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Abstract

This paper focuses on estimating probability distributions over the set of 3D ro-
tations (SO(3)) using deep neural networks. Learning to regress models to the
set of rotations is inherently difficult due to differences in topology between
RN and SO(3). We overcome this issue by using a neural network to out-
put the parameters for a matrix Fisher distribution since these parameters are
homeomorphic to R9. By using a negative log likelihood loss for this distri-
bution we get a loss which is convex with respect to the network outputs. By
optimizing this loss we improve state-of-the-art on several challenging applica-
ble datasets, namely Pascal3D+, ModelNet10-SO(3). Our code is available at
https://github.com/Davmo049/Public_prob_orientation_estimation_with_matrix
_fisher_distributions

1 Introduction

Estimating the 3D rotation of an object from 2D images is one of the fundamental problems in
computer vision. Several applications relying on 3D rotation estimation have been developed such as
a robot grasping an object[23], a self driving vehicle constantly sensing its surrounding environment
[18], an augmented reality system combining computer-generated information onto the real world
[16], or a system detecting the face orientation to enhance human-computer interactions [25].

Advances of deep learning techniques have resulted in improvements in estimation of 3D orientation.
However, precise orientation estimation remains an open problem. The main problem is that the
space of all 3D rotations lies on a nonlinear and closed manifold, referred to as the special orthogonal
group SO(3). This manifold has a different topology than unconstrained values in RN , where neural
network outputs exist. As a result it is hard to design a loss function which is continuous without
disconnected local minima. For example using euler angles as an intermediate step causes problems
due to the so-called gimbal lock. Quaternions have a double embedding giving rise to the existence of
two disconnected local minimas. Some more complicated methods use Gram-Schmidt [30] which has
a continuous inverse, but the function is not continuous with a discontinuity when the input vectors
do not span R3.

Despite these issues various deep learning based solutions have been suggested. One approach is to
use one of the rotation representations and model the constraint in the loss function or in the network
architecture [14]. An alternative is to construct a mapping function, which directly converts the
network output to a rotation matrix [30].

Quantifying the 3D orientation uncertainty when dealing with noisy or otherwise difficult inputs is
also an important task. Uncertainty estimation provides valuable information about the quality of the
prediction during the process of decision making. Only recent efforts have been made on modeling
the uncertainty of 3D rotation estimation [20, 5]. However, those methods still rely on complex
solutions to fulfil the constraints required by their parameterization.
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In this paper, we instead propose a deep learning approach to estimate the 3D rotation uncertainty by
using the matrix Fisher probability density function developed in the field of directional statistics
[17]. This unimodal distribution has been selected because of its relevant properties in regards to the
problem of 3D orientation estimation: i) The parameterization is unconstrained so there is no need
for complex functions to enforce constraints. ii) It is possible to create a loss for this distribution
which has desirable properties such as convexity iii) The mode of the distribution can subsequently
be estimated along with the uncertainty around that mode for further analysis.

Our method offers a simple solution to the problem of 3D orientation estimation, where a neural
network learns to regress the parameters of the matrix Fisher distribution. While several other losses
used for rotation estimation are discontinuous with non path connected sublevel sets, with respect to
the network output. In this paper we instead propose a loss which is convex with bounded gradient
magnitudes, resulting in a stable training. In addition, we also implement a method for computing the
the non-trivial normalizing constant of the distribution. Finally, the proposed method is evaluated on
multiple problem domains and compared with the latest published approaches. The results show that
our method outperforms all previous methods for several problems.

Our contributions include: 1) a method for estimating a probability distributions over the set of
rotations with neural networks by using the matrix Fisher distribution, 2) a loss associated with this
distribution and show it is convex with bounded gradients, and 3) an extensive analysis encompassing
several datasets and recent orientation estimation works, where we demonstrate the superiority of our
method over the state-of-the-art.

