classifiers agree, and a(x, f, h) = 0 otherwise.

As we shall show in Sec. 4.2, the target pseudo-label accuracy is higher whenever the classifiers
agree [37, 64]. Thus, classifier agreement is used to filter out target samples having a higher degree
of noise in pseudo-labels. Further, we estimate the fraction of target samples for which there is an
agreement in the class predictions among the classifiers. Thus, we define the target agreement rate as,

A(Dt, f, h) =
1

|Dt|
∑

xt∈Dt

a(xt, f, h) (5)

We hypothesize that the performance on target samples attains a saturation when the agreement rate
converges. Thus, we determine the warm-start interval based on the convergence of A(·).

3.2 Introducing target data

After the warm-start, we introduce target samples into the training process. The pseudo-labels are
obtained from the classifier predictions as in Eq. 1, i.e. ycjt = argmaxj′

1
nd

∑nd

i=1 σ(M[ij′]).

We consider the following strategy for pseudo-labeling. To begin with, we select only those target
samples for which there is a classifier agreement, since the labels are seen to be more accurate for such
samples (verified in Sec. 4.2). Thus, we obtain a subsetDt

′ = {(xt, y
cj
t ) | xt ∈ Dt, a(xt, f, h) = 1}.

Secondly, inspired by curriculum learning [4, 70] we form an easy-to-hard sampling strategy for Dt
′.

For this purpose, we obtain the average classifier margin as a weight for each target instance,

w(xt, f, h) =
1

nd

nd∑
i=1

(M[ij] −M[ij′]) (6)

where j an j′ correspond to the indices of the highest and the second highest logit. Intuitively,
w measures a form of confidence in prediction. Target samples that are farther from the decision
boundaries receive a higher w (see Fig. 7c for the geometrical interpretation). We show in Sec. 4.2
that, in general, samples with a higher w are more likely to possess correct pseudo-labels. Thus,
target samples are sorted based on w, and are fed to the training pipeline in the decreasing order of w.
Finally, the pseudo-labels are updated every ne epochs on Dt

′. With this strategy, we formalize the
training objective for adaptation using the target samples as,

min
f,h

E
(xt,y

cj
t )∈Dt

′

1

nd

nd∑
i=1

− log(σ(M[i·])[j]) (7)

After introducing the target samples fromDt
′, we train on both source and target samples, in alternate

mini-batches, i.e. we minimize the objectives in Eq. 3 and Eq. 7 in alternate mini-batches. Finally,
the network is trained until the target agreement rate A shows convergence. This enables a simple
and effective adaptation pipeline using implicit alignment. The algorithm is given in Algo. 1.

4 Experiments

We present the results of our approach on five standard benchmark datasets - Office-Caltech, Image-
CLEF, Office-31, Office-Home and the most challenging large-scale benchmark, DomainNet.

a) Prior Arts. We compare against Deep Domain Confusion (DDC) [58], Deep Adaptation Network
(DAN) [29], Deep CORAL (D-CORAL) [54], Reverse Gradient (RevGrad) [10], Residual Trans-
fer Network (RTN) [32], Joint Adaptation Network (JAN) [31], Maximum Classifier Discrepancy
(MCD) [50], Manifold Embedded Distribution Alignment (MEDA) [60], Adversarial Discrimina-
tive Domain Adaptation (ADDA) [57], Deep Cocktail Network (DCTN) [61], Moment Matching
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Algorithm 1 SImpAl - Self-supervised Implicit Alignment
1: require: Source datasets {Dsi}

nd
i=1, Target dataset Dt, Model {f, h}

2: while A(Dt, f, h) has not converged do . Warm-start with source domains
3: Load a mini-batch of samples (xcj

si , y
cj
si ) from each source dataset Dsi

4: Update {f, h} using the objective in Eq. 3

5: Obtain pseudo-labeled target subset Dt
′ = {(xt, y

cj
t ) | xt ∈ Dt, a(xt, f, h) = 1}

6: Prepare Dt
′ by sorting the samples in descending order of w(xt, f, h) (as in Eq. 6)

7: while A(Dt, f, h) has not converged do . Introducing target samples

8: Load a mini-batch of samples (xcj
si , y

cj
si ) from each source dataset Dsi

9: Update {f, h} using the objective in Eq. 3

10: Load a mini-batch of samples (xt, y
cj
t ) from pseudo-labeled target subset Dt

′

11: Update {f, h} using the objective in Eq. 7

12: if ne epochs on Dt
′ are completed then . Periodically update pseudo-labels

13: Perform steps 5-6 to recompute Dt
′

(M3SDA) [43] and Multiple Feature Space Adaptation Network (MFSAN) [68]. Specifically, DDC,
RevGrad, ADDA, MCD, DCTN use an adversarial alignment objective to perform adaptation, RTN
learns a residual function to bridge the distribution discrepancy, and DAN, MFSAN, D-CORAL,
JAN, MEDA and M3SDA employ a kernel based moment matching scheme to align the domains.

