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Abstract

This paper offers a nearly optimal algorithm for online linear optimization with
delayed bandit feedback. Online linear optimization with bandit feedback, or
nonstochastic linear bandits, provides a generic framework for sequential decision-
making problems with limited information. This framework, however, assumes that
feedback can be observed just after choosing the action, and, hence, does not apply
directly to many practical applications, in which the feedback can often only be
obtained after a while. To cope with such situations, we consider problem settings
in which the feedback can be observed d rounds after the choice of an action, and
propose an algorithm for which the expected regret is Õ(

√
m(m+ d)T ), ignoring

logarithmic factors in m and T , where m and T denote the dimensionality of
the action set and the number of rounds, respectively. This algorithm achieves
nearly optimal performance, as we are able to show that arbitrary algorithms
suffer the regret of Ω(

√
m(m+ d)T ) in the worst case. To develop the algorithm,

we introduce a technique we refer to as distribution truncation, which plays an
essential role in bounding the regret. We also apply our approach to cooperative
bandits, as studied by Cesa-Bianchi et al. [18] and Bar-On and Mansour [12], and
extend their results to the linear bandits setting.

1 Introduction

Bandit linear optimization (nonstochastic linear bandits) models various sequential decision-making
problems under partial-information conditions and has a wide range of applications including com-
binatorial bandits [17] and adaptive routing problems [11]. In this model, a player is given a set
A ⊆ Rm of actions, each of which corresponds to an m-dimensional feature vector, and chooses an
action at ∈ A in each round t ∈ [T ]. Just after choosing action at, the player gets feedback `>t at of
the loss for the chosen action, where `t ∈ Rm is a loss vector. The goal of the player is to minimize
cumulative loss

∑T
t=1 `

>
t at. A number of studies have proposed algorithms for this model, achieving

sublinear regret bounds of Õ(m
√
T ) [17; 22; 31].

However, in many applications, we cannot always get feedback right after choosing actions, as noted,
e.g., in [5]. For example, in the application of advertisement optimization [3; 6; 33], it takes a certain
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Table 1: Regret bounds for nonstochastic bandit problems with/without delay

Multi-armed bandit (K-arms) Linear bandit (m: dim. of action set)

Without delay O(
√
KT logK) [10] O(m

√
T logm) [15; 17; 22]

O(
√
KT ) [8]

Ω(
√
KT ) [10] Ω(m

√
T ) [21]

With delay O(
√
dKT ) [35; 36] Õ(m

√
dT ) [19]

(d-rounds delay) O(
√

(d+K)T logK) [18] ([19] applies to more general models)
O(
√

(d logK +K)T ) [46] Õ(
√
m(d+m)T ) [Theorem 1]

Ω(
√

(d logK +K)T ) [18] Ω(
√
m(d+m)T ) [Theorem 2]

amount of time until the advertisements begin to affect consumers’ behavior. Previous studies are not
directly applicable to such situations. For the multi-armed bandit problems, algorithms that work well
even for delayed-feedback settings have been proposed, as shown in Table 1, but they are not available
for more general linear bandits settings. Vernade et al. [43] provided algorithms for stochastic linear
bandits with delayed feedback, and they work well under assumptions of time-invariant generative
models for the loss, without regret bounds for nonstochastic settings.

This paper introduces bandit linear optimization with delayed feedback, which includes the multi-
armed bandit problems [18], and proposes a min-max optimal algorithm for the model. In this model,
there is an additional parameter d > 1 representing the rounds of feedback delay. In contrast to the
standard bandit feedback model, in which a player observes `>t at at the end of t-th round, in our
model, the feedback `>t at can be observed at the end of the (t+ d)-th round, i.e., d-rounds later.

Our contribution

The main contribution of this paper is to construct a nearly-optimal algorithm for online linear
optimization with delayed bandit feedback. More precisely, for online linear optimization with
an m-dimensional action set and d-rounds delay, Algorithm 1, described in Section 4, enjoys the
following regret bound:
Theorem 1. For arbitrary loss sequences (`t)

T
t=1, the regret for Algorithm 1 is bounded as

E[RT ] ≤ max
{√

8m(d+ em)T log T + 3, Cm(d
√
m+m) log3(dmT )

}
,

where E[·] means the expectation taken w.r.t. the internal randomization of the algorithm and C > 0
is a global constant.

We note that this paper considers oblivious adversarial model, i.e., `t is assumed not to depend on
the output of the algorithm. Our results can easily be generalized to an adaptive adversarial model,
i.e., a model in which `t may depend on {aj}j<t. As shown in Table 1, our regret bound improves
upon the results presented by Cesa-Bianchi et al. [19]. We should note that their algorithm works for
more general settings with composite delayed feedback. Their work will be discussed in Section 2.

Our regret bound can be shown to be min-max optimal up to logarithmic factors. In fact, we provide
the following regret lower bound:
Theorem 2. Suppose that A = {−1, 1}m and ‖`t‖1 ≤ 1. There is a distribution of (`t)

T
t=1 for

which an arbitrary algorithm suffers regret as

E[RT ] = Ω(min{
√
m(d+m)T , T}), (1)

where E[·] means the expectation w.r.t. the randomness of (`t) and the algorithm.

We show this lower bound by combining the result for bandit linear optimization without delay
[21; 26] and for online linear optimization with delayed full-information [44]. This lower bound
implies that there is no room to improve the upper bound in Theorem 1, up to logarithmic factors.

Our proposed algorithm is based on the multiplicative weight update (MWU) method [7] with an
unbiased estimator ˆ̀

t of the loss vector `t. MWU methods manage probability distributions pt over
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action set A, and choose an action at following pt. Some existing algorithms [17; 22] for bandit
linear optimization employ MWU to achieve an optimal regret bound up to logarithmic factors. These
algorithms, however, have not been proven to work well for delayed-feedback settings. This issue
appears to be due to the behavior of the probability distribution pt. In existing algorithms, pt is
updated using ˆ̀

t, and pt may change drastically per round since ˆ̀
t is unbounded, which can worsen

the regret, especially in delayed-feedback settings.

To deal with the above issue, we employ two techniques to construct a new, more stable unbiased
estimator ˆ̀

t. The first technique is to manage probability distributions over the convex hull B :=
conv(A) of an action set A, rather than A itself. If we apply MWU to B, the probability distribution
pt will have a property referred to as log-concavity [34], which plays an important role in our
analysis. The other, and more essential, technique is to truncate the distribution, which ensures that
the estimator ˆ̀

t is bounded in terms of a specific norm depending on the distribution. Additionally,
thanks to log-concavity, we can also show that this truncation does not change the distribution
drastically. Similar techniques to this truncation can be found in [16; 28], though much difference can
be found as well. For example, in contrast to our truncation technique, the focus region introduced in
[16] is updated so that the new one is included in the prior one. This property seems essential for
stabilizing their kernel-based estimators, but makes the algorithm and the analysis much complicated.

Our algorithm and analysis can be generalized to a multi-agent cooperative bandit setting [12; 18] in
which N agents cooperate to solve a common bandit optimization problem while communicating
via a network. In this problem, there is an underlying undirected communication graph G = (V,E),
each node of which corresponds to an individual agent. Each agent solves a common bandit
optimization problem, and the observation of agent u ∈ V can be shared with another agent v ∈ V
in dG(u, v)-rounds later, where dG(u, v) denotes the length of the shortest path in G between u
and v. As shown in Table 2, for cooperative nonstochastic multi-armed bandit problems, Cesa-
Bianchi et al. [18] provides an algorithm achieving regret of Õ(

√
(1 + K

|V |α(G))T ) averaged over

all agents, where α(G) denotes the independence number of G. Bar-On and Mansour [12] achieved

Õ(
√

(1 + K
|N(v)| )T )-regret for each agent v simultaneously, where N(v) denotes the neighbors of

v in G. In this paper, we construct an algorithm for a more general linear optimization setting. By
combining the techniques in cooperative multi-armed bandit [12; 18] and linear bandits with delayed
feedback as in Theorem 1, we obtain an algorithm such that the expected regret of each agent is
bounded by Õ(

√
m(1 + m

|N(v)| )T ).

Theorem 3. For cooperative nonstochastic linear bandits, there is an algorithm for which the regret
of each agent v is bounded as

E[RT (v)] ≤ max

{
16

√
m

(
1 + logm+

m

|N(v)|

)
T log T + 3, Cm2 log3(mT )

}
, (2)

where E[·] means the expectation taken w.r.t. the internal randomization of each agent’s algorithm as
well as the randomness of loss vectors, and C is a global constant.