2 Related Work

3D rotation estimation has been studied over the last two decades. A common method estimates 3D
rotation by aligning two sets of 3D feature points where each data set is matched and defined in a
different coordinate system [4]. Another well-known approach matches 2D keypoints extracted from
images with features of a known 3D model and recovers the 3D pose given the 2D-3D correspondences
[21, 10]. With the advances of deep learning, the detection of 2D keypoints has significantly been
improved [2]. The keypoints can be associated either with physical points [19] or with virtual points
such as the corners of an object’s bounding box [6].

Recent methods using deep networks often predict 3D rotation directly from images without the
knowledge of a 3D model of the object. Those methods can be grouped in two categories. The first
one divides the set of rotations into regions and subsequently solves the 3D orientation estimation
as a classification task. Subsequently, the classification network output is refined by a regression
network [15, 12].

The second category transforms the network output to a 3D rotation representation and learns to
directly regress the 3D rotation given an image input. Commonly, quaternions [28] or Euler angles
[14] representation are used. However, the paper [30] shows any rotation representation of dimensions
four or lower is discontinuous, which makes it difficult for the neural network to generalize over the
set of rotations. They propose two continuous 5D and 6D rotation representations and construct a
function that maps those representations to a rotation matrix.

Recently some studies have investigated the prediction of rotation uncertainty using probability
distributions over rotations. In [20] the parameters of a mixture of von Mises distribution using a
biternion network are estimated. In [5], the Bingham distribution over quaternions is used to jointly
estimate a probability distribution over all rotation axes. However, their parameters have to be positive
semidefinite due to their choice of probability distribution.

In this paper, we propose a solution which learns to regress the probability distribution with uncon-
strained parameters leading to a simple formulation of the problem of 3D rotation estimation.

3 Method

We train a neural network to estimate the 3D orientation of objects in an input image. Specifically,
the network outputs the parameters of the matrix Fisher distribution, which is a distribution over
SO(3). From the predicted parameters we can obtain the maximum likelihood estimate of the
input’s orientation. In the rest of this section we review the matrix Fisher distribution and provide
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(a) p(Re1 | F ) (b) p(Re2 | F ) (c) p(Re3 | F ) (d) Compact Vis.

Figure 1: Visualizing the matrix Fisher distribution on SO(3). We follow the convention of
[9] and recreate their figures to explain the approach, similarly for figure 2. For the above plots
the parameter matrix is F = diag(5, 5, 5). Let e1, e2 and e3 correspond to the standard basis of
R3 and is shown by the black axes. (a) This plot shows the probability distribution of Re1 when
R ∼M(F ). Thus the pdf shown on the sphere corresponds to the probability of where the x-axis
will be transformed to after applying R ∼M(F ). (b) and (c) Same comment as (a) except consider
e2 and e3 instead of e1. (d) A compact visualization of the plots in (a), (b) and (c) is obtained by
summing the three marginal distributions and displaying them on the 3D sphere. All four plots are
plotted within the same scale and a jet colormap is used.

some visualizations to help the reader’s interpretation of its parameters. Then we derive the loss,
based on maximizing the likelihood of the labelled data, and finally explain how we deal with the
distribution’s complex normalizing constant when we calculate our loss and calculate the gradient
during back-propagation.

3.1 The matrix Fisher distribution on SO(3)

We model 3D rotation matrices probabilistically with the matrix Fisher distribution [3, 8]. This
distribution has probability density function

p(R | F ) = 1

a(F )
exp(tr(FTR)) (1)

where F is an unconstrained matrix in R3×3 parametrising the distribution, R ∈ SO(3), and a(F ) is
the distribution’s normalizing constant. We will denote that R is distributed according to a matrix
Fisher distribution with R ∼M(F ). The distribution is unimodal but visualizing the distribution in
equation (1) is hard as it has a 3D domain. Fortunately, [9] describes a helpful visualization scheme,
see figure 1 for details, which we use throughout the paper.

Also not immediately apparent is how the shape of the distribution varies as F varies. From [4]
we know the mode of the distribution can be computed from the singular value decomposition of
F = USV T , where the singular values are sorted in descending order, and setting

R̂ = U

[
1 0 0
0 1 0
0 0 det(U V )

]
V T (2)

This is done to ensure that the orientation R̂ has determinant 1 and is orthonormal. Similar results
are available in [3]. Figure 2 displays examples of the distribution for simple F matrices. These
figures show that larger singular values correspond to more peaked distributions. To further help
understanding of how the shape of the distribution relates to F please consult section 3 of the
supplementary material and [9].