b) Evaluation. For ImageCLEF and Office-based datasets, we follow the evaluation protocol in
MFSAN [68], while for DomainNet, we follow the protocol used in M3SDA [43]. Three types of
baselines are considered - 1) Single Best (SB) refers to the best single-source transfer results for the
target domain, 2) Source Combine (SC) refers to the scenario where all sources are combined into a
single source domain to perform SSDA, 3) Multi-Source (MS) refers to the MSDA methods. We
report the multi-run statistics (mean and standard deviation) obtained over three different runs.

c) Implementation Details. We implement our approach in PyTorch [41]. We use the Adam [19]
optimizer, with learning rate 10−5 and weight decay 5× 10−4 for stochastic optimization. The losses
in Eq. 3 and Eq. 7 are alternatively optimized and the target agreement rate (Eq. 5) is periodically
monitored for convergence. We set ne = 15 epochs as the update rate for the target pseudo-labels
(line 12 in Algo. 1). The total number of training iterations are decided based on the convergence
of the target agreement rate A for each dataset. Following prior MSDA approaches [68, 43], we
use ResNet-50 (SImpAl50) and ResNet-101 (SImpAl101) [16] as the CNN backbone. See code
implementation1 for architecture, hyperparameter values, and instructions to reproduce the results.

4.1 Results

We present the results in Table 1. The results for the prior baselines are reported from [43] and [68].
Due to the limits of space, we present the full comparison table for DomainNet in the Supplementary.

Office-31 [47] dataset has 4652 images across Amazon (A), DSLR (D) and Webcam (W) domains
having 31 object classes found in an office environment. ImageCLEF2 dataset has been created by
selecting 12 shared classes among ImageNet (I) [46], Caltech-256 (C) [14], Pascal-VOC 2012 (P) [9],
with 600 images per domain. Office-Caltech [12] dataset consists of 2533 images across 10 classes
shared between Caltech-256 (C) and the three domains of Office-31 (A, D, W). Office-Home [59] is
a more challenging medium-scale dataset containing about 15588 images in 4 domains: Art (Ar),
Clipart (Cl), Product (Pr) and Real-World (Rw), sharing 65 categories of objects found in the office
and home environments. DomainNet [43] dataset is the largest and the most challenging benchmark,
containing 6 diverse domains, with 345 classes, and around 0.6 million images.

1http://val.cds.iisc.ac.in/simpal
2http://imageclef.org/2014/adaptation.
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Table 1: Results on five standard benchmark datasets. ‘SB’ stands for Single Best, ‘SC’ stands
for Source Combined, and ‘MS’ denotes MSDA methods. The results for prior baselines are reported
from [43] and [68]. See Supplementary for the full comparison table on DomainNet.

A. Office-31
Method →D →W →A Avg

SB
Source Only 99.3 96.7 62.5 86.2

DDC 98.2 95.0 67.4 86.9
DAN 99.5 96.8 66.7 87.7

D-CORAL 99.7 98.0 65.3 87.7
RevGrad 99.1 96.9 68.2 88.1

RTN 99.4 96.8 66.2 87.5

SC

DAN 99.6 97.8 67.6 88.3
D-CORAL 99.3 98.0 67.1 88.1
RevGrad 99.7 98.1 67.6 88.5

M
S

DCTN 99.3 98.2 64.2 87.2
MFSAN 99.5 98.5 72.7 90.2

SImpAl50 99.2±0.2 97.4±0.1 70.6±0.6 89.0±0.3

SImpAl101 99.4±0.2 97.9±0.2 71.2±0.4 89.5±0.3

C. Office-Caltech
Method →W →D →C →A Avg

SC

Source Only 99.0 98.3 87.8 86.1 92.8
DAN 99.3 98.2 89.7 94.8 95.5

M
S

Source Only 99.1 98.2 85.4 88.7 92.9
DAN 99.5 99.1 89.2 91.6 94.8

DCTN 99.4 99.0 90.2 92.7 95.3
JAN 99.4 99.4 91.2 91.8 95.5

MEDA 99.3 99.2 91.4 92.9 95.7
MCD 99.5 99.1 91.5 92.1 95.6

M3SDA 99.4 99.2 91.5 94.1 96.1
SImpAl50 99.3±0.1 99.8±0.1 92.2±0.1 95.3±0.2 96.7±0.1

