
AI Feynman 2.0: Pareto-optimal symbolic regression
exploiting graph modularity —

supplementary material

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu & Max Tegmark
MIT Dept. of Physics & Center for Brains, Minds & Machines

Cambridge, MA 02139
sudrescu@mit.edu

Below we provide additional technical details about how we implement our method and numerical
experiments.

A Testing for generalized symmetry

We showed that generalized symmetry can be revealed by v̂(x′, x′′) being independent of x′′. We will
now describe how we test for such x′′-independence numerically. Given a point xi ∈ Rk from our
data set, we compute a set of normalized gradients v̂j ≡ v̂i(x′i, x′′j), where x′′j ∈ Rn−k correspond to
a sample of m other data points, and quantify the variation between then by the quantity

V (x) ≡ 1− max
|µ|=1

1

m

m∑
j=1

(µ̂ · v̂j)2 = 1− max
|µ|=1

µ̂tVµ̂, where V ≡ 1

m

m∑
j=1

v̂jv̂
t
j . (1)

We can intuitively interpret the optimal µ̂ as maximally aligned with the vectors v̂j up to a sign.
Equation (1) implies that our variation measure V is simply one minus the smallest eigenvalue of
V, so V ranges from 0 when all v̂j are identical to 1− 1

m when all eigenvalues are equal (equal to
1/m, since tr V = 1). As illustrated in Figure 1, we compute V (xi) for each subset of up to ng input
variables, and select the subset with the smallest median V (xi) as the most promising generalized
symmetry candidate. In our numerical experiments, we set the hyperparameter ng = 3 to save time,
since we do not wish to consider all 2n subsets for large n.

10-8 10-310-410-510-610-7 10-110-2 1
V(x)

f(x, y, z) = g[h(x, y), z]
f(x, y, z) = g[h(y, z), x]
f(x, y, z) = g[h(z, x), y]

Figure 1: Distribution of V (xi) for the function from Figure 2, revealing that evidence for
the generalized symmetry f(x, y, z) = g[h(x, y), z] (shaded distribution) is stronger than for
f(x, y, z) = g[h(x, z), y] (blue curve) or f(x, y, z) = g[h(y, z), x] (red curve). The curves are
shown slightly smoothed for clarity.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Schmidt & Lipson 2009 Udrescu & Tegmark 2020 This paper
FDSR basic 100 71% 100% 100%
FDSR harder 20 15% 85% 90%
12 modular equations 42% 42% 100%
10 probability distributions 60% 70% 80%

Table 6: Fraction of symbolic regression problems solved for the benchmarks in the Feynman
Database for Symbolic Regression (FDRS) and this paper.

B Testing for generalized additivity

We showed that generalized additivity holds when the function s(x1, x2) from Equation (3) from
the main part of the paper is multiplicatively separable. We will now describe how we test for
such separability numerically. s(x1, x2) being multiplicative separable is equivalent to f(x1, x2) ≡
ln s(x1, x2) being additively separable. We numerically test the function ln sNN (x1, x2) for additive
separability using the normalized score S defining

S[f] =
|f,xy|2

|f,xxf,yy|+ |f,xy|2
. (2)

It is easy to see that S[f] = 0 if f is additively separable, and S[f] > 0 otherwise. If the median
value of S over all points xi in the dataset is below a threshold S∗, we take this as evidence for
generalized additivity and proceed as below. We found empirically that the threshold choise S∗ = 0.1
produced robust results. It is important to use smooth (not, e.g., ReLU) activation functions for this
derivative-based test to be useful.

If this property holds, then we recursively apply our algorithm to the two new 1-dimensional symbolic
regression problems of discovering a(x1) and b(x2). If this succeeds and we are able to discover the
functions g(x1) and h(x2) by symbolically integrating our solutions g′ = a and h′ = 1/b, then we
have reduced the original problem to the same state as when we found compositionality above, now
with h(x1, x2) = g(x1)+h(x2). Just as in that case, we simply replace the variables x in the original
mystery data table by the single variable h(x) and recursively apply our AI Feynman algorithm to the
new 1-dimensional symbolic regression problem of discovering how f depends on h.

