
Table 1: Pascal3D+ per-class performance of our method, w/o and with synthetic training data,
compared to the state-of-the-art method Mahendran et al. [5] on this dataset. The top three rows
report the median angle error per class measured in degrees. The bottom three rows report Acc@π/6
measured as a percentage.

Method aero bike boat bottle bus car chair dtable mbike sofa train tv mean
[5] 8.5 14.8 20.5 7.0 3.1 5.1 9.3 11.3 14.2 10.2 5.6 11.7 10.1
Ours w/o 10.1 14.6 13.2 8.0 3.3 4.0 7.4 8.2 14.6 8.2 5.8 11.6 9.1
Ours with 6.6 12.5 11.6 7.7 3.5 3.9 6.6 11.2 10.4 7.4 5.3 11.4 8.2

[5] 87.0 81.0 64.0 96.0 97.0 95.0 92.0 67.0 85.0 97.0 82.0 88.0 85.9
Ours w/o 87.7 83.3 75.6 94.9 98.6 98.3 93.9 82.3 92.4 97.4 97.9 88.5 90.9
Ours with 92.9 88.5 80.7 95.1 99.0 99.0 98.7 76.5 93.7 99.0 98.0 92.8 92.8

1 Additional experimental results

1.1 Additional quantitative results

In table 1 we show the quantitative performance for our method across all classes on the Pascal3D+
test set.

1.2 Additional qualitative results

Figure 1 shows how well our method works on a random subset of the Pascal3D+ test set.

error: 10.96 error: 5.80 error: 4.74 error: 12.19

error: 5.42 error: 2.43 error: 30.98 error: 3.38

error: 11.01 error: 6.53 error: 6.21 error: 8.56

Figure 1: Pascal3D+ predictions. Visualization of a random subset of the test set for Pascal3D+.
The maximum likelihood rotation for the probability distribution predicted by the network (thick
lines) compared to the ground truth (thin lines). Background image is the preprocessed input

1

0 10 20 30 40 50
Epoch

20

40

60

80

M
ed

ia
n

er
ro

r

train Median
train loss
test Median
test loss

6

5

4

3

2

1

0

1

2

Lo
ss

Figure 2: Median error compared to mean loss Visualization of how the median error and median
loss changes over time when training on ModelNet10-SO(3)

2 Overfitting confidences

In figure 2 we see how we overfit more on the loss than the median error. A similar effect have been
observed when training networks to perform classification [1]. This effect was more pronounced for
ModelNet10-SO(3) due to the prominence of rotation ambiguous samples.

3 Geometric interpretation of the matrix Fisher distribution

To further help understanding how the shape of the distribution relates to F , [4] defines the proper
SVD of F as:

F = U1S
′V T

1 = U1

1 0 0
0 1 0
0 0 det(U1)


︸ ︷︷ ︸

U

s′1 0 0
0 s′2 0
0 0 det(U1 V1)s

′
3


︸ ︷︷ ︸

S

1 0 0
0 1 0
0 0 det(V1)

V T
1︸ ︷︷ ︸

V T

= USV T (1)

so that U and V are guaranteed to be rotation matrices and S contains the proper singular values
of F with s1 ≥ s2 ≥ |s3|. Note that R̂ = UV T . The columns of U define three orthogonal axes
directions around which the mode rotation can be rotated. When rotating R̂ around the axis Uei the
peakedness of the pdf is given by (sj + sk) with j, k ∈ {1, 2, 3}\i. As (sj + sk) approaches zero,
then the distribution approaches a uniform distribution with respect to this rotation. On the other
hand if (sj + sk) increases towards∞ then this distribution approaches a Dirac function with respect
to this rotation. The columns of U are termed the principal axes and can be thought of as analogous
to the principal axes of a multivariate Gaussian. Figure 4 gives a visualization of examples of this
interpretation.

2

+ + =

(a) p(Re1 | F) (b) p(Re2 | F) (c) p(Re3 | F) (d) Compact Vis.

