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1 ResNet architectures with parameter sharing
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(a) SpatialMultiOmniglot archi-
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(b) MNIST architecture.
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Figure 1: Convolutional ResNet architectures

In Figure 1, we give the exact architectures for the fk used in the two high-dimensional experiments
on SpatialMultiOmniglot and MNIST. These fk output a hidden vector for the kth bridge, which is
then mapped to the scalar value of the log-ratio, as stated in each experiment section. All convolution
operations share their parameters across the bridges, and are thus independent of k.

The only difference between our conditional residual blocks (i.e. ‘CondResBlocks’) and a standard
residual block is the use of ‘ConditionalScaleShift’ layers. These layers map a hidden vector zk to a
hidden vector of the same size, z′k, via

z′k = sk � zk + bk (1)

where sk and bk are bridge-specific parameters and � denotes element-wise multiplication. This
operation could be thought of as class-conditional Batch Normalisation (BN) [3] without the normali-
sation. We did not investigate the use of BN, since many energy-based modelling papers (e.g. [4])
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found it to harm performance. We did perform preliminary experiments with Instance Normalisation
[20] in the context of energy-based modelling, finding it to be harmful to performance.

For the MNIST energy-based modelling experiments, we use average pooling operations since
other work [19, 4] has found this to produce higher quality samples than max pooling. For the
SpatialMultiOmniglot experiments, we grid-search over average pooling and max pooling. For both
sets of experiments, we use LeakyRelu activations with a slope of 0.3.

The MNIST architecture includes an attention block [21] which has been used in GANs to model long-
range dependencies in the input image. We found that this attention layer did not yield improvements
in estimated log-likelihood, but we think it may yield slightly more globally coherent samples. We
note that that another commonly used feature in recent GAN and EBM architectures is Spectral
Normalisation (SN) [13]. Our preliminary experiments suggested that SN was not beneficial for
performance. That said, all of our negative results should be taken with a grain of salt, given the
preliminary nature of the experiments.

2 Waymark number and spacing

As stated in the main text, the number and (in the case of linear combinations) the spacing of the
waymarks are treated as hyperparameters. Finding good values of these hyperparameters is made
simpler by the following observations.

• If any of the TRE logistic losses saturate close to 0 during learning, then this indicates that
the density-chasm problem has occured for that bridge, and we can terminate the run.

• As illustrated by our sensitivity analysis for MNIST (see Figure 5) it seems that, past a
certain point, performance plateaus with the addition of extra waymarks. The fact that it
plateaus, and does not decrease, is good news since it indicates that there is little risk of
‘overshooting’, and obtaining a bad model by having too many waymarks.

We now recall the linear combinations waymark mechanism, given by

xk =
√

1− α2
k x0 + αkxm, k = 0, . . . ,m. (2)

where m is the number of waymarks. We consider two ways of reducing the coefficients αk to a
function of a single spacing hyperparameter p via

αk = (k/m)p, k = 0, . . . ,m, (3)

αk =

{
(k/m)p, for k ≤ m/2
1− ((m− k)/m)p, for k ≥ m/2

}
k = 0, . . . ,m. (4)

Both mechanisms yield linearly spaced αk when p = 1. For the first mechanism in (3), setting p > 1
means the gaps between waymarks increase with k (and conversely decrease if p < 1). The spacing
mechanism in (4) is a kind of symmetrised version of (3).

Table 1 shows the grid-searches we performed for all experiments. We note that these weren’t always
all performed in parallel. When using linear combinations, we typically set p = 1 initially and
searched over values of m. If, for all values of m tested, one of the TRE logistic losses saturated
close to 0, then we would expand our search space and test different values of p.

Table 1: Waymark hyperparameters for each experiment. Curly braces {} denote grid-searches.

experiment mechanism m spacing p

1d peaked ratio linear combo 4 Eq. 3 {1, 2, . . . , 7, 8}
high dim, high MI linear combo d

40 × {1, 2, 3, 4} Eq. 3 1
SpatialMultiOmniGlot dim-wise mix d N/A N/A
MNIST (z-space) linear combo {5, 10, 15, 20, 25, 30} Eq. 3 1
MNIST (x-space) linear combo {5, 10, 15, 20, 25, 30} Eq. { 3, 4 } {1, 1.5, 2}

Note: d refers to the dimensionality of the dataset, which is varied for certain experiments.
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3 Minibatching

Recall that the TRE loss is a sum of logistic losses:

LTRE(θ) =
1

m

m−1∑
k=0

Lk(θk), (5)

Lk(θk) = −Exk∼pk log
( rk(xk;θk)

1 + rk(xk;θk)

)
− Exk+1∼pk+1

log
( 1

1 + rk(xk+1;θk)

)
. (6)

When generating minibatch estimates of this loss, we can either sample from each pk independently,
or we can couple the samples. By ‘couple’, we mean first drawing B samples each from p0 and
pm, randomly pairing members from each set, and then, for each pair, constructing all possible
intermediate waymark samples to obtain a final minibatch of size B ×M . Coupling in this way
means that the gradient of (5) w.r.t. θ is estimated using shared sources of randomness, which can act
as a form of variance reduction [14].

