
A Proofs

A.1 Proof of Proposition 1

We first remind the reader for some notations, a GCN model is denoted as a function f , the feature
matrix is X ∈ RN×D, and the output logits H = f(X) ∈ RN×K . The L-step random walk
transition matrix is ML. More details can be found in in Section 3.1

We give in Lemma 2 the connection between GCN models and random walks. Lemma 2 relies on a
technical assumption about the GCN model (Assumption 5) and the proof can be found in Xu et al.
[25].
Assumption 5 (Xu et al. [25]). All paths in the computation graph of the given GCN model are
independently activated with the same probability of success ρ.
Lemma 2. (Xu et al. [25].) Given an L-layer GCN with averaging as αi,j = 1/di in Eq. 1, assume
that all path in the computation graph of the model are activated with the same probability of success
ρ (Assumption 5). Then, for any node i, j ∈ V ,

E
[
∂Hj

∂Xi

]
= ρ ·

1∏
l=L

Wl[M
L]ji, (6)

where Wl is the learnable parameter at l-th layer.

Then we are able to prove Proposition 1 below.

Proof. First, we derive the gradient of the loss L(H, y) w.r.t. the feature Xi of node i,

∇Xi
L(H, y) = ∇Xi

 N∑
j=1

Lj(Hj , yj)


=

N∑
j=1

∇Xi
Lj(Hj , yj)

=

N∑
j=1

(
∂Hj

∂Xi

)T
∂Lj(Hj , yj)

∂Hj
, (7)

where Hj is the jth row of H but being transposed as column vectors and yj is the true label of node
j. Note that ∂Lj(Hj ,yj)

∂Hj
∈ RK , and ∂Hj

∂Xi
∈ RK×D.

Next, we plug Eq. 7 into ∆̃i (x) |x=τ(X,{i})i . For simplicity, We write ∆̃i (x) |x=τ(X,{i})i as ∆̃i in
the rest of the proof.

∆̃i = (∇Xi
L(H, y))

T
ε

=

N∑
j=1

(
∂Lj(Hj , yj)

∂Hj

)T
∂Hj

∂Xi
ε. (8)

Denote aj , ∂Lj(Hj ,yj)
∂Hj

∈ RK . From the definition of loss

Lj(Hj , yj) = max
k∈{1,...,K}

Hjk −Hjyj ,

we have

ajk =


−1, if k = yj and yj 6= argmaxc∈{1,...,K}Hjc,
1, if k 6= yj and k = argmaxc∈{1,...,K}Hjc,
0, otherwise,

for k = 1, 2, . . . ,K. Under Assumption 1, the expectation of each element of aj is

E[ajk] = −qk(1− p(k | k)) +

K∑
w=1,w 6=k

p(k | w)qw, k = 1, 2, . . . ,K

12



which is a constant independent of Hj and yj . Therefore, we can write

E[aj ] = c,∀j = 1, 2, . . . , N,

where c ∈ RK is a constant vector independent of j.

Taking expectation of Eq. (8) and plug in the result of Lemma 2,

E
[
∆̃i

]
≈ E

 N∑
j=1

(
∂Lj(Hj , yj)

∂Hj

)T
∂Hj

∂Xi
ε


=

N∑
j=1

E[aj ]T

(
ρ

1∏
l=L

Wl[M
L]ji

)
ε

=

(
ρcT

1∏
l=L

Wlε

)
N∑
j=1

[ML]ji

= C

N∑
j=1

[ML]ji,

where C = ρcT
∏1
l=LWlε is a constant scalar independent of i.

A.2 Proofs for the Results in Section 3.4

Proof of Lemma 1.

Proof. If Ai = ∅, Bi ⊆ Ai so Bi = ∅. The three conditions of Definition 3 are also trivially true.
Below we investigate the case Ai 6= ∅.
The existence can be given by a constructive proof. We check the nonempty elements in Ai one by
one with any order. If this element is a super set of any other element in Ai, we skip it. Otherwise,
we put it into Bi. Then we verify that the resulted Bi is a basic vulnerable set for i. Bi ⊆ Ai. For
condition 1), clearly, ∅ /∈ Bi and if ∅ ∈ Ai, all nonempty elements in Ai are skipped so Bi = ∅. For
condition 2), given ∅ /∈ Ai, for any nonempty S ∈ Ai, if S ∈ Bi, the condition holds. If S /∈ Bi, by
construction, there exists a nonempty strict subset S1 ⊂ S and S1 ∈ Ai. If S1 ∈ Bi, the condition
holds. If S1 /∈ Bi, we can similarly find a nonempty strict subset S2 ⊂ S and S2 ∈ Ai. Recursively,
we can get a series S ⊃ S1 ⊃ S2 ⊃ · · · . As S is finite, we will have a set Sk that no longer has strict
subset so Sk ∈ Bi. Therefore the condition holds. Condition 3) means any set in Bi is not a subset
of another set in Bi. This condition holds by construction.