This bound is tight up to logarithmic factors in a special case in which G is a complete graph. Indeed,
we provide the following regret lower bound:
Theorem 4. Let G = (V,E) be a complete graph. There is an environment of a cooperative linear
bandit problem over A = {−1, 1}m with the communication graph G, for which each agent v ∈ V
suffers regret RT (v) of at least

E[RT (v)] = Ω

(
min

{√
m

(
1 +

m

|V |

)
T , T

})
(3)

for any arbitrary algorithm.

This lower bound matches the upper bound of Theorem 3 when |N(v)| = Ω(|V |).

2 Related Work

Bandit linear optimization [17; 21; 22] is a generic model for sequential decision-making with
partial information. This model includes a well-studied multi-armed bandit problem [10] as a special
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Table 2: Regret bounds for cooperative nonstochastic bandit problems

Multi-armed bandit (K-arms) Linear bandit (m: dim. of action set)

Upper bound Õ(
√

(1 + K
|V |α(G))T ) [18] Õ(

√
m(1 + m

|N(v)| )T ) [Theorem 3]

Õ(
√

(1 + K
|N(v)| )T ) [12]

Lower bound Ω(
√

(logK + K
|V | )T ) [40] Ω(

√
m(1 + m

|V | )T ) [Theorem 4]

case, where the action set A = [K] is just a finite set of actions. Other important special cases are
combinatorial bandits [15; 17], where the action set A ⊆ 2[K] is a set of subsets of a fixed finite
set, and the loss for choosing action a ∈ A is given by

∑
i∈a `ti, the sum of losses for the items

in a. For solving bandit linear optimization, many algorithms have been proposed for stochastic
settings [1; 9; 20] as well as for nonstochastic settings [2; 4; 11; 15; 17; 22]. There are known to exist
algorithms [15; 19] achieving Õ(m

√
T )-regret, which nearly matches the lower bound of Ω(m

√
T )

shown in [21].

In the context of online optimization, delayed feedback has been considered for a wide range of
settings [18; 19; 29; 43; 32; 37; 42; 45; 46] due to its practical significance. As has been noted, e.g.,
in [18; 29; 44], a regret bound of RT ≤ U(T ) for the no-delay setting immediately leads to a bound
of RT ≤ d ·U(T/d) for the setting with d-rounds delay. Our question is, then, how one can achieve a
regret bound better than d · U(T/d). For nonstochastic multi-armed bandit settings, some algorithms
have been found to achieve better bounds than d ·U(T/d) [18; 42; 46], as can be seen in Table 1. For
nonstochastic linear bandits, however, such an improvement upon O(d · U(T/d))-regret cannot be
found in the literature, and this paper offers the first. We should note that Vernade et al. [43] provided
an algorithm for linear bandits that works for stochastic settings with delayed feedback. It is also
worth noting that Cesa-Bianchi et al. [19] provided a generic framework for reducing bandit problems
with delayed and composite feedback to those without delay. In their model, the feedback at each step
t depends on all chosen actions in the last d steps t, t−1, . . . , t−d+1, i.e., the feedback is expressed
as
∑d−1
s=0 `

(s)
t−s(at−s). This model is applicable to wider problem settings than the delayed feedback

model in this paper, as each feedback depends on the chosen action at a single round in the latter
model. In their paper, it was shown that any algorithm for a bandit optimization problem without
delay can be transformed into one for a counterpart problem with delayed composite feedback.

Multi-agent cooperative bandit online learning has been considered for various settings [11; 12;
14; 19; 25; 30; 38; 40; 41], with applications including, e.g., peer-to-peer recommendation services
serving a large number of users connected in a network [13]. While many of these studies are
focusing on stochastic models, only a limited number of studies dealing with nonstochastic models
can be found. Among them, Cesa-Bianchi et al. [18] have considered a cooperative nonstochastic
multi-armed bandit, taking communication delays into account, and proposed an algorithm for which
the average (or the sum) of the regret for all agents is bounded. The cooperative bandit model in this
paper is based on their model. Bar-On and Mansour [12] provided algorithms for the multi-armed
bandit problem in [19], by which the regret for each agent is bounded well. In this paper, we
generalize these results to linear bandit problems.

3 Problem Settings

3.1 Online linear optimization with delayed bandit feedback

A player is given the number T of rounds and an action set A ⊆ Rm before the game starts. The
action set A is an arbitrary compact set in Rm, which is not contained in any proper linear subspace.
We note that the assumption does not affect the generality of the problem. Indeed, if A is contained
in a proper linear subspace, we can find such a subspace using the linear optimization oracle for
A (e.g., from Corollary 14.1 of [39]). Hence, by reducing the entire vector space into this linear
subspace, we can transform the problem so that the assumption holds. In each round t ∈ [T ], the
player chooses action at, and then, if t > d, the environment reveals the loss `>t−dat−d ∈ R. Without
loss of generality, we assume d ≤ T − 1. The loss vector `t ∈ Rm is assumed to satisfy |`>t a| ≤ 1
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for all a ∈ A. In this paper, we assume that the sequence (`t)
T
t=1 of loss vectors is an arbitrary

non-adaptive sequence, i.e., we do not assume any generative model for `t, but each `t is assumed
not to depend on the output of the algorithm. Player performance is measured by means of regret RT ,
defined as RT =

∑T
t=1 `

>
t at −mina∗∈A

∑T
t=1 `

>
t a
∗.

3.2 Cooperative nonstochastic linear bandits

The model for cooperative bandits in this paper is based on the problem setting considered in
[12; 18]. There is a communication graph G = (V,E), an undirected graph each vertex of which
corresponds to an agent that plays a common linear bandit problem. In each round t = 1, 2, . . . , T ,
each agent v ∈ V chooses an action at(v) ∈ A from a common action set A ⊆ Rm, and then
observes loss `t(v)>at(v) ∈ [−1, 1] for the chosen action, where we assume that E[`t(v)] = `t
for each agent v.1 At the end of each round, each agent v sends a message mt(v) to neighbors
u ∈ N(v) = {u ∈ V | {u, v} ∈ E}. The message mt(v) consists of the chosen action, observed
loss, and the distribution qvt for choosing an action such that at(v) ∼ qvt :

mt(v) = 〈t, v, at(v), `t(v)>at(v), qvt 〉. (4)

Note that each agent chooses an action independently, i.e., the action at(v) independently fol-
lows qt(v) for each agent v. The goal is to construct an algorithm for which the regret RT (v) =∑T
t=1 `

>
t at(v)−mina∗∈A

∑T
t=1 `

>
t a
∗ for each agent v is as small as possible.

4 Algorithms and Regret Upper Bounds

4.1 Preliminary

In this subsection, we introduce a technique that we refer to as distribution truncation, which plays a
central role in bounding the regret. We denote the convex hull of A by B. Given a distribution p over
B, define µ(p) ∈ Rm and S(p) ∈ Sym(m) by µ(p) = Ex∼p[x] and S(p) = Ex∼p[xx

>]. For any
vector x ∈ Rm and positive semidefinite matrix A ∈ Sym(m), denote ‖x‖A = ‖A 1

2x‖2 =
√
x>Ax.

Given a distribution p over B, define a truncated distribution p′ by

p′(x) =
p(x)1{‖x‖2S(p)−1 ≤ mγ2}

Proby∼p[‖y‖2S(p)−1 ≤ mγ2]
∝ p(x)1{‖x‖2S(p)−1 ≤ mγ2}, (5)

where γ ≥ 4 log(10mT ) is a parameter that we refer to as the truncation level. From the definition of
p′, any sample b chosen from a truncated distribution p′ is bounded in terms the norm ‖ · ‖S(p)−1 , as
‖b‖2S(p)−1 ≤ mγ2. This property ensures that the estimated loss vector (defined in (10)), constructed
from a sample from a truncated distribution, has a bounded norm as in (11), thanks to which action
distributions do not change drastically per round, as will be shown in Lemmas 5 and 6.

Properties of log-concave distributions If a probability distribution has a density function p :
B → R≥0 such that log(p(x)) is a concave function, then we call it a log-concave distribution. We
use the following concentration property of log-concave distributions:
Lemma 1. If x follows a log-concave distribution p over Rm satisfying S(p) � I , we have

Prob[‖x‖22 ≥ mα2] ≤ m exp(1− α) (6)

for an arbitrary α ≥ 0.