If we have determined that generalized additivity holds but the aforementioned method for discovering
g(x1) + h(x2) fails, we make a second attempt by training a neural network of the modular form
fNN(x1, x2) = F [g(x1) + h(x2)] to fit the data. If this succeeds, we then recursively apply our AI
Feynman algorithm to the three new 1-dimensional symbolic regression problems of discovering F ,
g and h.

C Further details on success and failure modes

Our paper reports which symbolic regression problems our method succeeded and failed on, as
detailed in Tables 6-8. Here we add specifics on how these successes and failures occurred.

Success definition Given a data set {x1, ..., xn, y}, we use 90% of the data to compute a Pareto-
optimal set of candidate functions f̃i(x), then rank them based on their MEDL accuracy on the
held-back 10% of the data. We count our method as successful only if the top-ranked function
matches the true f(x) exactly, or, if the definition of f involves irrational numerical parameters, if
these parameters are recovered to better than 0.01% relative accuracy.

We considered an equation solved even if the top solution was not in the exact form presented in
our tables, but mathematically equivalent. For example, our method predicted that Equation (12)
in Table 4 was w = cos[arccos(x) + arccos(y) + arccos(z)], which is mathematically equivalent
within the domain of our provided data set, where x, y, z ∈ [−1, 1].
For the problem of density estimation from samples, our goal was to obtain the correct normalized
probability distributions. The candidate functions on the Pareto-frontier were therefore discarded
unless they were non-negative and normalizable. The surviving candidates were then normalized to
integrate to unity by symbolic/numerical integration to obtain the appropriate normalization constant,

2

and quality-ranked by the surprisal loss function

Li = −
∑

log f̃i(xk)

evaluated on the held-back test data.

Success examples Tables 7 and 8 below show the highest noise level allowing each of the 100
equations from the Feynman Database for Symbolic regression to be solved in the original paper
analyzing it and in the present paper.

For many of the solved equations, the modularity discovery had to be used multiple times in order for
the correct equation to be discovered, reflecting the power of the recursive algorithm. For example,
for the quadruple velocity addition equation in Table 4, generalized symmetry was exploited twice.
First, the code discovered that the first two velocities only enter in the combination v1+v2

1+v1v2
, and these

two variables were replaced by a new variable v12. The same method then discovered that v12 and
v3 only enter in that same combination v12+v3

1+v12v3
, and thus the initial 3 variables v1, v2 and v3 were

replaced by a single variable v123. Now the remaining equation had only 2 variables left, and was
solved by brute force. In principle, this recursive method can be used to discover relativistic addition
of an arbitrary number of velocities, by reducing the number of variables by one at each step.

Failure examples Some of the most obvious failure modes we discussed in the conclusions of
the main text. Here we discuss some more subtle failure modes. Firstly, it is worth noting that our
definition of complexity is dependent on the chosen set of operations and does not always match our
intuition. For example, in fitting the probability distribution

p(r, θ) =
1

16
r2e−r cos2 θ

of electron positions in the n = 2, l = 1, m = 0 hydrogen orbital, solutions with θ-dependence
cos (cos θ) are preferred over cos2 θ. This is because, up to additive and multiplcative prefactors,
the two formulas differ by at most approximately 2× 10−2 over our parameter range, but given a
set of operations that includes only {×, cos} denoted by "∗" and “C" respectively in reverse Polish
notation, cos (cos θ)) (encoded as“xCC") is simpler than cos2 θ (encoded as “xCxC ∗ ”). In the
presence of the imprecisions introduced by the normalizing flow, we were unable to perform the
density estimation a level at which the accuracy for the correct cos2 θ was preferred over the simpler
alternative.

Furthermore, more interpretable approximations (e.g. Taylor expansions) are not always favored by
our definition of complexity. For example, in Figure 1, the unfamiliar solution

mc2
(

1

cos v/c
− 1

)
intermediate to the more familiar mv

2

2 and mc2
(

1√
1−v2/c2

− 1

)
of can be understood as a fourth-

order expansion about v = 0 of the exact formula. Specifically, mc2
(

1√
1−v2/c2

− 1

)
= mv2

2 +

3mv4

8c2 +O(v6), and mc2
(

1
cos v/c − 1

)
= mv2

2 + 5mv4

24c2 +O(v6). The Taylor expansions themselves
are not preferred for reasons of complexity.