Now we prove the uniqueness. Suppose there are two distinct basic vulnerable sets Bi 6= Ci. Without
loss of generality, we assume S ∈ Bi but S /∈ Ci. Bi 6= ∅ so ∅ /∈ Ai. Further S ∈ Ai, hence Ci 6= ∅.
As S ∈ Bi ⊆ Ai, S 6= ∅, and Ci satisfies condition 2), there will be a nonempty T ∈ Ci s.t. T ⊂ S.
If T ∈ Bi, then condition 3) is violated for Bi. If T /∈ Bi, there will be a nonempty T ′ ∈ Bi s.t.
T ′ ⊂ T . But T ′ ⊂ S also violates condition 3). By contradiction we prove the uniqueness.

In order to prove Proposition 2, we first would like to construct a submodular function that is close to
h, with the help of Lemma 3 below.

Lemma 3. If ∀i ∈ V , Bi is either empty or only contains singleton sets, then h is submodular.

Proof. We first prove the case when ∀i ∈ V,Ai 6= ∅.
First, we show that ∀i ∈ V , if Ai 6= ∅, for any nonempty S ⊆ V, gi(S) = 1 if and only if Bi = ∅
or ∃T ∈ Bi, T ⊆ S. On one hand, if gi(S) = 1, then S ∈ Ai. If ∅ ∈ Ai, Bi = ∅. If ∅ /∈ Ai, by
condition 2) of the basic vulnerable set, ∃T ∈ Bi, T ⊆ S. On the other hand, if ∃T ∈ Bi, T ⊆ S,
gi(T ) = 1, by Assumption 2, gi(S) ≥ gi(T ), so gi(S) = 1. If Bi = ∅, as Ai 6= ∅, if ∅ /∈ Ai, the
condition 2) of Definition 3 will be violated. Therefore ∅ ∈ Ai so gi(∅) = 1. Still by Assumption 2,
gi(S) ≥ gi(∅), so gi(S) = 1.

13



Define a function e : V → 2V s.t. for any node i ∈ V ,

e(i) = {j ∈ V | {i} ∈ Bj}.

Given Bi is either empty or only contains singleton sets for any i ∈ V , for any nonempty S ⊆ V

h(S) =
1

N

N∑
i=1

gi(S) (9)

=
1

N
|{j ∈ V | Bj = ∅ or ∃T ∈ Bj , T ⊆ S}|

=
1

N
|{j ∈ V | Bj = ∅ or ∃{i} ∈ Bj , i ∈ S}|

=
1

N
|{j ∈ V | Bj = ∅ or ∃i ∈ S, {i} ∈ Bj}|

=
1

N
(|∪i∈Se(i)|+ |{j ∈ V | Bj = ∅}|) .

|{j ∈ V | Bj = ∅}| is a constant independent of S. Therefore, maximizing h(S) over S with |S| ≤ r
is equivalent to maximizing |∪i∈Se(i)| over S with |S| ≤ r, which is a maximum coverage problem.
Therefore h is submodular.

The case of allowing some nodes to have empty vulnerable sets can be easily proved by removing
such nodes in Eq. (9) as their corresponding vulnerable functions always equal to zero.

Proof of Proposition 2. For simplicity, we assume Ai 6= ∅ for any i ∈ V . The proof below can
be easily adapted to the general case without this assumption, by removing the nodes with empty
vulnerable sets similarly as the proof for Lemma 3.

Proof. ∀i ∈ V , define B̃i , {S ∈ Bi | |S| = 1}. We can then define a new group of vulnerable sets
Ãi on V for i ∈ V . Let

Ãi =


2V , if Bi = ∅,
∅, Bi 6= ∅ but B̃i = ∅,
{S ⊆ V | ∃T ∈ B̃i, T ⊆ S}, otherwise.