SImpAl101 100±0.0 100±0.0 94.6±0.2 95.6±0.3 97.5±0.1

B. ImageCLEF
Method →P →C →I Avg

SB

Source Only 74.8 91.5 83.9 83.4
DDC 74.6 91.1 85.7 83.8
DAN 75.0 93.3 86.2 84.8

D-CORAL 76.9 93.6 88.5 86.3
RevGrad 75.0 96.2 87.0 86.1

RTN 75.6 95.3 86.9 85.9

SC

DAN 77.6 93.3 92.2 87.7
D-CORAL 77.1 93.6 91.7 87.5
RevGrad 77.9 93.7 91.8 87.8

M
S

DCTN 75.0 95.7 90.3 87.0
MFSAN 79.1 95.4 93.6 89.4

SImpAl50 77.5±0.3 93.3±0.3 91.0±0.4 87.3±0.3

SImpAl101 78.0±0.5 95.2±0.5 91.7±0.4 88.3±0.5

D. Office-Home
Method →Ar →Cl →Pr →Rw Avg

SB

Source Only 65.3 49.6 79.7 75.4 67.5
DDC 64.1 50.8 78.2 75.0 67.0
DAN 68.2 56.5 80.3 75.9 70.2

D-CORAL 67.0 53.6 80.3 76.3 69.3
RevGrad 67.9 55.9 80.4 75.8 70.0

SC

DAN 68.5 59.4 79.0 82.5 72.4
D-CORAL 68.1 58.6 79.5 82.7 72.2
RevGrad 68.4 59.1 79.5 82.7 72.4

M
S MFSAN 72.1 62.0 80.3 81.8 74.1

SImpAl50 70.8±0.2 56.3±0.2 80.2±0.3 81.5±0.3 72.2±0.6

SImpAl101 73.4±0.4 62.4±0.1 81.0±0.2 82.7±0.2 74.8±0.2

E. DomainNet
Method →Clp →Inf →Pnt →Qdr →Rel →Skt Avg

M
S M3SDA 57.2±0.9 24.2±1.2 51.6±0.4 5.2±0.4 61.6±0.9 49.6±0.5 41.5±0.7

SImpAl101 66.4±0.8 26.5±0.5 56.6±0.7 18.9±0.8 68.0±0.5 55.5±0.3 48.6±0.6

4.2 Analysis

a) Implicit alignment of features. In Fig. 4a, we plot the t-SNE [33] embeddings of the features
at the pre-classifier space (output of f ) for SImpAl. Further, we calculate the Proxy-A distance [2]
defined as distA = 2(1 − 2ε) where ε is the generalization error of a domain discriminator. In
Fig. 4b, we report the distA value across each source-target pair for 3 different models - 1) warm-start
model, trained on the source domains, 2) the model after adaptation using SImpAl, 3) an oracle
model employing SImpAl, where the target pseudo-labels are replaced by the ground-truth labels.
This shows that adaptation using SImpAl effectively reduces the distribution-shift in the latent space.
Further, we also demonstrate implicit alignment under large domain-shifts (such as Quickdraw and
Real-world domains on DomainNet), which enables applications such as cross-domain image retrieval
on an unlabeled target domain. See Suppl. for further analysis on implicit alignment.

b) Extension to category-shift. To present a more practical scenario for MSDA, [61] introduced two
category-shift settings - overlap and disjoint, where the source domains contain overlapping label sets
(i.e. Csi ∩ Csi′ 6= φ, but Csi ∩ Csi′ 6= Csi ∪ Csi′ ) and disjoint label-sets (Csi ∩ Csi′ = φ) respectively.
In such scenarios, it is vital to prevent mis-alignment of different classes across the source domains
to avoid negative transfer [42]. Furthermore, since prior MSDA approaches learn domain-specific
classifiers, they require separate mechanisms to obtain class probabilities for the domain-specific and
the shared classes separately [61]. However, our approach remains unmodified under the presence of
category-shift; as such, each classifier learns all the target classes, and the computation of the class
probabilities (Eq. 1) remains unchanged. Fig. 4c shows that category-shift is a challenging scenario
where all methods show performance degradation, however SImpAl is found to exhibit a relatively
lower degradation in the target performance. This is supported by the observation that even under
category-shift, only the shared classes align as shown in Fig. 5. See Suppl. for further analysis.

c) Target Agreement Rate. Fig. 6a shows the trend in the target agreement rate (A(Dt, f, h)) and
target performance as training proceeds. We make two observations. Firstly, we find that A increases
during training, indicating that the target samples migrate into the classifier agreement region in the
latent space ({f(xt) | a(xt, f, h) = 1}). This migration is necessary for a successful adaptation
since the source domains inherently fall in the classifier agreement region (due to the nature of the
source training for warm-start). Secondly, a correspondence between the convergence of the target
agreement rate and the target accuracy is seen, which validates our hypothesis that A can be used
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Figure 4: (a) t-SNE. We show alignment of domains at the pre-classifier space (f -output). (b) Proxy A-
distance (↓). The values of distA (Sec. 4.2a) are obtained between each source-target pair for the corresponding
models shown in (a). (c) Performance drop under category-shift (↓). Following [61], we compare SImpAl
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Two plots are shown: features of the source domains only, and, features of all the domains. Best viewed
in color. (a) Overlap. Here, 4 classes are shared between the sources (|Cs1 ∩ Cs2 | = 4). Observe that the
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shared classes (Cs1 ∩ Cs2 = φ), class-wise alignment is not observed among the sources, which is essential to
avoid negative-transfer. Note, in both cases, the target clusters align with the respective source clusters (since
C = Cs1 ∪ Cs2 ). This demonstrates implicit alignment under category-shift. See Suppl. for wider trends.