In all of our experiments, we use coupling when forming minibatches, since we found it to be useful
in some preliminary investigations. However, coupling does have memory costs: the number of
independent samples drawn from the data distribution, B, may need to be very small for the full
minibatch, B ×M , to fit into memory. We speculate that as B becomes sufficiently small, coupled
minibatches will produce inferior results to non-coupled minibatches (which can use a greater number
of independent real data samples). Empirical investigation of this claim is left to future work.

4 1d peaked ratio toy experiment

In this experiment we estimate the ratio p0/pm, where both densities are Gaussian, p0 = N (0, σ2
0)

and pm = N (0, σ2
m), where σ0 = 10−6 and σm = 1. We generate waymarks using the linear

combinations mechanism (2), which implies that each waymark distribution is Gaussian, since linear
combinations of Gaussian random variables are also Gaussian. Specifically, the waymark distributions
have the form

pk(x) = N (x; 0, σ2
k), where σk =

[
(1− α2

k)σ2
0 + α2

kσ
2
m

] 1
2 . (7)

where the σk form an increasing sequence between σ0 and σm. The log-ratio between two waymark
distributions is therefore given by

log
pk(x)

pk+1(x)
= log

(σk+1

σk

)
+
( 1

2σ2
k+1

− 1

2σ2
k

)
x2. (8)

We parameterise the bridges in TRE as

log rk(x; θk) = log
(σk+1

σk

)
− exp(θk)x2, (9)

where the quadratic coefficient− exp(θk) is always negative. We note that this model is well-specified
since it contains the ground-truth solution in (8).

The bridges can then be combined via summation to provide an estimate of the original log-ratio

log
p0(x)

pm(x)
≈
m−1∑
k=0

log rk(x; θk) (10)

= log
(σm
σ0

)
−
m−1∑
k=0

exp(θk)x2 (11)

= log
(σm
σ0

)
− exp(θTRE)x2 (12)

Where θTRE = log(
∑m−1
k=0 exp(θk)). We observe that (12) has the same form as (9) if we were

to set m = 1 in (9) (i.e. if we use a single bridge). Hence θTRE can be directly compared to the
parameter value we would obtain if we used single density-ratio estimation. This is precisely the
comparison we make in Figure 1a and Figure 2 of the main text.
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4.1 The density chasm problem for non-logistic loss functions

In the main paper, we illustrated the density-chasm problem for the logistic loss using the 1d peaked
ratio experiment. Here, we illustrate precisely the same phenomenon for the NWJ/MINE-f loss
[16, 1] and a Least Squares (LSQ) loss used by [12]. The loss functions are given by

LNWJ(θ) = −Ep
[
log r(x;θ)

]
− 1 + Eq

[
r(x;θ)

]
(13)

LLSQ(θ) =
1

2
Ep
[
(σ(log(r(x;θ)))− 1)2

]
+

1

2
Eq
[
(σ(log(r(x;θ))))2

]
, (14)

where the σ in (14) denotes the sigmoid function.

In Figures 2 & 3, we can see how single-density ratio estimation performs when using the NWJ and
LSQ loss functions for 10,000 samples. the loss curves display the same ‘saturation’ effect seen for
the logistic loss, where many settings of the parameter yield an almost identical value of the loss.
Moreover, the minimiser of these saturated objectives is far from the ‘true’ minimiser (black dotted
lines).

Figures 2 & 3 also show the performance of TRE when each bridge is estimated using the NWJ/LSQ
losses. Each TRE loss has a quadratic bowl shape, where the finite-sample minimisers almost
perfectly overlap with the true minimisers.

Finally, we plot sample efficiency curves for both the NWJ and LSQ losses, showing the results in
Figure 4. We see that single density-ratio estimation with NWJ or LSQ performs poorly, with at best
linear gains for exponential increases in sample size. In contrast, if we perform TRE using NWJ or
LSQ losses, then we obtain significantly better performance with orders of magnitude fewer samples.
These findings are essentially the same as those presented in the main paper for the logistic loss.