Then it is clear that B̃i is a valid basic vulnerable set corresponding to Ãi, for i ∈ V . If we define
g̃i : 2V → {0, 1} as

g̃i(S) =

{
1, if Bi = ∅ or ∃T ∈ B̃i, T ⊆ S,
0, otherwise,

we can easily verify that g̃i is a valid vulnerable function corresponding to Ãi, for i ∈ V . Further let
h̃ : 2V → R+ as

h̃(S) =
1

N

N∑
i=1

g̃i(S).

By Lemma 3, as ∀i ∈ V, B̃i is either empty or only contains singleton sets, we know h̃ is submodular.

Next we investigate the difference between h and h̃. First, for any S ⊆ V , if S /∈ ∪Ni=1Ai, clearly
h(S) = h̃(S) = 0; if |S| ≤ 1, it’s easy to show h(S) = h̃(S). Second, for any S ∈ ∪Ni=1Ai and
|S| > 1, by Assumption 3, there are exactly b (omitting the S in b(S)) nodes whose vulnerable set
contains S. Without loss of generality, let us assume the indexes of b nodes are 1, 2, . . . , b. Then, for
any node i > b, gi(S) = 0, g̃i(S) = 0. For node i = 1, 2, . . . , b, gi(S) = 1, and

g̃i(S) =

{
1, if Bi = ∅ or ∃T ⊆ S, |T | = 1 and T ∈ B̃i,
0, otherwise.

By Assumption 4, there are at least dpbe (omitting the S in p(S)) nodes like j s.t. g̃j(S) = 1.
Therefore, h(S) = b

N and dpbeN ≤ h̃(S) ≤ b
N . Hence 1− 1

r < 1 ≤ h(S)

h̃(S)
≤ 1

p < 1 + 1
r .
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B Addtional Experiment Details

B.1 Additional Dataset Details

Datasets. We adopt the Deep Graph Library [19] version of Cora, Citeseer, and Pubmed in our
experiments. The summary statistics of the datasets are summarized in Table 2. The number of edges
does not include self-loops.

Table 2: Summary statistics of datasets.
Dataset Nodes Edges Classes Features
Citeseer 3,327 4,552 6 3,703

Cora 2,708 5,278 7 1,433
Pubmed 19,717 44,324 3 500

B.2 Additional Experiment Results

In this section, we provide results of more experiment setups.

Comparison to the Random baseline. We first highlight the relative decrease of accuracy between
the proposed GC-RWCS strategy (L = 4) and the Random strategy in Table 3. GC-RWCS is able to
decrease the node classification accuracy by up to 33.5%, and achieves a 70% larger decrease of the
accuracy than the Random baseline in most cases. As the GC-RWCS and Random use exactly the
same feature perturbation and the node selection step of Random does not include any information
of the graph structure, this relative comparison can be roughly viewed as an indicator of the attack
effectiveness attributed to the structural inductive biases of the GNN models.

Table 3: Accuracy decrease (in %) comparison with clean dataset
Cora Citeseer Pubmed

Method GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool
Threshold 10%

Random 4.3 17.4 17 3.8 12.1 11.5 3.7 9.9 10.3
GC-RWCS 7.1 33.5 32.5 10.0 26.3 25.0 8.4 23.7 25.1
GC-RWCS/Random 165.12% 192.53% 191.18% 263.16% 217.36% 217.39% 227.03% 239.39% 243.69%

Threshold 30%
Random 3.0 15.5 14 2.5 10.2 9.3 3.1 8.5 8.3
GC-RWCS 4.9 27.1 24.7 7.3 23.9 22.5 5.4 16.6 15.7
GC-RWCS/Random 163.33% 174.84% 176.43% 292.00% 234.31% 241.94% 174.19% 195.29% 189.16%

More thresholds and sensitivity analysis with respect to L.. We provide a setup of 20% threshold
in addition to the 10% and 30% thresholds shown in Section 4.2, to give a better resolution of
the results. And the results of threshold 20% are consistent with other setups. We also conduct
a sensitivity analysis of the hyper-parameter L in GC-RWCS in Table 4, and show the results of
GC-RWCS with L = 3, 4, 5, 6, 7. Note that GCN has 2 layers and the JK-Nets have 7 layers. The
variations of GC-RWCS results with the provided range of L are typically within 2%, indicating that
the proposed GC-RWCS strategy does not rely on the exact knowledge of number of layers in the
GNN models to be effective.

Extra experiments on Graph Attetion Networks (GAT). We further show that the proposed attack
strategy GC-RWCS, while being derived from the GCN model, is also able to generalize well on
GAT [18]. The results on GAT are shown in the Table 5.