Finally, the normalizing function a(F ) in equation (1) can be defined as in equation (3). This
function, as well as its gradients, can be computed by doing an integral over Bessel functions[9]. For
implementation details regarding this see supplementary material section 5.

a(F ) =

∫
R∈SO(3)

exp(tr(FTR)) dR (3)

z
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(a) diag(5, 5, 5) (b) diag(20, 20, 20) (c) diag(25, 5, 1) (d) A diag(25, 5, 1)

Figure 2: Visualization of the matrix Fisher distribution for simple F matrices. (a) For a
spherical F the mode of the distribution is the identity. The distribution for each axis is circular and
identical. (b) Here the axis distributions are more peaked than in (a) as the singular values are larger.
(c) The distribution for the y- and z-axes are more elongated than for the x-axis as the first singular
value dominates. (d) A is the rotation matrix obtained by rotating around the z-axis by −π/6 degrees
and thus the mode rotation is A shown by the red axes. The shape of the axes distributions though
remains as in (c).

3.2 A negative log-likelihood loss function

Assume we have a labelled training example (x,Rx) where x is the input andRx ∈ SO(3) its ground
truth 3D rotation matrix. To train a neural network that estimates Fx for input x, it is necessary to
define a loss function measuring the compatibility between Fx and Rx. As the pdf in equation (1)
has support in all of SO(3), we use the negative log-likelihood of Rx given Fx as the loss:

L(Fx, Rx) = − log(p(Rx | Fx)) = log(a(Fx))− tr(FT
x Rx) (4)

This loss has several interesting properties such as it is Lipschitz continuous, convex and has Lipschitz
continuous gradients which makes it suitable for optimization. See supplementary material section 4
for proofs.

In practice the loss in equation 4 has an equilibrium far from the origin, in some experiments we
believe this led to instability. To alleviate this problem we used a regularizing term which was 2.5%
larger than what is analytically correct to move the equilibrium closer to the origin.

4 Experimental Details

We test our proposed approach on three separate datasets Pascal3D+, ModelNet10-SO(3) and UPNA
head pose. We briefly describe these datasets, the pre-processing we applied to the images from each
dataset before training and then the evaluation metrics.

4.1 Datasets & Pre-processing

Pascal3D+ [27] has 12 rigid object classes and contains images from Pascal VOC and ImageNet of
these classes. Each image is annotated with the object’s class, bounding box and 3D pose. The latter
is found by having an annotator align a 3D CAD model to the object in the image.

We pre-process each image by applying a homography so that the transformed image appears to come
from a camera with known intrinsics and a principal axis pointing towards the object. This approach
is similar to [13] and [29]. More details are given in section 6 of the supplementary material. We
perform data augmentation similar to the data augmentations introduced in [14], but adapted for our
preprocessing. At test time we apply the same type of homography transformation as applied during
training, but no data augmentation.

ModelNet10-SO(3)[12] is a synthetic dataset. It is created by rendering rotated 3D models from
ModelNet10 [26] with uniformly sampled rotations. The task is to estimate the applied rotation
matrix.

We do not use any preprocessing for these images since the object is already centered and of a
reasonable size. We do not use any data augmentation as the original paper did not use any and we
want a fair comparison between the losses.
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UPNA head pose [1] consists of videos with synchronized annotations of keypoints for the face in
the image as well as its 3D rotation and position. The dataset has 10 people each with 11 recordings.

From the keypoint annotations we create a face bounding box for each image. After this we perform
a small random perturbation of this bounding box to degrade the quality of the bounding box to
be similar to what one would expect to get from a face detector. Using this artificial bounding box
enables us to use the same data augmentation and preprocessing as we used for Pascal3D+.

There is no official training/test split for this dataset. We use a test split with the same people held out
as in prior work [5]. We did not use a validation set since we did not do a new hyperparameter search
for the dataset.

