
We thank R1, R2, R3, R4, who provided overall scores (7-6-7-7) respectively, for their careful reading of the paper,1

their positive comments on its clarity and interest, and their relevant questions. We recall that our paper provides rates2

of convergence for the iterates (µn)n≥0 of SVGD in the infinite particle regime (Eq 14) (i.e., of the time-discretized3

version of the SVGD gradient flow µt (Eq 11)) to a target distribution π ∝ exp(−V ). At time n, the distribution4

µn is associated to a Mac-Kean Vlasov process xn whose dynamics depends on µn itself. Therefore, the practical5

implementation of SVGD relies on approximating xn with N interacting particles (x̂in)
N
i=1 (Eq 38), where the empirical6

distribution µ̂n of the particles approximates µn. In particular, we provide a O(1/n) convergence rate for the arithmetic7

mean of the Kernel Stein Discrepancy (KSD) (which metricizes weak convergence in many cases, see Sec. 3.3) between8

the iterates µn and π, under Assumptions A1–A3. It does not rely on Stein LSI nor on convexity of V , unlike most9

of the results on Langevin Monte Carlo (LMC) which assume either (standard) LSI or convexity of V .10

R1, R3. Finite number of particles. We would like to clarify our result (Prop 12). It is non-asymptotic one in the11

sense that it provides an explicit bound. However, it is not a bound that helps quantify the rate of minimization of the12

objective function. Rather, it is a bound between the population distribution µn and its particle approximation µ̂n. It13

states that for a fixed time horizon T > 0, E[W 2
2 (µn, µ̂n)] ≤ C 1√

N
, where N is the number of particles. Such results14

are referred to propagation of chaos in the PDE literature, where having C depending on T is common. Getting a15

similar bound with C not depending on T would be a much stronger result referred to as uniform in time propagation of16

chaos (see l.522-525). Such results, which are subject to active research in PDE, are hard to obtain. Among the recent17

exceptions is (Durmus, 2018a) who consider the process dxt = −∇U(xt)−∇W ∗µt(xt)dt and manage to prove such18

results when U is strictly convex outside of a ball. However in SVGD (see Eq 8), the attractive force ∇ log π(x)k(x, .)19

cannot be written as the gradient of a confinement potential U in general. Hence these results do not apply. R3 (2).20

In our answer to R2 below, we discuss a contradiction in the Th 7 assumptions, discovered by R2. We will therefore21

acknowledge that the convergence rate for SVGD using µ̂n remains an open problem.22

R2, R4. Assumptions A1-A3. A1 and A2 are mild smoothness assumptions on (k, V ). In particular, A2 is standard in23

the LMC algorithm literature. A1 is needed to obtain our core descent result, Prop 5, because KL is not smooth, see24

Remark 3 l.320-323. A3 can be checked in each specific context. For instance, in Lemma 17, we provide conditions25

under which A3 holds. The validity of this hypothesis is also confirmed in our experiments.26

R2. Thank you for raising the question of whether there exists a distribution π and kernel k that simultaneously27

satisfy the Stein LSI and assumption A1. Having thought about this, we believe that no such π and k exist (at28

least for X = Rd). Given that both the kernel and its derivative are bounded, equation
∫ ∑d

i=1[(∂iV (x))2k(x, x)−29

∂iV (x)(∂1i k(x, x) + ∂2i k(x, x)) + ∂1i ∂
2
i k(x, x)]dπ(x) < ∞ reduces to a property on V which, as far as we can tell,30

always holds; and this implies that Stein LSI does not hold (see l.163-165). For instance, even when V = − log(cauchy)31

or V = − log(student), we quickly find that the resulting expectations are bounded. We will therefore remove Th 732

from our results, and replace it with a discussion on the difficulty in simultaneously ensuring conditions for a descent33

lemma and for Stein LSI. In particular, we recall that in the classical LMC setting, we would require only smoothness34

assumptions on V (A2) and the classic LSI inequality to obtain exponential convergence in the objective (here KL), see35

(Vempala, 2019). This is also the approach in nonconvex optimization (where LSI is called Polyak-Lojasiewicz (PL)36

inequality, see Rk 3). Unfortunately, as KL is not smooth (see l.320-323), we had to further assume A1 i.e. boundedness37

of the kernel in Prop. 5, resulting in the contradiction in Thm. 7. We emphasize that Corollary 6 establishes convergence38

under very general conditions, and remains valid, however we cannot now show fast rates. R2, R3. Validity of the39

Stein LSI itself. (Duncan et al., 2019) discusses conditions for which the Stein LSI on its own is satisfied, among40

which are the 1-d examples provided Sec 3.3 (which, unfortunately, do not satisfy A.1). Construction of examples41

satisfying Stein LSI should begin by ensuring that l.164 does not hold, i.e. the integral is infinite (see above): eg, k42

polynomial of order 3 or greater and π with exploding β-moments, for β ≥ 3 (e.g., a student distribution in P2(X )).43

R1. The Wasserstein Hessian of KL(.|π) is briefly mentioned in (Villani, 2003, Sec 8.2) and (Wibisono, 2018, Sec44

3.1.1) but was not particularly highlighted in the ML literature. We derive all the formulas in the proof of Prop 5.45

R3. (3) We will correct this with a precise discussion about the dependence on the dimension d. In Cor. 6 and46

Th. 7, the constants M,B,C,KL(µ0|π) are parameters of the problem and depend indeed implicitly on d. To47

explicit the dependence of KL(µ0|π) on d, we can apply (Vempala, 2019, Lem. 1): under A2, we have KL(µ0|π) ≤48

V (x?) +
d
2 log

(
M
2π

)
, where x? is a stationary point of V and assuming that µ0 ∼ N (x?,

1
M ). We will explicit49

the dependence e.g. for M,B for a gaussian kernel k and quadratic potential V for illustration. (4) Assuming50

0 < γ < min
Ä

1
2λ ,

1
B2(α2+M)

ä
is sufficient to obtain 0 < 2cγλ < 1. Indeed, γ < 1

B2(α2+M) implies γ
2 < cγ . Since51

cγ < γ, we have 0 < λγ < 2cγλ < 2γλ < 1, using the assumption on γ.52

R4. SVGD can be seen as a gradient descent (GD) algorithm to minimize KL(·|π). In this context, the KSD53

(Istein(µn|π)) plays the role of the squared norm of the gradient at time n ≥ 0. Assumption A3 is analogous to54

assuming supn ‖∇F (xn)‖2 < ∞ when applying GD to minimize some function F over Rd, which is a standard55

bounded gradient assumption in optimization. It holds for instance if the objective function F is Lipschitz.56