Extra experiments on a synthetic dataset. We also run experiments on a synthetic dataset to
show that, when sufficient domain knowledge regarding the node features is present, the proposed
attack strategy can be made effective in a pure black-box fashion. We generate the synthetic dataset
as follows. First, we generate a graph using the Barabási-Albert random graph model [1] with
N nodes, and denote the adjacency matrix as A. Then we sample D-dimensional node features,
X ∈ RN×D, from a multivariate normal distribution and take the absolute value elementwisely.
Finally, we generate the node labels as follows. We first calculate Ỹ = sigmoid((A+ I)XW ), for
some W ∈ RD. Considering a binary classification problem, we make the label Yi = 1 if Ỹi > 0.5, 0
otherwise. When attacking a GNN model trained on such a synthetic dataset, we assume the attackers
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Table 4: Summary of the accuracy (in %) when L = {3, 4, 5, 6, 7}. The bold number and the asterisk
(*) denotes the same meaning as Table 1. The underline marker denotes the values of GC-RWCS
outperforms all the baseline.

Cora Citeseer Pubmed
Method GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool GCN JKNetConcat JKNetMaxpool
None 85.6 ± 0.3 86.2 ± 0.2 85.8 ± 0.3 75.1 ± 0.2 72.9 ± 0.3 73.2 ± 0.3 85.7 ± 0.1 85.8 ± 0.1 85.7 ± 0.1

Threshold 10%
Random 81.3 ± 0.3 68.8 ± 0.8 68.8 ± 1.3 71.3 ± 0.3 60.8 ± 0.8 61.7 ± 0.9 82.0 ± 0.3 75.9 ± 0.7 75.2 ± 0.7
Degree 78.2 ± 0.4 60.7 ± 1.0 59.9 ± 1.5 67.5 ± 0.4 52.5 ± 0.8 53.7 ± 1.0 78.9 ± 0.5 63.4 ± 1.0 63.2 ± 1.2
Pagerank 79.4 ± 0.4 71.6 ± 0.6 70.0 ± 1.0 70.1 ± 0.3 61.5 ± 0.5 62.6 ± 0.6 80.3 ± 0.3 71.3 ± 0.8 71.2 ± 0.8
Betweenness 79.7 ± 0.4 60.5 ± 0.9 60.3 ± 1.6 68.9 ± 0.3 53.5 ± 0.8 55.1 ± 1.0 78.5 ± 0.6 67.1 ± 1.1 66.1 ± 1.1
RWCS 79.4 ± 0.4 71.7 ± 0.5 70.3 ± 0.9 69.9 ± 0.3 62.4 ± 0.4 63.1 ± 0.6 79.8 ± 0.3 70.7 ± 0.8 70.7 ± 0.8
GC-RWCS-3 78.6 ± 0.5 52.1 ± 1.1* 53.0 ± 1.9* 64.8 ± 0.5* 46.4 ± 0.8* 48.2 ± 1.0* 78.1 ± 0.6 62.3 ± 1.2 61.6 ± 1.5
GC-RWCS-4 78.5 ± 0.5 52.7 ± 1.0* 53.3 ± 1.9* 65.1 ± 0.5* 46.6 ± 0.8* 48.2 ± 1.1* 77.3 ± 0.7 62.1 ± 1.2 60.6 ± 1.4*
GC-RWCS-5 78.9 ± 0.5 53.5 ± 1.1* 54.2 ± 1.9* 65.3 ± 0.5* 46.6 ± 0.8* 48.4 ± 1.0* 78.4 ± 0.5 64.2 ± 1.2 62.5 ± 1.4
GC-RWCS-6 78.5 ± 0.5 54.3 ± 1.1* 54.9 ± 1.9* 65.5 ± 0.5* 47.1 ± 0.8 48.9 ± 1.1* 78.0 ± 0.6 63.7 ± 1.1 62.6 ± 1.4
GC-RWCS-7 78.1 ± 0.5 54.2 ± 1.1* 54.8 ± 1.9* 66.1 ± 0.4* 47.5 ± 0.8 49.3 ± 1.1* 78.7 ± 0.5 64.9 ± 1.2 63.3 ± 1.3