Missing proofs of lemmas are provided in the appendix. From this lemma 1, we can show that p and
p′ defined as (5) are close if p is a log-concave distribution, in the following sense:
Lemma 2. Suppose that p is a log-concave distribution over B. For any function f : B → [−1, 1]
and γ ≥ 4 log(10mT ), we have∣∣∣∣ Ex∼p[f(x)]− E

x∼p′
[f(x)]

∣∣∣∣ ≤ 1

T
and

T

T + 1
· S(p) � S(p′) � T + 1

T
· S(p). (7)

1In previous studies [18; 12], all players share a common loss vector `t, i.e., the loss vectors `t(v) are equal
to `t for all v. This case is a special case of our problem setting.
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Lemma 3. If y follows a one-dimensional log-concave distribution such that E[y2] ≤ s2 ≤ 1/100,
we have

E[g(y)] ≤ s2 + 30 exp

(
−1

s

)
≤ 2s2 where g(y) = exp(y)− y − 1. (8)

4.2 Algorithm for linear bandits with delayed feedback

In our algorithm, we update distribution pt over B := conv(A), by the multiplicative weight update
method (MWU) as follows:

wt(x) := exp

−η t−d−1∑
j=1

ˆ̀>
j x

 , pt(x) =
wt(x)∫

y∈B wt(y)dy
, (9)

where η > 0 is a parameter referred to as the learning rate, and ˆ̀
t is as defined below. In each

round, we pick bt ∈ B from the truncated distribution p′t of pt. We can get a sample from p′t by
iteratively sampling b ∼ pt until ‖b‖2S(pt)−1 ≤ mγ2. There is a computationally efficient way for
sampling b ∼ pt under mild assumptions since pt is a log-concave distribution. In fact, we can use
the techniques developed in [34] to get samples from pt with polynomial-time computation, given a
membership oracle for B. A membership oracle for B can be constructed from a linear optimization
oracle for A, as stated e.g., in [39]. After getting bt, we choose at ∈ A so that E[at|bt] = bt. We can
compute such an at efficiently, given a linear optimization oracle forA. Indeed, as shown in Corollary
14.1g in [39], given b ∈ B = conv(A) we can compute λ1, . . . , λm+1 ≥ 0 and c1, . . . , cm+1 ∈ A
such that

∑m+1
i=1 λi = 1 and

∑m+1
i=1 λtici = b via solving linear optimization over A polynomial

times. By setting a = ci with probability λi, we obtain E[a|b] = b. The algorithm then plays at at
the t-th round, and the feedback `>t at will be observed at the end of the (t+ d)-th round. We define
ˆ̀
t by

ˆ̀
t = `>t atS(p′t)

−1bt. (10)
We note that S(p′t) is invertible, which can be concluded from the assumption that A is not contained
in any proper linear subspace. Under this assumption, indeed, B = Conv(A) is a full-dimensional
convex set with a positive Lebesgue measure. It follows from this fact and Lemma 1 that the domain
of p′t is full-dimensional as well. Thus, the distribution p′t has a density function taking positive values
over a full-dimensional set, which implies that the matrix S(p′t) is invertible. A similar argument can
be found, e.g., in [27] (between Eq. (4) and (5)), and is implicitly used in [16] as well. Further, we
can compute S(p′t) efficiently. In fact, since p′t is a log-concave distribution, for any ε > 0, we can
calculate an ε-approximation of S(p′t) w.h.p. using (d/ε)O(1) samples generated from p′t, as can be
seen from Corollary 2.7 of [34].

The vector ˆ̀
t defined as (10) is an unbiased estimator of `t and bounded in terms of the norm ‖·‖2S(pt),

i.e., we have

E
[
ˆ̀
t

]
= `t,

∥∥∥ˆ̀
t

∥∥∥2
S(pt)

≤ 4mγ2. (11)

In fact, we have E[ˆ̀t] = E
[
S(p′t)

−1bta
>
t `t
]

= E
[
S(p′t)

−1btb
>
t `t
]

= E
[
S(p′t)

−1S(p′t)`t
]

= `t,
which means the first part in (11) holds. To show the second part in (11), we use ‖bt‖2S(pt)−1 ≤ mγ2,
which is ensured by the fact that bt is sampled from the truncated distribution p′t. It follows that
‖ˆ̀t‖2S(pt) = (`>t at)

2‖S(p′t)
−1bt‖2S(pt) ≤ 2‖S(p′t)

−1bt‖2S(p′t) = 2‖bt‖2S(p′t)−1 ≤ 4‖bt‖2S(pt)−1 ≤
4mγ2, where we use the second part of (7) in the first and the second inequalities. The inequality in
(11) for ˆ̀

t will be used in the analysis of MWU. The procedure can be summarized in Algorithm 1.

Let us next show that Algorithm 1 enjoys the regret bound given in Theorem 1. Since we have
E[at|p′t] = E[bt|p′t] = µ(p′t), the regret can be bounded as

E[RT ] = E

[
T∑
t=1

`>t (at − a∗)

]
= E

[
T∑
t=1

`>t (µ(p′t)− a∗)

]

= E

[
T∑
t=1

`>t (µ(pt)− a∗) +

T∑
t=1

`>t (µ(p′t)− µ(pt))

]
≤ E

[
T∑
t=1

`>t (µ(pt)− a∗)

]
+ 1, (12)
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Algorithm 1 An algorithm for online linear optimization with delayed bandit feedback
Require: Action set A, parameters T , d ≤ T − 1

1: Set γ = 4 log(10mT ) and η = min
{√

m log T
2(d+em)T ,

1
100γ2(d

√
m+m)

}
.

2: Define w1 : B → R>0 by w1(x) = 1 for all x ∈ B.
3: for t = 1, 2, . . . , T do
4: Let pt be a distribution whose density function is proportional to wt as in (9).
5: Pick bt ∼ p′t, e.g., by iteratively sampling b ∼ pt until ‖b‖2S(pt)−1 ≤ mγ2 holds.

6: If t > d, get feedback of `>t−dat−d, construct an unbiased estimator of `t−d as ˆ̀
t−d =

`>t−dat−d · S(p′t−d)
−1bt−d, and update wt by wt+1(x) = wt(x) exp(−η ˆ̀>

t−dx).
7: If t ≤ d, let wt+1 = wt.
8: end for

where a∗ ∈ argmina∈A
∑T
t=1 `

>
t a and the last inequality follows from the first part of (7) and the

assumption that `>t a ∈ [−1, 1] for all a ∈ A. From this inequality and a standard analysis for
continuous multiplicative weight update methods [7; 22; 23], we obtain the following regret bounds:

Lemma 4. If pt is defined by (9) with ˆ̀
t such that E[ˆ̀t] = `t, the regret for at is bounded as

E[RT ] ≤ E

[
T∑
t=1

(
`>t (µ(pt)− µ(pt+d)) +

1

η
E

x∼pt+d

[
g(−η ˆ̀>

t x)
])]

+
m log T

η
+ 3, (13)

where g : R→ R is defined in (8).

In the following, we give bounds for the right-hand side of (13), separately for the terms `>t (µ(pt)−
µ(pt+d)) and Ex∼pt+d

[
g(−η ˆ̀>

t x)
]
. The first can be bounded via the following lemma:

Lemma 5. Suppose that ` ∈ Rm satisfies |`>a| ≤ 1 for all a ∈ A and η ≤ 1/(48γ2m). Then, if pt
is defined by (9) with ˆ̀

t satisfying (11), it holds for all t ∈ [T ] that |E[`>(µ(pt)− µ(pt+1))]| ≤ 2η.

This lemma can be shown using (11) and Lemma 3. Finally, to bound the term Ex∼pt+d

[
g(−η ˆ̀>

t x)
]

in Lemma 4, we use the following lemma:

Lemma 6. Assume η ≤ 1
100γ2(d+1)

√
m

. If pt is defined by (9) with ˆ̀
t satisfying (11), for all t, we

have S(pt+1) �
(

1 + 1
d+1

)
S(pt).

This lemma follows from (11) and Lemma 1, by induction in t. We are now ready to prove Theorem 1.

Proof of Theorem 1 Combining Lemmas 4 and 5, we have

E[RT ] ≤ 2ηdT + E

[
T∑
t=1

(
1

η
E

x∼pt+d

[
g(−η ˆ̀>

t x)
])]

+
m log T

η
+ 3. (14)

Let us bound Ex∼pt+d

[
g(−η ˆ̀>

t x)
]

using Lemma 3 and (11). We have

E
x∼pt+d

[
(−η ˆ̀>

t x)2
]

= η2‖ˆ̀t‖2S(pt+d)
≤ η2

(
1 +

1

d+ 1

)d
‖ˆ̀t‖2S(pt) ≤ 4eη2mγ2 ≤ 1

100
, (15)

where the first inequality follows from Lemma 6, the second inequality follows from (11), and the
last inequality comes from the assumption of η ≤ 1

100γ2(d
√
m+m)

. From this inequality and the fact

that η ˆ̀>
t x follows a log-concave distribution when x ∼ pt+d, we have

E

[
E

x∼pt+d

[
g(−η ˆ̀>

t x)
]]
≤ 2E

[
E

x∼pt+d

[
(−η ˆ̀>

t x)2
]]
≤ 2η2

(
1 +

1

d+ 1

)d
E

[∥∥∥ˆ̀
t

∥∥∥2
S(pt)

]
,
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where the first and second inequalities follow from (3) and (15), respectively. From the definition
(10) of ˆ̀

t, we have

E

[∥∥∥ˆ̀
t

∥∥∥2
S(pt)

]
= E

[
(`>t at)

2
∥∥S(p′t)

−1bt
∥∥2
S(pt)

]
≤ T + 1

T
E
[∥∥S(p′t)

−1bt
∥∥2
S(p′t)

]
≤
(

1 +
1

d+ 1

)
S(p′t) • S(p′t)

−1S(p′t)S(p′t)
−1 =

(
1 +

1

d+ 1

)
m,

where the first inequality follows from |`>t at| ≤ 1 and the second part of (7). Combining the above
two inequalities, we obtain E

[
Ex∼pt+d

[
g(−η ˆ̀>

t x)
]]
≤ 2η2(1 + 1

d+1 )d+1m ≤ 2eη2m. From this

and (14), we have E[RT ] ≤ 2η(d + em)T + m log T
η + 3. By substituting the parameter setting in

Step 1 of Algorithm 1, we obtain the inequality of Theorem 1.

