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A Spiking dynamics as a greedy optimization algorithm on the minimax

objective

We first show the derivation of the spiking dynamics for I neurons. Because we are maximizing over rI ,
the neuron fires a spike when it increases the objective. The firing condition for neuron k correspond to
S(rE , rI + ek) > S(rE , rI), where ek denotes the standard basis vector. By plugging in Eq. (4), we have
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where �jk denotes the j-th element of the standard basis vector ek. We define the membrane potential and the
firing threshold of the I neurons.
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Next, we derive the dynamics of the membrane potential. For ⌧E = ⌧I and using Eq. (3) for the definition of
r
I/E
i , we arrive at:
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We recognize this as the standard integrate-and-fire spiking dynamics with threshold T
I
k = 1

2W
II
kk [45].

For the E neurons, we proceed similarly. The firing condition for a neuron k is S(rE + ei, r
I) < S(rE , rI),

where ei is the i-th standard basis vector. Eq. (4) implies
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Defining the membrane potential and the firing threshold
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we can obtain dynamics of the membrane potential for ⌧E = ⌧I = ⌧ :

dV
E
k

dt
= � 1

⌧
V

E
k +

X

i

W
EE
ki s

E
i �

X

i

W
EI
ki s

I
i +

X

i

Fiks
0
i , (SI.6)

with spiking threshold T
E
k = � 1

2W
EE
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B Convergence of the dynamics

B.1 Second order sufficient condition for optimality

We cite a theorem from [46].

Theorem 1 The solution x
⇤
,�

⇤
obeying the KKT conditions is a constrained local minimum if for the La-

grangian

L(x,�) = f(x) +
mX

i=1

�igi(x), (SI.7)
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we have

sTr2
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where s 6= 0 is a vector satisfying

rxgi(x
⇤)T s = 0, (SI.9)

where only those active inequality constraints gi(x) corresponding to strict complimentarity (i.e. where �i > 0)

are applied.

We apply Thm. 1 to our minimax objective, for the maximization problem with s as the activities of inhibitory
neurons that are active, and rxxL(x

⇤
,�

⇤) gives ŴII . ŴII is the submatrix where strict complimentarity is
applied (namely when rI > 0), and therefore the second order sufficient condition for optimality is ŴII < 0.
Plugging in the optimal solution for rI in the maximization problem and similarly deriving the condition for
optimality for the minimization over rE according to Thm. 1, we obtain ŴEIŴII�1

ŴIE � ŴEE < 0.

B.2 Rate dynamics and convergence

We can prove the convergence of a rate dynamics derived from the same minimax objective, for trajectories that
do not include switching between active and inactive neurons, i.e., active neurons at initialization remain active,
and silent neurons remain silent throughout the trajectory. In practice we observe convergence even when a
transition between active and inactive states occurs during the dynamics for some cases.

We use a slightly modified objective function of the form
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The last two terms are related to nonlinear neural activations. For ReLU neurons with thresholds ✓E and ✓I ,
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The rate dynamics that optimizes this objective is
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To investigate convergence, we can construct an energy function of the system [16] assuming ⌧E = ⌧I = ⌧ :
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1
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2
|ṙI |2 + �S, � 2 R. (SI.12)

Next we show that the energy function is decreasing. Except for a set of measure zero (8i, uE/I
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We compute the time derivative of the energy function:
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If ŴII � �I is positive definite and ŴEE � �I is negative definite, then any bounded trajectory that does
not cross ui = 0 boundaries (and cause changes in the set of active/inactive neurons) are convergent. If
min�(ŴII) > max�(ŴEE), then there exist � such that min�(ŴII) > � > max�(ŴEE), and the
condition is satisfied.

Now we proved that any bounded trajectories that do not cross the ui = 0 boundaries are convergent, we need to
further prove that the trajectories are bounded. We applying Thm. 2 in [32].

Theorem 2 Given a twice differentiable objective S, suppose that �inf (Sxx) > �sup(Syy). If either

1. �inf (Sxx > 0) and �V (y) = �minx S(x,y) is radially unbounded, or

2. �inf (Syy < 0) and U(y) = maxy S(x,y) is radially unbounded

is also satisfied, then any trajectory of gradient descent-ascent is bounded.

We see that the condition for boundedness is the same as the condition for second order optimality as discussed
in SI. B.1.

C Attractor networks

C.1 Optimization problem for designing weights in fixed point attractor networks

We design the network weights in order to store fixed point attractors by solving an optimization problem. For
a given attractor state m, we denote the set of active neurons as Am and the set of silent neurons as Im. We
formulate the following optimization problem.
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Here ŴEI/EE/IE/II
m denote the submatrices with rows and columns corresponding to the active neurons in

attractor state m. The expression for V m
i is given by plugging in rE and rI in the attractor state m into Eq.

(2) for E and I neurons respectively. Constraint 1 corresponds to the KKT condition on the inactive neurons.
Constraints 2 and 3 guarantee convergence of rate dynamics when the trajectory does not cross the ui = 0
boundaries. Constraints 4,5,6 are imposed for symmetry and nonnegativity of the matrices.

This is a nontrivial optimization problem with nonlinear constraints. We used the Sequential Quadratic Program-
ming (SQP) algorithm for MATLAB function fmincon [47] to solve this optimization problem. We start with
different initial values and only accept solutions that satisfy min

P
m

P
i2Am

kV m
i k2 = 0.

C.2 Different parameter regimes in ring attractor network

The energy function of a standard ring attractor model is given by
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Here h0 + h1 cos(✓0 � ✓i) is the input term, and f(x) = [x]+ is ReLU nonlinearity. This network has different
parameter regimes for different behaviors [41]. When w0 � 1, the network is unstable and the firing rate goes to
infinity. When w1 < 2, we have signal amplification, the network has larger response amplitude than its input.
Finally, when w1 � 2, there is symmetry breaking, the network can pick up inhomogeneous response even when
the input is homogeneous (h1 = 0). The stable states of the network lie on a ring, and which steady state the
network reaches depends on the initial conditions. The same parameter regimes and behaviors apply for our E-I
network.

The parameters used in the simulations for Fig. 4a&b are w0 = 0.5, w1 = 2.7, h0 = 10. For the top panel,
� = 0. For 0-10s, h1 = 5 and ✓0 = 7

4⇡. For 20-30s h1 = 5 and ✓0 = 3
4⇡. h1 = 0 otherwise, and the input is

thus homogeneous.
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Figure SI.1: The E and I in-
puts for 30⌧ , they are not bal-
anced for network with trav-
elling wave with the above
parameters except h1 = 0
throughout the simulation
and � = 0.08.

For the travelling wave, we show that the E and I inputs are not balanced, because the system does not reach
equilibrium, as shown in Fig. SI.1.

C.3 Grid attractor

The energy function is given by
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Here Ai is the input to each neuron, in our simulation, we assume homogeneous input Ai = A, 8i. f(x) = [x]+
represents ReLU nonlinearity. Function W0(x) is given by W0(x) = ae

��|x|2 � e
��|x|2 . For simulation of

the spiking network with grid attractor, the parameters we used are NE = NI = 632, neurons are arranged in a
63⇥ 63 square sheet, ⌧E = 0.5, ⌧I = 0.2, ⌧ = 0.5,� = 6,� = 3�2, ↵ = 1.1, � = 1.2�, A = 2.

For code used to reproduce results in this paper, see https://github.com/Pehlevan-Group/
BalancedEIMinimax.
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