5 High-dimensional ratio with large MI toy experiment

In this experiment we estimate the ratio p0/pm, where both densities are Gaussian, p0 = N (0,Σ)
and pm = N (0, I), where Σ is a block-diagonal covariance matrix, where each block is 2 × 2
with 1 on the diagonal and 0.8 on the off-diagonal. Since we know its analytic form, we can
view pm as a noise distribution, and the ratio-estimation task as an energy-based modelling problem.
Alternatively, we may view the problem as a mutual information estimation task, by taking the random
variable x = (x1, . . . , xd) ∼ p0, and defining u = (x1, x3, . . . , xd−1) and v = (x2, x4 . . . xd). By
construction, we therefore have p(u)p(v) = N (x; 0, I) = pm(x).

We generate 100, 000 samples for each of the train/validation/test splits. We use a total batch size of
1024, which includes all samples from the waymark trajectories. The bridges in TRE have the form
log rk(x) = xTWkx + bk, where we enforce that the diagonal entries of Wk are positive and that
the matrix is symmetric. We use the Adam optimiser [8] with an initial learning rate of 0.0001 for
TRE, and 0.0005 for single ratio estimation. We use the default Tensorflow settings for β1, β2 and ε.
We train the models for 40, 000 iterations, which takes at most 1 hour.

6 MI estimation & representation learning on SpatialMultiOmniglot

We here describe how we created the SpatialMultiOmniglot dataset and give the derivation for the
ground truth mutual information values presented in the main paper1. We will share the dataset, along
with code for the paper, upon publication. We also state the hyperparameter settings used in our
experiments.

6.1 Dataset construction

We take the Tensorflow version of the Omniglot dataset (https://www.tensorflow.org/
datasets/catalog/omniglot) and resize it to 28 × 28 using the tf.image.resize function.
We arrange the data into alphabets {Ai}li=1, where each alphabet contains ni characters. The alpha-
bets are sorted by size, so that n1 > n2 > . . . > nl. Each character in a alphabet has 20 different

1The original work from which we borrow this experiment [17] did not not provide a detailed explanation or
code.
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Figure 2: Replica of Figure 1 from the main text, except that we use the NWJ/MINE-f loss [16, 1] for
both the single ratio estimator & for each ratio in TRE.

Least-square loss

100 10 1 10 2 0 10 2 10 1 100

x

0

10 1

101

103

105

de
ns

ity
/ra

tio
 v

al
ue p(x)

q(x)
p(x)
q(x)

4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

0.5

lo
gi

st
ic 

lo
ss

n( )

*

TRE

p
q

= p
p1

× p1
p2

× p2
p3

× p3
q

100 100

x

0

106

de
ns

ity
/ra

tio
 v

al
ue p(x)

p1(x)
p(x)
p1(x)

5 10 15 20
0

0.0

0.4

lo
gi

st
ic 

lo
ss

n
0( 0)

0
*
0

100 100

x

0

103
p1(x)
p2(x)
p1(x)
p2(x)

2.5 5.0 7.5 10.0 12.5
1

n
1( 1)

1
*
1

100 100

x

0

101 p2(x)
p3(x)
p2(x)
p3(x)

2 4 6
2

n
2( 2)

2
*
2

100 100

x

0

101

p3(x)
q(x)
p3(x)
q(x)

0.5 1.0 1.5 2.0 2.5
3

n
3( 3)

3
*
3

Figure 3: Replica of Figure 1 from the main text, except that we use the least-square loss from the
GAN literature [12] for both the single ratio estimator & for each ratio in TRE.
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Figure 4: Sample efficiency curves for the 1d peaked ratio experiment, using different loss functions.

versions (e.g. there are 20 different images depicting the letter ‘w’). Hence, we can express each
alphabet as a set Ai = {{aij,k}20k=1}

ni
j=1, where aij,k refers to the kth version of the jth character of

the ith alphabet.

In order to construct the d-dimensional version of the SpatialMultiOmniGlot dataset, we restrict
ourselves to the d largest alphabets {Ai}di=1. We then sample a vector of categorical random variables

j = (j1, . . . , jd) ∼ Cat(n1)× . . .Cat(nd) (15)

where the ith categorical distribution is uniform over the set {1, . . . , ni} and is independent from the
other categorical distributions. The vector j should be thought of as an index vector that specifies a
particular character from each of the d alphabets.

We then sample two i.i.d random variables k and k′, via

k = (k1, . . . , kd) ∼
d∏
i=1

Cat(20) k′ = (k′1, . . . , k
′
d) ∼

d∏
i=1

Cat(20) (16)

where, again, each Categorical distribution is independent from the rest. These vectors should be
thought of as index vectors that specify a particular version of a character.

Now, we define a datapoint as a tuple x = (u,v), where

u = (a1j1,k1 , . . . , a
d
jd,kd

) v = (a1j1+1,k′1
, . . . adjd+1,k′d

). (17)

In words, we construct u and v such that ui and vi are consecutive characters within their alphabet
(whilst the precise versions of the characters are randomised). Finally, we arrange u and v into a grid
using raster ordering. This is possible since we assume d to be a square number.