4.3 Algorithm for cooperative nonstochastic linear bandits

For the cooperative bandit problem, we consider a center-based algorithm [12]. A major difference
between our algorithm and the one by Bar-On and Mansour [12] is that ours applies to linear bandit
settings while theirs focus on multi-armed bandit settings.

Similarly to [12], we first choose center agents C ⊆ V and a corresponding partition {Vc}c∈C of
agents with the following properties:

Theorem 5 (Theorem 12. in [12]). Given an undirected graph G = (V,E) and a parameter m ≥ 2,
one can find center agents C ⊆ V and a partition {Vc}c∈C of V such that the following hold for all
c ∈ C: (i) c ∪N(c) ⊆ Vc, (ii) subgraphs of G induced by Vc are connected, and (iii) for all v ∈ Vc,
it holds that

min{|N(v)|,m}
min{|N(c)|,m}

≤ exp

(
1− dc(v)

6

)
, (16)

where dc(v) denotes the distance from c to v in the subgraph of G induced by Vc.

In the center-based algorithm, each center agent c ∈ C updates its distribution by means of MWU,
and the other agents v ∈ Vc imitate center agent c on the basis of the message mt in (4). More
precisely, for each c ∈ C we construct breadth-first search tree Tc for the subgraph induced by Vc
with root node c, and each agent v ∈ Vc \ {c} uses the distribution qvt defined by qvt = q

pa(v)
t−1 , where

pa(v) denotes the parent node of v in Tc. Consequently, for each v ∈ Vc \ {c}, the action distribution
qvt satisfies qvt = qct−dc(v) for t > dc(v). We define the distribution qct of each center agent c ∈ C as
follows: define a distribution pct over B = conv(A) by MWU as follows:

wct (x) := exp

−η(c)

t−1∑
j=1

ˆ̀
j(c)

>x

 , pct(x) =
wct (x)∫

y∈B w
c
t (y)dy

, (17)

where we set the truncation level γ and the learning rate η(c) as γ = 4 log(10mT ) and η(c) =

min{ 14
√

m log T
T (1+logm+m/min{|N(c)|,m}) ,

1
100γ2m}. Pick bt(c) from the truncated distribution pct

′ de-
fined by (5), and pick at(c) so that E[at(c)|bt(c)] = bt(c). The distribution qct is defined to be the
distribution that at(c) follows. The estimated loss ˆ̀

t(c) is defined on the basis of the messages mt

(4) from neighbors N(c) of c. Each center agent c ∈ C computes ˆ̀
t(c) using at(v) and `t(v)>at(v)

for v ∈ N(v) as follows:

ˆ̀
t(c) =

1

|N(c)|
∑

v∈N(c)

`t(v)>at(v)S(pct−1
′)−1b′t(v), (18)

where b′t(v) is chosen from the posterior probability distribution for bt(v) given at(v), i.e.,
Prob[b′t(v) = b] ∝ Prob[at(v)|bt(v) = b] · pct−1′(b). Combining Lemmas 3, 4, 5, 6 and Theo-
rem 5, we obtain the regret bounds in Theorem 3. The proof of Theorem 3 is given in Section B in
the appendix.
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5 Lower Bounds

In this section, we briefly describe how we can prove regret lower bounds in Theorems 2 and 4.
Inspired by the proof of the lower bound for the multi-armed bandit problem with delayed feedback
given in [18], we prove lower bounds by combining existing bounds for different settings such as
linear bandits without delay [21; 26] and full-information online optimization with delay [44].

To prove Theorem 2, we combine lower bounds of Ω(m
√
T ) and of Ω(

√
mdT ). We note that the

first one comes from a lower bound for linear bandits without delay, shown, e.g., in [21]. The
second one is also a lower bound for online linear optimization with delayed feedback. As shown
in [44], if an online optimization problem without delay admits a regret lower bound of Ω(L(T )), a
counterpart with d-round delayed feedback has an Ω(dL(T/d))-lower bound. Since there is a lower
bound of Ω(

√
mT ) for the online linear optimization (see, e.g., Theorem 3.2. in [24]), we have

Ω(d
√
mT/d) = Ω(

√
mdT ).

So the only question left is that both the regret bounds of Ω(m
√
T ) and of Ω(

√
mdT ) must come

from the same instance. To this end, we construct the problem instance over A = {−1, 1}m such
that ‖`t‖1 ≤ 1. By considering a mixed distribution of loss vectors, we obtain a lower bound
of Ω(m

√
T +

√
mdT ) = Ω(

√
m(d+m)T ). A complete proof is provided in Section C in the

appendix.

Theorem 4 for cooperative linear bandits can be, again, obtained by combining lower bounds of
Ω(
√
mT ) and of Ω(m

√
T/|V |). The first one comes from a lower bound for full-information online

linear optimization, as cooperative bandits are at least harder than full-information online optimization.
The second can come from an Ω(m

√
T )-lower bound for signle-player linear bandits [21]. Since we

can regard cooperative bandits as a harder version of single-player bandits with (T · |V |) rounds, the
sum of regrets over all agents is at least Ω(m

√
T · |V |), which implies that the regret per agent is

of Ω(m
√
T/|V |). A complete proof of Theorem 4 to show how we construct the problem instance

that gives both the regret bounds of Ω(
√
mT ) and of Ω(m

√
T/|V |) is given in Section D in the

appendix.

6 Conclusion

In this paper, we considered online linear optimization with d-round-delayed bandit feedback, where
d was a given parameter fixed for all rounds. We provided an algorithm that achieves nearly-tight
regret bounds, and extended this result to the cooperate bandit setting.

An important future work would be to extend the model to deal with the unknown and round-
dependent delay as in [46]. We believe that an adaptive way of tuning parameters, such as α, η and γ
in our algorithms, would work well for this general setting. Another future direction is to improve
practical computational cost. The proposed algorithms in this paper rely on continuous relaxation
and sampling from log-concave distributions, which causes a large computational time in practice,
though they run in polynomial time.
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A Proofs of Lemmas

A.1 Proof of Lemma 1

Proof. Since a linear transformation of a log-concave random variable follows a log-concave distribu-
tion as well (Theorem 5.1 in [34]), each xi follows a log-concave distribution and we have E[x2i ] ≤ 1
from the assumption of S(p) � I . Hence, we have

Prob[‖x‖22 ≥ mα2] ≤ Prob[∃i ∈ [m], x2i ≥ α2] ≤
m∑
i=1

Prob[|xi| ≥ α] ≤ m exp(1− α), (19)

where the last inequality follows from Lemma 5.7 in [34].

A.2 Proof of Lemma 2

Proof. From the definition 5 of p′, we have

E
x∼p′

[f(x)] =
1

Prx∼p[‖x‖2S(p)−1 ≤ mγ2]

∫
x∈B

f(x)1{‖x‖2
S(p)−1 ≤ mγ2}p(x)dx

=
1

1− δ

∫
x∈B

f(x)1{‖x‖2
S(p)−1 ≤ mγ2}p(x)dx

=
1

1− δ

(
E
x∼p

[f(x)]−
∫
x∈B

f(x)1{‖x‖2
S(p)−1 > mγ2}p(x)dx

)
,

where we denote δ = Prx∼p[‖x‖2S(p)−1 > mγ2]. From this expression, we have∣∣∣∣ Ex∼p[f(x)]− E
x∼p′

[f(x)]

∣∣∣∣ =
1

1− δ

∣∣∣∣−δ E
x∼p

[f(x)] +

∫
x∈B

f(x)1{‖x‖2
S(p)−1 > mγ2}p(x)dx

∣∣∣∣
≤ 1

1− δ

(
δ E
x∼p

[1] +

∫
x∈B

1{‖x‖2
S(p)−1 > mγ2}p(x)dx

)
=

2δ

1− δ
,

(20)

where the inequality follows from the assumption that f(x) ∈ [−1, 1]. The value δ can be bounded
via Lemma 1. In fact, when x follows p, a log-concave distribution, S(p)−

1
2x follows a log-concave

distribution as well. In addition, we have E[S(p)−
1
2xx>S(p)−

1
2 ] = S(p)−

1
2S(p)S(p)−

1
2 = I .