Threshold 20%
Random 82.3 ± 0.3 71.7 ± 1.1 69.8 ± 1.1 72.1 ± 0.3 62.1 ± 0.7 62.6 ± 0.9 82.6 ± 0.2 77.9 ± 0.5 77.5 ± 0.5
Degree 79.3 ± 0.4 64.2 ± 1.2 61.6 ± 1.3 69.2 ± 0.4 56.0 ± 0.8 56.4 ± 1.0 80.6 ± 0.4 69.5 ± 0.8 69.4 ± 1.0
Pagerank 80.8 ± 0.3 74.5 ± 0.8 73.0 ± 0.8 72.1 ± 0.3 68.3 ± 0.3 68.2 ± 0.4 82.2 ± 0.2 77.7 ± 0.4 77.8 ± 0.4
Betweenness 80.7 ± 0.4 62.2 ± 1.4 60.1 ± 1.4 70.1 ± 0.4 54.8 ± 0.8 55.8 ± 1.1 80.2 ± 0.4 72.4 ± 0.8 72.0 ± 0.7
RWCS 81.4 ± 0.3 76.8 ± 0.6 76.0 ± 0.6 72.4 ± 0.3 68.9 ± 0.3 69.0 ± 0.4 81.3 ± 0.2 76.0 ± 0.4 76.5 ± 0.4
GC-RWCS-3 79.4 ± 0.5 57.5 ± 1.6* 53.1 ± 1.5* 67.1 ± 0.4* 48.4 ± 0.9* 49.3 ± 1.2* 79.0 ± 0.5* 67.4 ± 0.9* 66.3 ± 1.0*
GC-RWCS-4 79.4 ± 0.5 57.5 ± 1.7* 53.2 ± 1.4* 67.3 ± 0.5* 47.9 ± 0.9* 48.8 ± 1.3* 79.0 ± 0.5* 67.4 ± 1.0* 66.3 ± 1.0*
GC-RWCS-5 79.4 ± 0.5 59.0 ± 1.7* 54.5 ± 1.4* 67.3 ± 0.4* 48.4 ± 0.9* 49.4 ± 1.3* 79.2 ± 0.5* 68.5 ± 0.9 68.1 ± 0.9
GC-RWCS-6 79.5 ± 0.5 59.3 ± 1.7 54.9 ± 1.5* 68.1 ± 0.4* 49.2 ± 0.9* 50.2 ± 1.3* 79.1 ± 0.5* 68.4 ± 0.9 68.5 ± 1.0
GC-RWCS-7 79.4 ± 0.5 59.3 ± 1.6 55.3 ± 1.5* 68.1 ± 0.4* 50.0 ± 0.9* 50.8 ± 1.3* 79.2 ± 0.5* 68.7 ± 0.9 68.2 ± 0.8

Threshold 30%
Random 82.6 ± 0.4 70.7 ± 1.1 71.8 ± 1.1 72.6 ± 0.3 62.7 ± 0.8 63.9 ± 0.8 82.6 ± 0.2 77.3 ± 0.4 77.3 ± 0.5
Degree 80.7 ± 0.4 64.9 ± 1.4 67.0 ± 1.5 70.4 ± 0.4 56.9 ± 0.8 58.7 ± 0.9 81.5 ± 0.4 72.4 ± 0.7 72.1 ± 0.8
Pagerank 82.6 ± 0.3 79.6 ± 0.4 79.7 ± 0.4 72.9 ± 0.2 70.2 ± 0.3 70.3 ± 0.3 83.0 ± 0.2 79.3 ± 0.3 79.5 ± 0.3
Betweenness 81.8 ± 0.4 64.1 ± 1.3 65.9 ± 1.4 70.7 ± 0.3 56.3 ± 0.8 58.3 ± 0.9 81.3 ± 0.3 74.1 ± 0.5 74.5 ± 0.5
RWCS 82.9 ± 0.3 79.7 ± 0.4 80.0 ± 0.4 72.9 ± 0.2 70.2 ± 0.3 70.4 ± 0.3 82.1 ± 0.2 77.8 ± 0.3 78.4 ± 0.3
GC-RWCS-3 80.2 ± 0.6 57.3 ± 1.7* 59.0 ± 1.6* 67.9 ± 0.5* 49.1 ± 0.9* 50.8 ± 1.1* 80.3 ± 0.5* 69.0 ± 0.7* 69.8 ± 0.7*
GC-RWCS-4 80.7 ± 0.5 59.1 ± 1.6* 61.1 ± 1.6* 67.8 ± 0.5* 49.0 ± 0.9* 50.7 ± 1.1* 80.3 ± 0.5* 69.2 ± 0.7* 70.0 ± 0.7*
GC-RWCS-5 80.8 ± 0.5 59.8 ± 1.6* 61.5 ± 1.6* 68.4 ± 0.5* 49.2 ± 0.9* 51.2 ± 1.1* 80.2 ± 0.5* 70.4 ± 0.6* 71.5 ± 0.6
GC-RWCS-6 80.7 ± 0.5 59.8 ± 1.5* 61.4 ± 1.5* 68.5 ± 0.5* 50.5 ± 0.9* 52.2 ± 1.1* 80.2 ± 0.5* 70.5 ± 0.5* 71.6 ± 0.6
GC-RWCS-7 80.7 ± 0.5 60.2 ± 1.5* 61.9 ± 1.5* 68.7 ± 0.5* 50.7 ± 0.9* 52.6 ± 1.1* 80.3 ± 0.4* 70.9 ± 0.5* 71.9 ± 0.6