Figure 3: Visualizing the matrix Fisher distribution on SO(3). Visualization of the probabilities
for the case F = diag(5, 5, 5). Let e1, e2 and e3 correspond to the standard basis of R3 and is shown
by the black axes. (a) This plot shows the probability distribution of Re1 when R ∼M(F). Thus
the pdf shown on the sphere corresponds to the probability of where the x-axis will be transformed to
after applying R ∼M(F). (b) and (c) Same comment as (a) except consider e2 and e3 instead of e1.
(d) A compact visualization of the plots in (a), (b) and (c) is obtained by summing the three marginal
distributions and displaying them on the 3D sphere. All four plots are plotted within the same scale
and a jet colormap is used.

(a) diag(20, 20, 20) (b) diag(25, 5, 1) (c) A3 diag(25, 5, 1)

(d) A1 diag(25, 5, 1)AT
1 (e) A2 diag(25, 5, 1)AT

2 (f) A3 diag(25, 5, 1)AT
3

Figure 4: Effect of F on shape of the matrix Fisher distribution. Below each plot is the value of F . Each
Ai corresponds to the rotation matrix obtained by rotating by −π/6 degrees around ei. (a) For a spherical F
the mode of the distribution is the identity and the principal axes correspond to e1, e2, e3. The distribution for
each axis is circular and identical and more peaked than in figure 3 as the singular values are larger. (b) Have
a diagonal F and thus the mode and the principal axes once again coincide. The distributions for the y- and
z-axes are more elongated than for the x-axis as the first singular value dominates. (c) Here F is obtained by
pre-multiplying a diagonal matrix by A3. Thus the mode corresponds to A3 and is shown by the red axes. The
shape of the distributions for each axis though remain the same as in (b). (d, e, f) In each of these plots the
diagonal matrix from (b) is pre-multiplied by Ai and post-multiplied by AT

i . Thus the mode rotation is the
identity. However, the principal axes correspond to the columns of Ai. Thus the axis distributions are centred at
the standard location but the orientation of the spread has been affected by the direction of the principal axes.

4 Properties of loss

For more convenient notation we will introduce a flattening function h : Rm×m → Rm2

s.t.
h(x)(i−1)∗m+j = xi,j∀i, j ∈ {1, 2, · · ·m} and an inflation function g such that g = h−1.

In this section F is an element of R9. ||.||F is the frobenius norm. ||.||2 for vectors is the traditional
L2 norm. At one place we use the matrix 2 norm which is the magnitude of the largest eigenvalue.
We will use the nonstandard notation ||.||M2 for this norm to avoid confusion. The standard notation
for this norm is ||.||2. We will use the fact that tr(g(F)TR) = FTh(R) and ||g(F)||F = ||F ||2

3

4.1 Lipschitz continous

Here we show that the loss is α-Lipschitz continous for α=6. This is equivalent to the L2 norm of the
gradient being less than 6.

Loss(F,R) = log(a(g(F)))− tr(g(F)TR) (2)

The gradient is

||∇FLoss(F,R)||2 = ||∇F log(a(g(F)))− h(R)||2 ≤ ||∇F log(a(g(F)))||2 + || − h(R)||2 (3)

The last step follows from triangle inequality

We know ||h(R)||2 = ||R||F = 3 since it is a rotation matrix.

We now use the definition of a(F) to compute the gradient

∇F log(a(g(F))) =
∇Fa(g(F))
a(g(F))

=
1

a(g(F))
∇F

∫
h(R)∈SO(3)

exp(tr(g(F)TR))dR = (4)

1

a(g(F))

∫
R∈SO(3)

h(R) exp(FTh(R)))dR = E[h(R)|F] (5)

Due to convexity of frobenius norm and Jensen’s inequality we have ||∇F log(a(g(F)))||2 =
||E[h(R)|F])||2 = ||E[R|F]||F ≤ E[||R||F |F] = 3 This concludes the proof.