Hence, from Lemma 1, we have

δ = Pr
x∼p

[‖x‖2
S(p)−1 > mγ2] = Pr

x∼p
[‖S(p)−

1
2x‖22 > mγ2] ≤ m exp(1− γ) ≤ 3m exp(−γ) ≤ 1

6T
,

(21)

where the last inequality follows from γ ≥ 4 log(10mT ). Combining (20) and (21), we obtain the
first part of (7). We next show the second part of (7). For any y ∈ Rd, we have

y>S(p′)y = E
x∼p′

[
(y>x)

2
]

=
1

1− δ
E
x∼p

[
(y>x)

2
1{‖x‖2

S(p)−1 ≤ mγ2}
]

≤ 1

1− δ
E
x∼p

[
(y>x)

2
]

=
1

1− δ
y>S(p)y.

Since this holds for all y ∈ Rd and 1
1−δ ≤

T+1
T , the last inequality in (7) holds. Furthermore, we

have

y>S(p)y − y>S(p′)y = E
x∼p

[
(y>x)

2
]
− 1

1− δ
E
x∼p

[
(y>x)

2
1{‖x‖2

S(p)−1 ≤ mγ2}
]

≤ E
x∼p

[
(y>x)

2
1{‖x‖2

S(p)−1 > mγ2}
]

≤ y>S(p)y E
x∼p

[
‖x‖2

S(p)−11{‖x‖2S(p)−1 > mγ2}
]
, (22)
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where the last inequality follows from the Cauchy–Schwarz inequality:

(y>x)
2

=
(

(S(p)
1
2 y)>S(p)

− 1
2x
)2
≤ ‖S(p)

1
2 y‖22 · ‖S(p)

− 1
2x‖22 = y>S(p)y · ‖x‖2

S(p)−1 .

The right-hand side of (22) can be bounded by using Lemma 1 as follows:

E
x∼p

[
‖x‖2

S(p)−11{‖x‖2S(p)−1 > mγ2}
]

≤
∞∑
n=1

(n+ 1)
2
mγ2 Pr

x∼p

[
n2mγ2 ≤ ‖x‖2

S(p)−1 ≤ (n+ 1)
2
mγ2

]
≤
∞∑
n=1

(n+ 1)
2
mγ2 ·m exp(1− nγ)

≤ m2γ2 exp(2− γ)

∞∑
n=1

(n+ 1)
2

exp(−n) ≤ 40m2γ2 exp(−γ) ≤ 1

2T
, (23)

where the second inequality follows from Lemma 1, the third inequality comes from γ ≥ 1 and
hence nγ ≥ n + γ − 1, the forth inequality follows from the fact that

∑∞
i=1 (i+ 1)

2
exp(−i) =

1−2e+4e2

(e−1)3 ≤ 5, and the last inequality follows from the assumption of γ ≥ 4 log(10mT ). Combining
(22) and (23), we have

y>S(p′)y ≥
(

1− 1

2T

)
y>S(p)y ≥ T

T + 1
y>S(p)y.

Since this holds for all y ∈ Rm, we have the second inequality of (7).

A.3 Proof of Lemma 3

Proof. From Lemma 1, and E[(y/s)2] ≤ 1, we have

Prob[y ≥ n] = Prob
[y
s
≥ n

s

]
≤ exp

(
1− n

s

)
. (24)

Using this and the fact that g(y) ≤ y2 for y ≤ 1 and that g(y) ≤ exp(y) for y > 1, we have

E[g(y)] = E[g(y)1{y ≤ 1}] + E[g(y)1{y > 1}] ≤ E[y21{y ≤ 1}] + E[exp(y)1{y > 1}]

≤ s2 +

∞∑
n=1

exp(n+ 1) Prob[n < y ≤ n+ 1] ≤ s2 +

∞∑
n=1

exp(n+ 1) exp
(

1− n

s

)
= s2 + exp (2)

∞∑
n=1

(
exp

(
1− 1

s

))n
= s2 +

exp(3− s−1)

1− exp(1− s−1)
≤ s2 + 30 exp(−s−1),

where the last inequality follows from the assumption of 0 ≤ s ≤ 1/10 and exp(3)
1−exp(−9) ≤ 30. From

this and the fact that 30 exp(−x−1) ≤ x2 holds for 0 < x ≤ 1/10, we obtain E[g(y)] ≤ 2s2

A.4 Proof of Lemma 4

Proof. Since we have E[at|p′t] = µ(p′t) , the expected regret can be bounded as follows:

E[RT ] = E

[
T∑
t=1

`>t (at − a∗)

]
= E

[
T∑
t=1

`>t (µ(p′t)− a∗)

]

= E

[
T∑
t=1

`>t (µ(pt)− a∗)

]
+ E

[
T∑
t=1

`>t (µ(p′t)− µ(pt))

]

≤ E

[
T∑
t=1

`>t (µ(pt)− a∗)

]
+ 1

= E

[
T∑
t=1

`>t (µ(pt)− µ(pt+d))

]
+ E

[
T∑
t=1

`>t (µ(pt+d)− a∗)

]
+ 1, (25)
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where the inequality follows from the first part of (7). Since ˆ̀
t is an unbiased estimator of `t, i.e.,

from (11), the second term in (25) can be expressed as

E

[
T∑
t=1

`>t (µ(pt+d)− a∗)

]
= E

[
T∑
t=1

ˆ̀>
t (µ(pt+d)− a∗)

]
. (26)

The right-hand side of (26) can be bounded via a standard analysis for continuous MAB as follows.
We have

∫
x∈B

exp

−η t∑
j=1

ˆ̀>
j x

 dx =

∫
x∈B

exp

−η t−1∑
j=1

ˆ̀>
j x

 exp
(
−η ˆ̀>

t x
)

dx

=

∫
x∈B

exp

−η t−1∑
j=1

ˆ̀>
j x

 dx · E
x∼pt+d

[
exp(−η ˆ̀>

t x)
]
,

where the second equality follows from the definition (9) of pt. Since this holds for all t ∈ [T ], we
have

log

∫
x∈B

exp

(
−η

T∑
t=1

ˆ̀>
t x

)
dx− log

∫
x∈B

1dx =

T∑
t=1

log E
x∼pt+d

[
exp(−η ˆ̀>

t x)
]

=

T∑
t=1

log E
x∼pt+d

[
1− η ˆ̀>

t x+ g(−η ˆ̀>
t x)

]
≤

T∑
t=1

(
−η ˆ̀>

t µ(pt+d) + E
x∼pt+d

[
g(−η ˆ̀>

t x)
])

,

(27)

where the second equality follows from the definition of g(y) = exp(y)− y − 1, and the inequality
holds since we have log(1+z) ≤ z for z > −1. We note that this condition z > −1 indeed holds since
z here can be expressed as z = E[−η ˆ̀>

t x+g(−η ˆ̀>
t x)] = E[exp(−η ˆ̀>

t x)]−1 > −1. The left-hand
side of (27) can be bounded via an integration over a subset B′ = {x = (1− 1

T )a∗+y | y ∈ B} ⊆ B,
as follows:

∫
x∈B

exp

(
−η

T∑
t=1

ˆ̀>
t x

)
dx ≥

∫
x∈B′

exp

(
−η

T∑
t=1

ˆ̀>
t x

)
dx

=
1

Tm

∫
y∈B

exp

(
−η

T∑
t=1

ˆ̀>
t

((
1− 1

T

)
a∗ +

1

T
y

))
dy

≥ 1

Tm

∫
y∈B

1dy · exp

(
−η

T∑
t=1

ˆ̀>
t

((
1− 1

T

)
a∗ +

1

T
µ(p0)

))
,

where the last inequality follows from the convexity of exp(z) and Jensen’s inequality. Combining
this and (27), we obtain

T∑
t=1

(
−η ˆ̀>

t µ(pt+d) + E
x∼pt+d

[
g(−η ˆ̀>

t x)
])
≥ −m log T − η

T∑
t=1

ˆ̀>
t

((
1− 1

T

)
a∗ +

1

T
µ(p0)

)

= −m log T − η
T∑
t=1

ˆ̀>
t a
∗ − η

T

T∑
j=1

ˆ̀>
t (µ(p0)− a∗),
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and hence, we have

E

[
T∑
t=1

ˆ̀>
t (µ(pt+d)− a∗)

]

≤ 1

η
E

[
T∑
t=1

E
x∼pt+d

[
g(−η ˆ̀>

t x)
]]

+
m log T

η
+

1

T

T∑
j=1

E
[
ˆ̀>
t (µ(p0)− a∗)

]

=
1

η
E

[
T∑
t=1

E
x∼pt+d

[
g(−η ˆ̀>

t x)
]]

+
m log T

η
+

1

T

T∑
j=1

E
[
`>t (µ(p0)− a∗)

]
≤ 1

η
E

[
T∑
t=1

E
x∼pt+d

[
g(−η ˆ̀>

t x)
]]

+
m log T

η
+ 2,

where the equality follows from (11) and the last inequality follows from the assumption of |`>t a| ≤ 1
for all a ∈ A. Combining this, (25) and (26), we obtain the desired inequality in Lemma 4.