Table 5: Accuracy (in %) on GAT model
Dataset Cora Citeseer Pubmed
threshold 10% 20% 30% 10% 20% 30% 10% 20% 30%
None 87.8 ± 0.2 76.9 ± 0.3 85.2 ± 0.1
Random 72.9 ± 0.5 73.8 ± 0.6 73.9 ± 0.6 70.0 ± 0.5 71.2 ± 0.4 71.7 ± 0.4 73.9 ± 0.4 75.4 ± 0.3 76.2 ± 0.3
Degree 66.5 ± 0.7 67.3 ± 0.7 69.8 ± 0.7 63.3 ± 0.5 65.9 ± 0.4 67.9 ± 0.3 66.7 ± 0.7 69.0 ± 0.5 71.2 ± 0.4
Pagerank 74.3 ± 0.5 74.8 ± 0.3 82.4 ± 0.2 69.5 ± 0.3 72.9 ± 0.3 74.2 ± 0.3 71.6 ± 0.4 78.1 ± 0.2 79.1 ± 0.2
Betweenness 64.8 ± 0.5 66.0 ± 0.5 67.3 ± 0.6 65.2 ± 0.5 66.5 ± 0.4 67.6 ± 0.3 63.4 ± 0.7 68.4 ± 0.6 72.0 ± 0.4
RWCS 71.1 ± 0.5 74.6 ± 0.3 82.5 ± 0.2 69.2 ± 0.3 72.9 ± 0.3 73.9 ± 0.3 69.4 ± 0.5 74.9 ± 0.3 77.9 ± 0.2
GC-RWCS 58.1 ± 0.6* 57.9 ± 0.6* 63.0 ± 0.5* 58.3 ± 0.6* 61.9 ± 0.6* 61.9 ± 0.4* 58.9 ± 0.9* 63.8 ± 0.7* 68.9 ± 0.5*

know a couple of “important features” with large weights in W but do not know any of the trained
model information. We randomly generate two datasets with N = 3000 and D = 10. And the
experiment results are shown in the Table 6. And we find the proposed GC-RWCS model performs
well on these two synthetic datasets.

Table 6: Accuracy (in %) on GCN model with synthetic data
Dataset synthetic_0 synthetic_1
Threshold 10% 20% 30% 10% 20% 30%
None 83.6±0.3 85.2±0.4
Degree 77.9±0.4 77.5±0.4 79.2±0.4 77.4±0.4 79.7±0.4 79.9±0.2
Pagerank 76.7±0.4 78.3±0.3 79.2±0.4 78.5±0.5 79.2±0.3 80.1±0.3
Between 76.3±0.4 80.4±0.3 79.1±0.4 78.7±0.3 80.6±0.3 80.3±0.3
Random 79.3±0.4 80.3±0.4 81.2±0.4 82.4±0.4 79.6±0.3 82.2±0.2
RWCS 74.9±0.5 78.8±0.4 78.5±0.3 79.0±0.4 79.9±0.4 80.0±0.3
GC-RWCS 74.0±0.3* 77.9±0.5 77.4±0.4* 77.5±0.4 78.9±0.3* 78.4±0.3*

Diminishing-return effect with respect to J . In Section 4.2, we have empirically shown the
diminishing-return effect on the mis-classification rate when strengthening the adversarial perturbation
by increasing the perturbation strength λ. Here we further validate our observation by showing that
a similar effect appears as we strengthen the adversarial perturbation by increasing the number of
features to be perturbed, J . The results are shown in Figure 2.
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(a) Loss on Test Set (b) Accuracy on Test Set

Figure 2: Experiments of attacking GCN on Citeseer with increasing number of features to be
perturbed, J . Results are averaged over 40 random trials and error bars indicate standard error of
mean.
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