4.2 Convexity

We first compute the hessian of log(a(g(F)))

We already have ∇F log(a(g(F))) =
1

a(g(F))

∫
R∈SO(3)

h(R) exp(tr(g(F)TR))dR from previous

section.

We differentiate again to get

(∇2log(a(g(F))))i,j =
1

a(g(F))

∫
R∈SO(3)

h(R)ih(R)j exp(tr(g(F)
TR))dR− (6)

1

(a(g(F)))2

∫
R∈SO(3)

h(R)i exp(tr(g(F)
TR))dR

∫
R∈SO(3)

h(R)j exp(tr(g(F)
TR))dR = (7)

E[h(R)h(R)T]i,j − (E[h(R)]E[h(R)]T)i,j = V ar[h(R)]i,j (8)

Since a variance matrix is positive semidefinite it follows that the hessian is as well. Therefore this
term is convex The term tr(g(F)TR) is linear. Linear functions are convex. The set of convex
functions are closed under addition. Therefore the loss is convex with respect to the network output
F .

4.3 Lipschitz continous gradients

A function has β-Lipschitz continous gradients if the largest eigenvalue of the hessian is less than β.

We know

||∇2log(a(g(F))))||M2 = ||V ar[h(R)]||M2 ≤ ||V ar[h(R)]||F = (9)

||E[h(R)h(R)T]− E[h(R)]E[h(R)]T ||F ≤ ||E[h(R)h(R)T]||F ≤ (10)

E[||h(R)h(R)T ||F] ≤ E[||h(R)||2F] = 9 (11)

Therefore this function has β-Lipschitz continous gradients with β=9

4

5 Approximating the normalizing constant

The normalizing constant can be expressed as a generalized hypergeometric function of matrix
arguments. This can be defined recursively by integrals over positive definite matrices [2]. Similar to
the standard generalized hypergeometric function it has a combinatorial definition as well which is

1F
(2)
1 (12 , 2, X)

∞∑
k=0

∑
κ`k

(12)
(2)
κ

k!(2)
(2)
κ

C(2)
κ (X) (12)

For details see [3]. Another way to compute this function is given in [6].

The normalizing constant can also be expressed as a one dimensional integral over Bessel functions
as described by the equation (14) and (15) in [4]. We approximate this integral by using the trapezoid
rule. In the approximation we use for experiments 511 trapezoids. We use standard polynomials to
approximate the Bessel function using Horner’s method. Trapezoid integrals and parallel evaluations
of Horner’s method are simple to implement in a vectorized manner using for example numpy or
pytorch, in the latter case to potentially run on a GPU. Our implementation of this approximation has
a negligible computational cost compared to the forward and backward pass of a neural network.

To ensure correctness we have checked that the analytical and numerical gradients of the functions
are similar, we have also compared this implementation with Koev’s implementation [3] to check that
the two implementations are consistent.

To approximate the correctness we have used the same implementation (i.e. trapezoid integrals of
bessel functions) with 214 − 1 trapezoids in float128 precision in place of the "true function". The
only source of errors which we know remains is the approximation of the bessel function, but here
we use a standard method which should have a very high accuracy.

We have evaluated our function on 1000 randomly sampled points with singular values less than 50,
with a 50% chance of setting the smallest eigenvalue to be negative. We believe this should cover the
values we will encounter during training. We do not think there are any issues with using this method
for larger singular values either.

For these experiments we evaluated the accuracy of our forward pass by evaluating |log(a(S))−f(S)|
where f is our approximation of log(a(S)). We evaluate the accuracy of the backward pass by
evaluating. ||∇Slog(a(S))− g(S)||2 where g is our approximation of ∇Slog(a(S)) and ||.||2 is the
vector 2 norm.

The maximum error encountered in the forward pass was 4.6 ∗ 10−3. The mean error of the forward
pass was less than 1.2 ∗ 10−3. The maximum error for the backward pass was less than 3.4 ∗ 10−3.
The mean error for the backward pass was less than 6.9 ∗ 10−4.