A.5 Proof of Lemma 5

Proof. Lemma 5 holds for t ≤ d since pt = pt+1 follows from the definition (9) for this case. We
consider the case of t > d in the following. We start by introducing some notations. Define α > 1
and β ∈ R by

α = E
x∼pt

[
exp

(
−η ˆ̀>

t−d(x− µ(pt))
)]
, β = E

x∼pt

[
`>x · g

(
−η ˆ̀>

t−d(x− µ(pt))
)]
. (28)

We can confirm that α ≥ 1 by using Jensen’s inequality:

α = E
x∼pt

[
exp

(
−η ˆ̀>

t−d(x− µ(pt))
)]
≥ exp

(
E

x∼pt

[
−η ˆ̀>

t−d(x− µ(pt))
])

= exp(0) = 1.

Since pt+1(x) ∝ pt(x) exp(−η ˆ̀>
t−dx) ∝ pt(x) exp(−η ˆ̀>

t−d(x− µ(pt))) from the definition (9) of
pt, we can express pt+1 as

pt+1(x) =
1

α
pt(x) exp

(
−η ˆ̀>

t−d(x− µ(pt))
)
. (29)

Hence, we have

`>µ(pt+1) =
1

α

∫
`>x · pt(x) exp

(
−η ˆ̀>

t−d(x− µ(pt))
)

dx

=
1

α

∫
`>x · pt(x)

(
1− η ˆ̀>

t−d(x− µ(pt)) + g
(
−η ˆ̀>

t−d(x− µ(pt))
))

dx

=
1

α

(
`>µ(pt)− η`>Cov(pt)ˆ̀

t−d + β
)

(30)

Hence, using (11), we have∣∣E [`>(µ(pt)− µ(pt+1))
]∣∣ =

∣∣∣∣E [ ηα`>Cov(pt)ˆ̀
t−d +

(
1− 1

α

)
`>µ(pt)−

β

α

]∣∣∣∣
≤
∣∣∣E [ η

α
`>Cov(pt)`t−d

]∣∣∣+

(
1− 1

α

)
+
|β|
α
≤ η + α− 1 + |β|,

(31)

where the first inequality follows from (11) and |`>µ(pt)| ≤ 1, and the last inequality follows from
α ≥ 1 and

`>Cov(pt)`t−d ≤
√
‖`‖2Cov(pt)

‖`t−d‖2Cov(pt)
≤
√
‖`‖2S(pt)‖`t−d‖

2
S(pt)

≤ 1.

Let us bound α and β using Lemma 3. We have

α = E
x∼pt

[
g
(
−η ˆ̀>

t−d(x− µ(pt))
)

+
(
−η ˆ̀>

t−d(x− µ(pt))
)

+ 1
]

= E
x∼pt

[
g
(
−η ˆ̀>

t−d(x− µ(pt))
)]

+ 1.
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The right-hand side of this can be bounded by means of Lemma 3. Indeed, for any fixed ˆ̀>
t−d

and µ(pt), when x follows the log-concave distribution pt then η ˆ̀>
t−d(x − µ(pt)) follows a one-

dimensional log-concave distribution as well since any marginal of a log-concave distribution is
log-concave (see, e.g., Theorem 5.1 in [34]). Further, we have

E
x∼pt

[(
−η ˆ̀>

t−d(x− µ(pt))
)2]

= η2‖ˆ̀t−d‖2Cov(pt)
≤ η2‖ˆ̀t−d‖2S(pt)

≤ eη2‖ˆ̀t−d‖2S(pt−d)
≤ 4eη2mγ2 ≤ 1

100
,

where the second inequality follows from Lemma 6 the third inequality follows from (11), and the
last inequality comes from the assumption of η ≤ 1

48γ2m .2 Hence, we can apply Lemma 3 to have

α− 1 = E
x∼pt

[
g
(
−η ˆ̀>

t−d(x− µ(pt))
)]
≤ 8eη2mγ2 ≤ η

2
, (32)

where the last inequality follows from the assumption of η ≤ 1
48γ2m . Furthermore, since we have

|`>x| ≤ 1 for x ∈ B, β defined in (28) can be bounded as

|β| ≤ E
x∼pt

[
g
(
−η ˆ̀>

t−d(x− µ(pt))
)]
≤ 8eη2mγ2 ≤ η

2
.

Combining this, (31) and (32), we obtain the desired inequality in Lemma 5.

A.6 Proof of Lemma 6

Proof. For t ≤ d, the inequality in Lemma 6 holds since pt+1 = pt follows from the definition (9) of
pt. We show the inequality in 6 for t > d by induction in t. We denote

ε =
1

2(1 + d)
. (33)

For arbitrary y ∈ Rm, we have

y>S(pt+1)y =
Ex∼pt

[
(y>x)2 exp

(
−η ˆ̀>

t−d(x− µ(pt))
)]

Ex∼pt

[
exp

(
−η ˆ̀>

t−d(x− µ(pt))
)]

≤ E
x∼pt

[
(y>x)2 exp

(
−η ˆ̀>

t−d(x− µ(pt))
)]

= E
x∼pt

[
(y>x)2 exp

(
−η ˆ̀>

t−d(x− µ(pt))
)
1
{

exp
(
−η ˆ̀>

t−d(x− µ(pt))
)
≤ 1 + ε

}]
+ E
x∼pt

[
(y>x)2 exp

(
−η ˆ̀>

t−d(x− µ(pt))
)
1
{

exp
(
−η ˆ̀>

t−d(x− µ(pt))
)
> 1 + ε

}]
≤ (1 + ε)y>S(pt)y + E

x∼pt

[
(y>x)2 exp

(
−η ˆ̀>

t−d(x− µ(pt))
)
1
{
−η ˆ̀>

t−d(x− µ(pt)) >
ε

2

}]
,

(34)

where the first inequality follows from Jensen’s inequality, and the last inequality holds as exp(y) >
1 + ε implies y > ε/2 for 0 < ε < 1/2. Let us evaluate the second term in (34), using Lemma 1.
When x ∼ pt, we have

E
x∼pt

[(y>x)2] = ‖y‖2S(pt).

Futhermore, we have

E
x∼pt

[(−η ˆ̀>
t−d(x− µ(pt)))

2] ≤ η2‖ˆ̀t−d‖2S(pt) ≤
(

1 +
1

d+ 1

)d
η2‖ˆ̀t−d‖2S(pt−d)

≤ eη2‖ˆ̀t−d‖2S(pt−d)
≤ 4eη2mγ2

2We should note that Lemma 6 can be applied here in the proof of Lemma 5, as Lemma 5 is not used in the
proof of Lemma 6.
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where the first inequality follows from E[(x− µ(pt))(x− µ(pt))
>] � S(pt), the second inequality

follows from the inductive assumption and the second part of (7), and the forth inequality follows
from the second part of (11). From Lemma 1, we have

Prob
x∼pt

[
|η ˆ̀>

t−d(x− µ(pt))|
2ηγ
√

em
+
|y>x|
‖y‖S(pt)

> α

]

≤ Prob
x∼pt

[
|η ˆ̀>

t−d(x− µ(pt))|
2ηγ
√

em
>
α

2

]
+ Prob

x∼pt

[
|y>x|
‖y‖S(pt)

>
α

2

]
≤ 2 exp

(
1− α

2

)
(35)

for any α > 0. Using this, we have

E
x∼pt

[
(y>x)2 exp

(
−η ˆ̀>

t−d(x− µ(pt))
)
1
{
−η ˆ̀>

t−d(x− µ(pt)) >
ε

2

}]
≤ E
x∼pt

[
(y>x)2 exp

(
−η ˆ̀>

t−d(x− µ(pt))
)
1

{
|η ˆ̀>

t−d(x− µ(pt))|
2ηγ
√

em
+
|y>x|
‖y‖S(pt)