4.2 Details of network & training

We run experiments with ResNet-101 as our backbone network. The ResNet-101 parameters are
initialized from pre-trained ImageNet weights. The object’s class is encoded by an embedding
layer that produces a 32-dimensional vector and which is appended to the ResNet’s activations
obtained from the final average pooling layer. We apply 3 fully connected layers to this vector with
[512, 512, 9] nodes output at each layer. We use pytorch’s implementation of SVD for forward and
backward propagation.

We fine-tune the embedding and fully connected layer weights for 2 epochs. We use SGD and start
with a learning rate of 0.01. We use a batch size of 32 and train for 120 epochs. For Pascal3D+ we
reduce this learning rate by a factor 10 at epochs 30, 60 and 90. For ModelNet10-SO(3) we train for
50 epochs and reduce the learning rate by a factor of 10 at epochs 30, 40 and 45. For UPNA head
pose we use the same hyperparameters as for Pascal3D+, except we do not use a class embedding
since there are only faces in this dataset.

4.3 Evaluation metrics

The evaluation metrics used are based on the geodesic distance:

d(R, R̂) = arccos

(
1

2

(
tr(RT R̂)− 1

))
(5)

where R and R̂ are the ground truth and estimated rotation respectively. This metric returns an angle
error and we measure it in degrees. For a test set X , containing tuples (x,Rx) of input x and its
ground truth rotation Rx, we summarize performance on X with the median angle error and Acc@Y :

Acc@Y =
1

|X |
∑

(x,Rx)∈X

1(d(Rx, R̂x) < Y ) (6)

where 1(·) is the indicator function, R̂x is the estimated rotation for input x and |.| is the cardinality
of a set. To compute the overall performance on a dataset the median angle error and Acc@Y are
first computed per class and then averaged across all classes. For the UPNA dataset we use the mean
geodesic error angle instead of the median to allow more direct comparison with the results in [5].

We have done all development and hyper-parameter optimization where the full training set was
partitioned into a training and validation set. After hyper-parameter optimization, we have used the
full training set for training and evaluated on the test set to get the numbers presented in the tables.
For the Pascal3D+ dataset, we use the ImageNet validation split for the test set. Some samples of
Pascal3D+ are labeled as “truncated”, “difficult” or “occluded”. We exclude these samples from our
evaluations similar to other reported results [12]. This implementation detail had only a very slight
effect on performance.

5 Results

Quantitative results Table 1 compares the performance of our method and recent high performing
approaches. Table 2 compares per class performance for some classes on Pascal3D+ with the previous
state-of-the-art method [15]. Our method significantly outperforms all the prior approaches. When
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Table 1: Performance on Pascal3D+. Results are reported for the median angle error, Acc@π/6
and Acc@π/12. The last column indicates if the training set was augmented with the synthetic
dataset from [22].

Method MedErr Acc@π/6 (%) Acc@π/12 (%) Use synth.

Mahendran et al. [14] 15.38 − − ×
Pavlakos et al. [19] 14.16 − − ×
Tulsiani and Malik [24] 13.60 81.0 − ×
Su et al. [22] 11.70 82.0 − X
Grabner et al. [6] 10.90 83.9 − ×
Prokudin et al. [20] 10.40 83.9 − ×
Mahendran et al. [15] 10.10 85.9 − X
Liao et al. [12] 9.20 88.7 − X

Ours 9.11 90.9 73.4 ×
Ours 8.17 92.8 77.8 X

the training set is augmented with the synthetic dataset from [22], we further reduce the mean over
medians angle error by approximately 1 degree.

The results reported in table 3 show that our method also achieves state-of-the-art performance on
ModelNet10-SO(3).

On the UPNA head pose dataset our algorithm gives a mean angle error of 6.5 degrees. This is on
par with current state of the art who quote a performance of 6.3 degrees [5]. We do not think the
differences between these two methods are significant since there are only 4 persons in the test set.

Qualitative results Figure 3 displays and discusses interesting qualitative results on Pascal3D+
which highlight the probabilistic performance of our method.