3

Feynman eq. Equation Old Noise tolerance New Noise tolerance
I.6.20a f = e−θ

2/2/
√
2π 10−2 10−1

I.6.20 f = e
− θ2

2σ2 /
√
2πσ2 10−4 10−2

I.6.20b f = e
− (θ−θ1)2

2σ2 /
√
2πσ2 10−4 10−2

I.8.14 d =
√

(x2 − x1)2 + (y2 − y1)2 10−4 10−1

I.9.18 F = Gm1m2
(x2−x1)2+(y2−y1)2+(z2−z1)2

10−5 10−3

I.10.7 m = m0√
1− v2

c2

10−4 10−2

I.11.19 A = x1y1 + x2y2 + x3y3 10−3 10−1

I.12.1 F = µNn 10−3 10−1

I.12.1a K = 1
2
m(v2 + u2 + w2) 10−4 10−1

I.12.2 F = q1q2
4πεr2

10−2 10−1

I.12.4 U = q1
4πεr2

10−2 10−1

I.12.5 F = q2Ef 10−2 10−1

I.12.11 F = q(Ef +Bv sin θ) 10−3 10−1

I.13.12 U = Gm1m2(
1
r2
− 1

r1
) 10−4 10−1

I.14.3 U = mgz 10−2 10−1

I.14.4 U =
kspringx

2

2
10−2 10−1

I.15.3x x1 = x−ut√
1−u2/c2

10−3 10−3

I.15.3t t1 = t−ux/c2√
1−u2/c2

10−4 10−3

I.15.1 p = m0v√
1−v2/c2

10−4 10−1

I.16.6 v1 = u+v
1+uv/c2

10−3 10−2

I.18.4 r = m1r1+m2r2
m1+m2

10−2 10−1

I.18.12 τ = rF sin θ 10−3 10−1

I.18.14 L = mrv sin θ 10−3 10−1

I.24.6 E = 1
4
m(ω2 + ω2

0)x
2 10−4 10−1

I.25.13 Ve =
q
C

10−2 10−1

I.26.2 θ1 = arcsin(n sin θ2) 10−2 10−1

I.27.6 ff = 1
1
d1

+ n
d2

10−2 10−1

I.29.4 k = ω
c

10−2 10−1

I.29.16 x =
√
x21 + x22 − 2x1x2 cos(θ1 − θ2) 10−4 10−3

I.30.3 I∗ = I∗0
sin(nθ/2)
sin(θ/2)

10−3 10−3

I.30.5 θ = arcsin(λ
nd

) 10−3 10−1

I.32.5 P = q2a2

6πε3c
10−2 10−1

I.32.17 P = (1
2
εcE2

f)(8πr
2/3)(ω4/(ω2 − ω2

0)
2) 10−4 10−3

I.34.8 ω = qvB
p

10−2 10−1

I.34.10 ω = 1+v/c
1−v/cω0 10−3 10−2

I.34.14 ω = 1+v/c√
1−v2/c2

ω0 10−3 10−3

I.34.27 E = ~ω 10−2 10−1

I.37.4 I∗ = I1 + I2 + 2
√
I1I2 cos δ 10−3 10−2

I.38.12 r = 4πε~2
mq2

10−2 10−1

I.39.10 E = 3
2
pFV 10−2 10−1

I.39.11 E = 1
γ−1

pFV 10−3 10−1

I.39.22 PF = nkbT
V

10−4 10−1

I.40.1 n = n0e
−mgx
kbT 10−2 10−1

I.41.16 Lrad = ~ω3

π2c2(e
~ω
kbT −1)