>
ε

4ηγ
√

em

}]

≤
ε2‖y‖2S(pt)
16eη2γ2m

∞∑
n=1

(n+ 1)2 exp

(
(n+ 1)ε

2

)
Prob
x∼pt

[
nε

4ηγ
√

em
<
|η ˆ̀>

t−d(x− µ(pt))|
2ηγ
√

em
+
|y>x|
‖y‖S(pt)

≤ (n+ 1)ε

4ηγ
√

em

]

≤
ε2‖y‖2S(pt)
8eη2γ2m

∞∑
n=1

(n+ 1)2 exp

(
(n+ 1)ε

2

)
exp

(
1− nε

8ηγ
√

em

)

≤
‖y‖2S(pt)
2η2γ2m

∞∑
n=1

exp ((n+ 1)ε) exp

(
− nε

8ηγ
√

em

)
=

exp(ε)‖y‖2S(pt)
2η2γ2m

∞∑
n=1

exp

(
ε− ε

8ηγ
√

em

)n
≤

e‖y‖2S(pt)
2η2γ2m

∞∑
n=1

exp

(
− ε

16ηγ
√

em

)n
≤

e‖y‖2S(pt)
η2γ2m

exp

(
− ε

16ηγ
√

em

)
≤ ‖y‖S(pt)2 · ε,

where the third inequality follows from (35), the forth inequality follows from ( ε(n+1)
2 )2 ≤

exp( ε(n+1)
2 ), and the forth, fifth and the last inequalities follow from (33) and the assumption

of η ≤ 1
100(d+1)γ2

√
m

with γ = 4 log(10mT ). Combining this and (34), we have

y>S(pt+1)y ≤ (1 + 2ε)y>S(pt+1)y =

(
1 +

1

d+ 1

)
y>S(pt+1)y.

Since this holds for any y ∈ Rd, we have the inequality in Lemma 6.

B Proof of Theorem 3

We start by showing the following properties of ˆ̀
t(c) defined in (18):

Lemma 7. The vector ˆ̀
t(c) defined by (18) satisfies

E
[
ˆ̀
t(c)
]

= `t,
∥∥∥ˆ̀
t(c)
∥∥∥2
S(pct−1)

≤ 4mγ2, E

[∥∥∥ˆ̀
t(c)
∥∥∥2
S(pct−1)

]
≤ 4m

min{|N(c)|,m}
. (36)

Proof. Since b′t(v) is chosen from the posterior of bt(v) given the observation at(v), b′t(v) and bt(v)
are identically distributed conditioned on at(v). Hence, we have

E
[
b′t(v)at(v)>|pct−1

′] = E
[
bt(v)at(v)>|pct−1

′] = E
[
bt(v)bt(v)>|pct−1

′] = S(pct−1
′) (37)

for all v ∈ N(c). From this, we can show the first equality in (36) as follows:

E
[
ˆ̀
t(c)
]

=
1

|N(c)|
∑

v∈N(c)

E
[
S(pct−1

′)−1b′t(v)at(v)>`t(v)
]

=
1

|N(c)|
∑

v∈N(c)

E [`t(v)] =
1

|N(c)|
∑

v∈N(c)

`t = `t. (38)
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The second part in (36) can be shown similarly to the second part of (11): From the definition (18) of
ˆ̀
t(c), we have∥∥∥ˆ̀

t(c)
∥∥∥
S(pct−1)

≤ 1

|N(c)|
∑

v∈N(c)

∥∥`t(v)>at(v)S(pct−1
′)−1b′t(v)

∥∥
S(pct−1)

≤ 1

|N(c)|
∑

v∈N(c)

∥∥S(pct−1
′)−1b′t(v)

∥∥
S(pct−1)

(39)

where the last inequality follows from the assumption of |`t(v)>at(v)| ≤ 1. For all v ∈ N(c), we
have

‖S(pct−1
′)−1b′t(v)‖2S(pct−1)

≤ 2‖S(pct−1
′)−1b′t(v)‖2S(pct−1

′)

= 2‖b′t‖S(pct−1
′)−1 ≤ 4‖b′t‖S(pct−1)

−1 ≤ 4mγ2, (40)

where the first and second inequalities follow from the second part of Lemma 2, and the last inequality
follows from the fact that b′t is chosen from the posterior for bt ∼ pct−1

′, the truncated distribution
of pct−1. Combining (39) and (40), we obtain the second part of (36). To show the last part of
(36), we evaluate the variance of ˆ̀

t(c). As shown in (38), for all v ∈ N(c) and any fixed `t(v), we
have E

[
S(pct−1

′)−1b′t(v)at(v)>`t(v)
]

= `t(v) and S(pct−1
′)−1b′t(v)at(v)>`t(v) are independent

for v ∈ N(c). Hence, we have

E

[∥∥∥ˆ̀
t(c)
∥∥∥2
S(pct−1)

]
=

1

|N(c)|2
E


∥∥∥∥∥∥
∑

v∈N(c)

S(pct−1
′)−1b′t(v)at(v)>`t(v)

∥∥∥∥∥∥
2

S(pct−1)


=

1

|N(c)|2
E


∥∥∥∥∥∥
∑

v∈N(c)

(
S(pct−1

′)−1b′t(v)at(v)>`t(v)− `t(v)
)∥∥∥∥∥∥

2

S(pct−1)

+

∥∥∥∥∥∥
∑

v∈N(c)

`t(v)

∥∥∥∥∥∥
2

S(pct−1)


=

1

|N(c)|2

 ∑
v∈N(c)

E
[∥∥S(pct−1

′)−1b′t(v)at(v)>`t(v)− `t(v)
∥∥2
S(pct−1)

]
+

1

|N(c)|2
E


∥∥∥∥∥∥
∑

v∈N(c)

`t(v)

∥∥∥∥∥∥
2

S(pct−1)

 . (41)

Since we have E
[
S(pct−1

′)−1b′t(v)at(v)>`t(v)
]

= `t(v) for any fixed `t(v), we have

E
[∥∥S(pct−1

′)−1b′t(v)at(v)>`t(v)− `t(v)
∥∥2
S(pct−1)

]
≤ E

[∥∥S(pct−1
′)−1b′t(v)at(v)>`t(v)

∥∥2
S(pct−1)

]
≤ 2E

[∥∥S(pct−1
′)−1b′t(v)

∥∥2
S(pct−1

′)

]
= 2E

[
‖b′t(v)‖2S(pct−1

′)−1

]
= 2S(pct−1

′) • S(pct−1
′)−1 = 2m,

(42)

where the last inequality follows from the second part of Lemma 2 and |at(v)>`t(v)| ≤ 1 and the
second inequality follows from the fact that b′t(v) ∼ pct−1′ after marginalizing at(v) out. Further, the
second term in the right-hand side of (41) can be bounded as

E


∥∥∥∥∥∥
∑

v∈N(c)

`t(v)

∥∥∥∥∥∥
2

S(pct−1)

 = E

 E
x∼S(pct−1)



 ∑
v∈N(c)

`t(v)

> x


2
 ≤ |N(c)|2, (43)

where the last inequality follows from the assumption of |`t(v)>a| ≤ 1 for all a ∈ A. Combining
(41), (42), and (43), we have

E

[∥∥∥ˆ̀
t(c)
∥∥∥2
S(pct−1)

]
≤ |N(c)| · 2m

|N(c)|2
+
|N(c)|2

|N(c)|2
=
·2m
|N(c)|

+ 1 ≤ 4m

min{|N(c)|,m}
.
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From Lemma 7, we can apply Lemmas 5 and 6 to pct−1. In fact, pct−1 is identical to the distribution
pt defined by (9) with ˆ̀

t = ˆ̀
t(c) and d = 1, and the first and second parts of Lemma 7 implies that

the conditions in (11) hold. Hence, from Lemmas 5 and 6, we have

E
[
|`>(µ(pct)− µ(pct+1))|

]
≤ 2η, S(pct+1) � 2S(pct) (44)

for any t ∈ [T ], c ∈ C and ` ∈ Rm such that |`>a| ≤ 1 for all a ∈ A.

Let us evaluate the regret of agent v ∈ Vc. We denote pvt = pct−dc(v). From qvt = qct−dc(v), we have
µ(qvt ) = µ(pvt

′). Further, since pvt = pct−dc(v) is identical to the distribution pt defined by (9) with
ˆ̀
t = ˆ̀

t(c) and d = dc(v), from Lemma 4, the regret of v is bounded as

E[RT (v)]

≤ E

[
T∑
t=1

(
`>t

(
µ(pvt )− µ(pvt+dc(v))

)
+

1

η(c)
E

x∼pv
t+dc(v)

[
g
(
−η(c)ˆ̀

t(c)
>x
)])]

+
m log T

η(c)
+ 3

= E

[
T∑
t=1

(
`>t

(
µ(pct−dc(v))− µ(pct)

)
+

1

η(c)
E

x∼pct

[
g
(
−η(c)ˆ̀

t(c)
>x
)])]

+
m log T

η(c)
+ 3.