Behaviour for classes with rotational symmetries Several classes in the datasets used have
rotational symmetries or effectively have rotational symmetries due to very similar appearance at
several distinct viewpoints. Some examples of these classes are canoes, bathtubs, tables, desks, and
bottles. Our modelling though is based on a unimodal distribution and here we describe how the
model copes with the inherent ambiguity of rotational symmetric objects.

For Pascal3D+ our method performs well, somewhat surprisingly, for the dining table class, see table
2. However, when the synthetic data is used to augment the training data the performance on this
class drops. We suspect the manual labeling process introduces biases for this class with one of the
ambiguous poses being labelled much more frequently. But the synthetic data added does not have
these biases. This discrepancy between the distribution of training and test set label results in the drop
in performance. For ModelNet10-SO(3) the table and bathtub classes have rotational symmetries and
thus these two classes have much higher median errors than the other classes, see table 4. In figure

Table 2: Pascal3D+ per-class performance of our method, with or without using extra synthetic
training data, compared to the competitive method Mahendran et al. [15]. The top three rows report
the median angle error per class measured in degrees. The bottom three rows report Acc@π/6
measured as a percentage.

Method aero bike boat bottle bus chair dtable sofa train mean
[15] 8.5 14.8 20.5 7.0 3.1 9.3 11.3 10.2 5.6 10.1
Ours w/o 10.1 14.6 13.2 8.0 3.3 7.4 8.2 8.2 5.8 9.1
Ours with 6.6 12.5 11.6 7.7 3.5 6.6 11.2 7.4 5.3 8.2

[15] 87.0 81.0 64.0 96.0 97.0 92.0 67.0 97.0 82.0 85.9
Ours w/o 87.7 83.2 75.6 94.9 98.6 93.9 82.3 97.4 97.9 87.7
Ours with 92.9 88.5 80.7 95.1 99.0 98.7 76.5 99.0 98.0 92.8
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Table 3: Performance on ModelNet10-SO(3). * indicates the numbers reported in the original
paper, but † denotes the revised numbers [11] where the evaluation metric uses the distance defined
in equation (5). Thus we compare the performance of our method to the latter numbers.

Method MedErr (deg) Acc@π/6 (%) Acc@π/12 (%) Acc@π/24 (%)

Liao et al. [12]* 20.3 70.9 58.9 38.4
Liao [11]† 28.7 65.8 49.6 35.2
Ours 18.0 75.2 68.5 53.9

Table 4: Per class performance on ModelNet10-SO(3) of our method.

Metric bathtub bed chair desk dress. t.v. n. stand sofa table toilet

MedErr 86.5 4.4 5.2 13.7 6.9 6.1 15.4 4.1 34.3 3.9
Acc@π/6 41.1 90.0 93.7 67.7 72.8 85.8 59.1 94.8 49.2 98.2
Acc@π/12 32.2 87.0 88.7 52.9 65.9 78.4 49.5 91.7 43.4 95.8

4(f) the histogram of angle errors for the table class has a “U” shape and the median is in the middle
of this “U”. This histogram indicates that at test time the network predicts one of the relevant poses.

To further illuminate this point, plots (b)-(g) of figure 4 show the evolution of the distribution predicted
during training for one specific table class test image. The axis which has no associated ambiguity is
identified correctly and confidently early on in training. The other two directions are predicted to
have an almost uniform distribution on the plane spanned by the ambiguous axes. This is arguably
the best way for the unimodal distribution to describe the situation. In the latter stages of training the
network correctly identifies the object’s full pose on the training set and uncertainty becomes small.
Such behaviour should be considered as a deterioration of the network’s probabilistic modelling as it
effectively randomly chose one pose from the set of plausible poses and report it is very confident
about this decision. Continuing to improve the accuracy on the test set while overfitting the loss often
occurs with cross-entropy training of classification networks as well [7]. The dataset’s accuracy and
loss plots, in the supplementary material section 2, show our loss is susceptible to this trend too.
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(a) (b) (c) (d)