10−5 10−4

I.43.16 v =
µdriftqVe

d
10−2 10−1

I.43.31 D = µekbT 10−2 10−1

I.43.43 κ = 1
γ−1

kbv
A

10−3 10−1

I.44.4 E = nkbT ln(V2
V1

) 10−3 10−1

I.47.23 c =
√

γpr
ρ

10−2 10−1

I.48.2 E = mc2√
1−v2/c2

10−5 10−3

I.50.26 x = x1[cos(ωt) + α cos(ωt)2] 10−2 10−1

Table 7: Tested Equations, part 14

Feynman eq. Equation Old Noise tolerance New Noise tolerance
II.2.42 P = κ(T2−T1)A

d 10−3 10−1

II.3.24 FE = P
4πr2 10−2 10−1

II.4.23 Ve =
q

4πεr 10−2 10−1

II.6.11 Ve =
1

4πε
pd cos(θ)

r2 10−3 10−1

II.6.15a Ef = 3
4πε

pdz
r5

√
x2 + y2 10−3 10−2

II.6.15b Ef = 3
4πε

pd
r3 cos θ sin θ 10−2 10−2

II.8.7 E = 3
5

q2

4πεd 10−2 10−1

II.8.31 Eden =
εE2
f

2 10−2 10−1

II.10.9 Ef = σden
ε

1
1+χ 10−2 10−1

II.11.3 x =
qEf

m(ω2
0−ω2)

10−3 10−2

II.11.7 n = n0(1 +
pdEf cos θ

kbT
) 10−2 10−1

II.11.20 P∗ =
nρp

2
dEf

3kbT
10−3 10−1

II.11.27 P∗ =
nα

1−nα/3εEf 10−3 10−1

II.11.28 θ = 1 + nα
1−(nα/3) 10−4 10−2

II.13.17 B = 1
4πεc2

2I
r 10−2 10−1

II.13.23 ρc =
ρc0√

1−v2/c2
10−4 10−2

II.13.24 j =
ρc0v√
1−v2/c2

10−4 10−1

II.15.4 E = −µMB cos θ 10−3 10−1

II.15.5 E = −pdEf cos θ 10−3 10−1

II.21.32 Ve =
q

4πεr(1−v/c) 10−3 10−1

II.24.17 k =
√

ω2

c2 −
π2

d2 10−5 10−2

II.27.16 FE = εcE2
f 10−2 10−1

II.27.18 Eden = εE2
f 10−2 10−1

II.34.2a I = qv
2πr 10−2 10−1

II.34.2 µM = qvr
2 10−2 10−1

II.34.11 ω = g_qB
2m 10−4 10−1

II.34.29a µM = qh
4πm 10−2 10−1

II.34.29b E = g_µMBJz
~ 10−4 10−1

II.35.18 n = n0

exp(µmB/(kbT))+exp(−µmB/(kbT)) 10−2 10−2

II.35.21 M = nρµM tanh(µMBkbT
) 10−4 10−4

II.36.38 f = µmB
kbT

+ µmαM
εc2kbT

10−2 10−1

II.37.1 E = µM (1 + χ)B 10−3 10−1

II.38.3 F = Y Ax
d 10−3 10−1

II.38.14 µS = Y
2(1+σ) 10−3 10−1

III.4.32 n = 1

e
~ω
kbT −1

10−3 10−2

III.4.33 E = ~ω

e
~ω
kbT −1

10−3 10−3

III.7.38 ω = 2µMB
~ 10−2 10−1

III.8.54 pγ = sin(Et~)2 10−3 10−3

III.9.52 pγ =
pdEf t

~ sin((ω−ω0)t/2)
2

((ω−ω0)t/2)2
10−3 10−1

III.10.19 E = µM
√
B2
x +B2

y +B2
z 10−4 10−1

III.12.43 L = n~ 10−3 10−1

III.13.18 v = 2Ed2k
~ 10−4 10−1

III.14.14 I = I0(e
qVe
kbT − 1) 10−3 10−1

III.15.12 E = 2U(1− cos(kd)) 10−4 10−1

III.15.14 m = ~2

2Ed2 10−2 10−1

III.15.27 k = 2πα
nd 10−3 10−1

III.17.37 f = β(1 + α cos θ) 10−3 10−1

III.19.51 E = −mq4
2(4πε)2~2

1
n2 10−5 10−2

III.21.20 j =
−ρc0qAvec

m 10−2 10−1

Table 8: Tested Equations, part 2.

5

	Testing for generalized symmetry
	Testing for generalized additivity
	Further details on success and failure modes