(45)

From the first part of (44), we have

E
[
`>t

(
µ(pct−dc(v))− µ(pct)

)]
=

dc(v)−1∑
i=0

E
[
`>t

(
µ(pct−dc(v)+i)− µ(pct−dc(v)+i+1)

)]
≤ 2η(c)dc(v). (46)

We can bound the term E
[
Ex∼pct

[
g
(
−η(c)ˆ̀

t(c)
>x
)]]

in (45) using Lemma 3 and (44). In fact,
we can confirm that the assumption of Lemma 3 holds, as follows:

E
x∼pct

[(
−η(c)ˆ̀

t(c)
>x
)2]
≤ η(c)2‖ˆ̀t(c)‖2S(pct) ≤ 2η(c)2‖ˆ̀t(c)‖2S(pct−1)

≤ 8η(c)2mγ2 ≤ 1/100,

where the second and third inequalities follows from (44). Hence, by applying Lemma 3 to y =

−η(c)ˆ̀
t(c)
>x, we have

E

[
E

x∼pct

[
g
(
−η(c)ˆ̀

t(c)
>x
)]]
≤ 2η(c)2 E

[
‖ˆ̀t(c)‖2S(pct)

]
≤ 4η(c)2 E

[
‖ˆ̀t(c)‖2S(pct−1)

]
≤ 16η(c)2m

min{|N(c)|,m}
, (47)

where the second inequality follows from the second part of (44), and the last inequality follows from
the last part of Lemma 7. Combining (45), (46), and (47), we obtain

E[RT (v)] ≤ η(c)

(
2dc(v) +

16m

min{|N(c)|,m}

)
T +

m log T

η(c)
+ 3. (48)

From the inequality in Theorem 5, we have

dc(v) ≤ 6

(
1 + log

min{|N(v)|,m}
min{|N(c)|,m}

)
≤ 6(1 + logm),

1

min{|N(c)|,m}
≤ e

min{|N(v)|,m}
.

(49)
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Combining (48) and (49), we have

E[RT (v)] ≤ η(c)

(
12(1 + logm) +

16m

min{|N(c)|,m}

)
T +

m log T

η(c)
+ 3

≤ 16η(c)

(
1 + logm+

m

min{|N(c)|,m}

)
T +

m log T

η(c)
+ 3

≤ max

{
8

√
m

(
1 + logm+

m

min{|N(c)|,m}

)
T log T , 100m2γ2 log T

}
+ 3

≤ max

{
8

√
m

(
1 + logm+

em

min{|N(v)|,m}

)
T log T , 100m2γ2 log T

}
+ 3,

≤ max

{
16

√
m

(
1 + logm+

m

|N(v)|

)
T log T , 100m2γ2 log T

}
+ 3,

where the first inequality follows from (48) and the first part of (49) the third inequality follows

from the parameter setting of η(c) = min{ 14
√

m log T
T (1+logm+m/min{|N(c)|,m}) ,

1
100γ2m}, and the forth

inequality follows from the second part of (49).

C Proof of Theorem 2

Proof of Theorem 2 We first construct a problem instance for which RT = Ω(
√
mdT ). Let T be

a multiple of md, i.e., we denote T = Smd with an integer S. For each s = 0, 1, . . . , S − 1 and
i = 1, 2, . . . ,m, we define `t for t ∈ [smd + d(i − 1) + 1, smd + id] by `t = bsiχi, where bsi
follows a Bernoulli distribution over {−1, 1} with parameter 1/2 for s and i, independently. Since `t
and at are independent for all t and E[`t] = 0, we have

E

[
T∑
t=1

`>t at

]
= 0. (50)

On the other hand, we also have

E

[
min
a∈A

T∑
t=1

`>t a

]
= −

m∑
i=1

E

[∣∣∣∣∣
T∑
t=1

`ti

∣∣∣∣∣
]

= −d
m∑
i=1

E

[∣∣∣∣∣
S∑
s=1

bsi

∣∣∣∣∣
]
. (51)

Since
∑S
s=1 bsi follows a binomial distribution Bi(S, 1/2), we have Prob[|

∑S
s=1 bsi| ≥

√
S/10] ≥

1/5. Hence we have

E

[
min
a∈A

T∑
t=1

`>t a

]
≤ − 1

50
dm
√
S. (52)

This implies that E[RT ] ≥ dm
√
S/50 =

√
dmT/50. Even when T ≤ dm, we can show E[RT ] ≥ T

similarly. Hence, we have

E[RT ] ≥ min

{√
dmT

50
, T

}
. (53)

We next provide a distribution of `t for which the regret is Ω(m
√
T ). Let ε = min{ 16 ,

m√
8T
}.

Consider generating `t in the following process: First, pick a∗ ∈ {−1, 1}d uniformly at random.
Then for t = 1, . . . , T , pick it ∈ [m] uniformly at random and set `t = stχit where st = a∗it with
probability 1−ε

2 and st = −a∗it with probability 1+ε
2 . Then, the regret is bounded as

E[RT ] ≥ E

[
T∑
t=1

`>t at −
T∑
t=1

`>t a
∗

]
=

T∑
t=1

E
[
`>t at − `>t a∗

]
. (54)
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As shown in Lemmas 3 and 4 in [26], we have E
[
`>t at − `>t a∗

]
≥ ε/2 for any algorithm if

ε ≤ min{ 16 ,
m√
8T
}. Hence, the regret is bounded as

E[RT ] ≥ Tε

2
= min

{
m
√
T

32
,
T

12

}
. (55)

If (`t)
T
t=1 follows the first distribution with probability 1/2 and the second distribution with probability

1/2, the regret is bounded as

E[RT ] ≥ min

{
m
√
T

64
+

√
dmT

100
,
T

12

}
≥ min

{√
m(d+m)T

100
,
T

12

}
. (56)

D Proof of Theorem 4

Proof of Theorem 4 We first construct a problem instance for which RT (v) = Ω(
√
mT ). Let T be a

multiple of m, i.e., we denote T = Sm with an integer S. For each s ∈ [S] and i ∈ [m], we define `t
by `t = bsiχi for t = (s − 1)m + i, where bsi follows a Bernoulli distribution over {−1, 1} with
parameter 1/2 independently for s ∈ [S] and i ∈ [m]. We set `t(v) = `t for all v ∈ V . Since `t and
at(v) are independent for all t and E[`t] = 0, we have

E

[
T∑
t=1

`>t at(v)

]
= 0. (57)

On the other hand, we also have

E

[
min
a∈A

T∑
t=1

`>t a

]
= −

m∑
i=1

E

[∣∣∣∣∣
T∑
t=1

`ti

∣∣∣∣∣
]

= −
m∑
i=1

E

[∣∣∣∣∣
S∑
s=1

bsi

∣∣∣∣∣
]
. (58)

Since
∑S
s=1 bsi follows a binomial distribution Bi(S, 1/2), we have Prob[|

∑S
s=1 bsi| ≥

√
S/10] ≥

1/5. Hence, we have

E

[
min
a∈A

T∑
t=1

`>t a

]
≤ − 1

50
m
√
S. (59)

This implies that E[RT (v)] ≥ m
√
S/50 =

√
mT/50. Even when T ≤ m, we can show E[RT ] ≥ T

similarly. Hence, we have

E[RT ] ≥ min

{√
dmT

50
, T

}
. (60)

We next provide a lower bound of Ω(m
√
T/|V |). Let ε = min{ 16 ,

m√
8T |V |

}. Consider generating

`t(v) in the following process: First, pick a∗ ∈ {−1, 1}d uniformly at random. Then for t = 1, . . . , T
and v ∈ V , pick it(v) ∈ [m] uniformly at random and set `t(v) = st(v)χit(v) where st(v) = a∗it(v)
with probability 1−ε

2 and st(v) = −a∗it(v) with probability 1+ε
2 . Then, as can be shown from Lemmas

3 and 4 in [26], the regret is bounded as

E[RT (v)] ≥ Tε

2
= min

{
m

32

√
T

|V |
,
T

12

}
. (61)

If (`t)
T
t=1 follows the first distribution with probability 1/2 and the second distribution with probability

1/2, the regret is bounded as

E[RT ] ≥ min

{
m

64

√
T

|V |
+

√
mT

100
,
T

12

}
≥ min

{
1

100

√
m

(
1 +

m

|V |

)
T ,

T

12

}
. (62)
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