as a cue to determine the training convergence. This result is of interest in Unsupervised Domain
Adaptation methods where the requirement of target labels has been the de-facto for model selection.

d) Do the classifiers agree on correct pseudo-labels? We also calculate the classifier agreement
(and disagreement) for target samples that are pseudo-labeled correctly. Notably, Fig. 7a demonstrates
that the classifiers tend to agree on an increasing number of target samples with correct pseudo-label
predictions. This motivates the periodic update of Dt

′ (Lines 12-13 in Algo. 1), which captures an
increasing number of target samples with correct pseudo-labels, as the adaptation proceeds.

e) How accurate are target pseudo-labels? As described in Sec. 3.2, we use classifier agreement
to select target samples (Dt

′) with a higher pseudo-label accuracy. In Fig. 6b, we plot the accuracy
of pseudo-labels separately for target samples having classifier agreement (i.e. a(xt, f, h) = 1) and
disagreement (i.e. a(xt, f, h) = 0). Clearly, pseudo-labels are more accurate (more reliable) when
the classifiers agree. Further, the accuracy on the target samples with agreement, Dt

′, is higher than
the accuracy on all target samples, Dt (orange curve in Fig. 6b). Thus, the use of Dt

′ with a higher
accuracy in pseudo-labels plays a key role in gradually improving the target performance.

f) Using curriculum for target samples. We form a curriculum for the target samples using the
average classifier margin w(xt, f, h) as a weight. Fig. 7c shows the geometrical interpretation of
w, that measures how far into the agreement region a target sample falls. Thus, w can be seen
as a measure of the confidence in the prediction. As studied by prior methods [15, 45, 53], high
confidence predictions are often correct. We show this in Fig. 7b where we plot the precision of
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Figure 7: (a) Migration of target samples with correct pseudo-labels. During training, we find that the frac-
tion of target samples with correct pseudo-label predictions increases in the agreement region. (b) Curriculum
using w(xt, f, h). When sorted in descending order based on w, the target samples exhibit an easy-to-hard
curriculum. (c) Geometrical interpretation of w. The figure shows the significance of w in a two-source
two-class scenario (as in Fig. 1). Intuitively, w is a measure of classifier confidence averaged over each classifier.
Target samples that are further into the classifier agreement region exhibit a higher value of w.

target pseudo-labels at various confidence percentiles (in descending order of w). The accuracy
shows a decreasing trend with w, validating our hypothesis that w yields an easy-to-hard curriculum.
Although our framework supports confidence thresholding to further minimize the pseudo-label noise,
we do not employ thresholds for the main results (Table 1) as it introduces sensitive hyperparameters.
See Supplementary for an empirical analysis with confidence thresholding.

5 Conclusion

In this paper, we demonstrated Self-supervised Implicit Alignment (SImpAl), that serves as a simple
method to perform Multi-Source Domain Adaptation (MSDA). We observed that deep models exhibit
the potential to implicitly align features under label supervision, even in the presence of domain-shift.
We demonstrated the use of classifier agreement in SImpAl - to obtain pseudo-labeled target samples,
to perform latent space alignment and to determine the training convergence. Extensive empirical
analysis demonstrates the efficacy of SImpAl for MSDA.

Our work can facilitate the study of simple and effective algorithms for unsupervised domain
adaptation. The insights obtained from our study can be used to explain the efficacy of a number of
related self-supervised approaches. A potential direction of research is to develop efficient adaptation
algorithms that are devoid of sensitive hyperparameters. Exploring SImpAl for scenarios such as
Universal Domain Adaptation [63] would also be of future interest.
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Broader Impact

This work presents a simple and effective solution for Multi-Source Domain Adaptation, that has
a two-fold positive impact. First, the method is aimed at improving the performance of prediction
models by mitigating the bias caused by domain-shift between the training dataset and the test data
encountered when deployed in a real-world environment. This is of growing interest in the machine
learning community. Secondly, the insights presented in this work facilitate the study of efficient
methods to perform domain adaptation, motivating the innovation of, for instance, energy-efficient
methods to generalize deep models. While the method shows promising results under domain-shift,
one should be cautious of the use of the pseudo-labeling procedure in the presence of adversarial
samples, where the pseudo-labels may be less reliable and may result in performance degradation.
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