Figure 3: Interesting qualitative results on Pascal3D+. The top row displays example input images
with the projected axes displaying the predicted pose (red) and labelled pose (black) of the object.
The bottom row shows a visualization of the pdf estimated by the network. The red axis show
the maximum likelihood estimate of the rotation matrix estimated from the predicted F matrix,
while the axis in black corresponds to the ground truth rotation/pose. For clarity we have aligned
the predicted pose with the standard axis. Each probability plot has been scaled independently.
The examples shown have been specifically chosen to highlight our algorithm’s performance for
certain cases: (a)-(b) Examples where model has high uncertainty for the azimuth either due to low
resolution or rotation symmetry (c)-(d) Examples where model predicts rotations with high certainty
and reasonably low errors.
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Figure 4: Evolution of the estimated pdf during training for a rotational symmetric object.
The leftmost figure is a test image from the table class. (b)-(e) Each plot displays the predicted
distributions for the object’s pose after e epochs of training. The mode of the distribution is shown
in red and the ground truth rotation in black. (f) Histogram of the test error angle for the table class
after 50 epochs. See the main text for comments.

Ablation experiments We run ablation experiments on Pascal3D+ to identify the importance of
the individual components of our approach. The factors considered are data-augmentation, the class
embedding and pre-processing the image via a homography. The results are shown in table 5. Row
one in table 5 shows the performance for a very simple method which uses a standard network
architecture and plain cropping without data augmentation as preprocessing. This method gets higher
performance than several more complicated methods, See table 1. This indicates that the loss we
have introduced is a significant improvement by itself.

By comparing Row one and two in table 5 we see that the class embedding does not seem to give
any improvement for this dataset. This can also be seen by comparing row four and five. Rows one
and three in table 5 show that our warping does not provide a significant improvement by itself on
Pascal3D+ compared to cropping. We believe though this warping could be advantageous in many
situations and therefore should be used irrespective of these results. In theory this pre-processing
should allow our method to generalize across all pinhole cameras with known intrinsic parameters
and negligible radial distortion rather than for cameras with the same intrinsics as Pascal3D+.

Comparing row three with row four or comparing row one with row five show that data augmentation
gives a significant improvement. This is consistent with prior work.

Table 5: Results of ablation experiments on Pascal3D+ for our method.

Data aug. Class embed Crop Warp MedErr (deg) Acc@π/6 (%) Acc@π/12 (%)

× × X × 10.5 87.7 68.6
× X X × 10.5 87.1 67.9
× X × X 10.5 87.0 68.8
X X × X 9.2 90.9 73.4
X × × X 9.0 90.5 74.1

6 Conclusion & Future work

In this paper we have introduced a way to use neural networks to output probability distributions over
the set of rotations with the matrix Fisher distribution. We show when optimizing the negative log
likelihood of this distribution we end up with a convex loss. When applying this method on several
datasets we get state-of-the-art performance. Our ablation studies show the relative robustness of the
approach.

Since the matrix Fisher distribution is unimodal it poorly models classes which have rotational
symmetries. It could be interesting to try to create a loss supporting multimodal distributions while
keeping the desirable optimization properties of our loss. It could be possible to use these estimated
probabilities for time tracking filters such as the one described in [9].

We have not done any quantification of how well the estimated variances correspond to the actual
errors. Doing this as well as calibrating the uncertainties similar to [7] is potential future work.
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Broader Impact

The methods described in this paper has obvious applications in fields which some consider ethically
questionable such as for surveillance and military systems. One example could be determining
heading for ships or airplanes for tactical planning. That being said, the orientation of objects is a
fundamental property of objects in the real world and being able to accurately estimate this property
should be helpful for many applications of either an ethically desirable or undesirable nature. In our
opinion improving the techniques used for orientation estimation has a similar societal impact as
improving the techniques used for classification or object detection.

The persons in the UPNA dataset are unlikely to be sampled from a uniform distribution of people
across the world, for this reason one can not expect the reported performance to be accurate for
the world population in general, that being said due to the small test size this reported performance
might not reflect the average performance for any population. We do not believe this is an issue since
models for predicting head pose which are deployed on a wider scale are very unlikely to use this
dataset due to its small size and non-commercial licence. The method itself is not reliant on any
population specific feature.
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