6 Pascal3D preprocessing

Figure 5: illustration of how naive cropping changes perceived orientation. Left: original image with
bounding box. Middle: Cropped image with unchanged ground truth orientation. Right: warped
image with adjusted ground truth orientation. As we can see the middle image appears to have a
different azimuth due to aspect ratio of bounding box. On the right image the green axis is well
aligned with the "backwards" direction of the car.

5

The flaws of using cropping as a method are twofold. Firstly if the width and height of the bounding
box are not the same the scaling can cause artifacts which are very similar to a rotation. For reference
see figure 5. Secondly as the object moves away from the principal axis of the camera the cropped
image will change in a similar manner compared to when the object is rotated.

To solve these issues we assume that the position of the bounding box of the object is known. We
now create a desired pinhole camera which is rotated relative to the real camera in such a way that the
principal axis is facing the center of the bounding box. We let the intrinsic of the desired camera be

Iideal =

[
f 0 s/2
0 f s/2
0 0 1

]
Where s is the size of the pictures taken with this camera and f is picked to be the largest value such
that all points of the bounding box is still inside of the pictures taken with the virtual camera.

The transformation between the desired camera and the real camera is now a homography, we can
simulate taking pictures with the desired camera warping the image from the real camera.

When we estimate orientations we estimate them relative to the new camera. This is not cheating
since if one wanted the orientation in the camera coordinate system on could just apply the (known)
inverse rotation between the two cameras, and the loss and evaluation metric are both invariant to
what coordinate system is used.

6.1 Camera details

To compute rotation for the desired camera we first backproject every corner of the bounding box
onto a sphere by

p̂ = I−1real

[
py
px
1

]
(13)

followed by

p =
p̂

||p̂||2
(14)

where px, py is the position in the image and p is the backprojected point on a sphere.

We now have 4 points on a sphere, to find the desired direction of the principal point we apply a
modified version of Welzl’s algorithm to find the minimal enclosing sphere of these points, subject to
the constraint that the center of the enclosing sphere have a center at distance one from the origin.

If the bounding box spans more than 180 degrees one could get a solution from Welzl’s algorithm
which is pointing 180 degrees in the wrong direction. Since the datasets use normal cameras this will
not happen. In addition to this, if the bounding box spans more than 180 degrees it is not possible for
a pinhole camera to capture the whole object, due to limitations of the pinhole model.

There is one more degree of freedom, for the rotation of the ideal camera, we eliminate this degree by
adding a constraint on the direction for the y axis in the desired image.

We can now choose the focal length to be the largest value constrained by the fact that all bounding
box coordinates has to be projected in [0, s]× [0, s], i.e. visible in the warped image.

6

References
[1] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks.

In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1321–1330.
JMLR. org, 2017.

[2] Carl S Herz. Bessel functions of matrix argument. Annals of Mathematics, pages 474–523, 1955.

[3] Plamen Koev and Alan Edelman. The efficient evaluation of the hypergeometric function of a matrix
argument. Mathematics of Computation, 75(254):833–846, 2006.

[4] Taeyoung Lee. Bayesian attitude estimation with the matrix fisher distribution on so (3). IEEE Transactions
on Automatic Control, 63(10):3377–3392, 2018.

[5] Siddharth Mahendran, Haider Ali, and Rene Vidal. A mixed classification-regression framework for 3d
pose estimation from 2d images. arXiv preprint arXiv:1805.03225, 2018.

[6] Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, and Nobuki Takayama. Properties
and applications of fisher distribution on the rotation group. Journal of Multivariate Analysis, 116:440–455,
2013.

7

	Additional experimental results
	Additional quantitative results
	Additional qualitative results

	Overfitting confidences
	Geometric interpretation of the matrix Fisher distribution
	Properties of loss
	Lipschitz continous
	Convexity
	Lipschitz continous gradients

	Approximating the normalizing constant
	Pascal3D preprocessing
	Camera details