Importantly, we emphasise that u,v ∈
∏d
i=1Ai are discrete random variables defined over a set

of template images. They are not defined over a space of pixel values, as is usually the case in
image-modelling.

6.2 Derivation of ground truth MI

By construction, we have that u and v are conditionally independent given j. This means

p(u| v, j) = p(u| j). (18)

Furthermore, will assume that, for all u there exists a unique ju such that

p(ju| u) = 1. (19)
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Similarly, for any v, there exists a unique jv satisfying the same condition. In words, this simply
means that, given a grid of Omniglot images, we assume there is no ambiguity about which characters
are present. Using Bayes’ rule, and the fact that for a given j, u is uniquely determined by k, one can
then deduce that

p(u| j) =

{
0, for j 6= ju
20−d, for j = ju

}
. (20)

and similarly for v.

We now proceed to derive an analytical formula for the ground truth mutual information between
u and v. We show that the mutual information is equal to the sum of the log alphabet sizes
I(u,v) =

∑d
i=1 log ni.

This holds because

I(u,v) = Ep(u,v) log
p(u,v)

p(u)p(v)
(21)

= Ep(u,v) log
p(u| v)

p(u)
(22)

= Ep(u,v) log

∑
j p(u, j| v)∑
j p(u, j)

(23)

= Ep(u,v) log

∑
j p(u| j)p(j| v)∑
j p(u| j)p(j)

by (18) (24)

= Ep(u,v) log
p(u| jv)∑
j p(u| j)p(j)

by (19) (25)

= Ep(u,v) log
p(u| jv)

p(u| ju)p(ju)
by (20) (26)

= Ep(u,v) log
1

p(ju)
since jv = ju if p(u,v) > 0 (27)

= Ep(u,v) log
( d∏
i=1

ni
)

since p(j) is uniform (28)

=

d∑
i=1

log ni (29)

6.3 Experimental settings

We generate 3 versions of the SpatialMultiOmniglot dataset for d = 1, 4, 9. For each version, we
sample 50, 000 training points and 10, 000 validation and test points. As stated in the main text, we
use a separable architecture given by

log rk(u,v) = g(u)TWkfk(v), (30)
where fk is a convolutional ResNet whose architecture is given in Figure 1a. The function g is also
a convolutional ResNet with almost the same architecture, except that none of its parameters are
bridge-specific, and hence the ‘ConditionalScaleShift’ layers simply become ‘ScaleShift’ layers, with
no dependence on k.

To construct a mini-batch, we first sample a batch from the joint distribution p(u,v). We then obtain
samples from p(u)p(v) by sampling a second batch from the joint distribution (which could overlap
with the first batch), and shuffling the v vectors across this second batch. Finally, we construct
waymark trajectories as described in the main text. For all experiments, the ‘total’ batch size is
∼ 512, which includes all samples from the waymark trajectories. Thus, as the number of waymarks
increases, the number of trajectories in a batch decreases.

We use the Adam optimiser [8] with an initial learning rate of 10−4 with default Tensorflow settings
for β1, β2 and ε. We gradually decrease the learning rate over the course of training with cosine
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annealing [11]. All models are trained using a single NVIDIA Tesla P100 GPU card for 200, 000
iterations, which takes at most a day.

We grid-searched over the type of pooling (max vs. average) and the size of the final dense layer
(150n, 300n and 450n, where d = n2). Interestingly, average pooling was less prone to overfitting
and often yielded better final performance, however it was often ‘slow to get started’, with the TRE
losses hardly making any progress during the first quarter of training.

For the representation learning evaluations, we first obtained the hidden representations g(u) for
the entire dataset. We then trained a collection of independent supervised linear classifiers on top
of these representations, in order to predict the alphabetic position of each character in u. We used
the L-BFGS optimiser to fit these classifiers via the tfp.optimizer.lbfgs_minimize function,
setting the maximum iteration number to 10, 000.

7 Energy-based modelling on MNIST

We here discuss the parameterisation of the noise distributions used in the experiments, the exact
method for sampling from the learned EBMs, and the experimental settings used for TRE.

For all noise distributions and TRE models, we use the Adam optimiser [8] with an initial learning
rate of 10−4 with default Tensorflow settings for β1, β2 and ε. We gradually decrease the learning
rate over the course of training with cosine annealing [11]. All models are trained using a single
NVIDIA Tesla P100 GPU card.

7.1 Noise distributions

As stated in the main text, we consider three noise distributions: a multivariate Gaussian, a Gaussian
copula and a rational-quadratic neural spline flow (RQ-NSF), all of which are pre-trained via
maximum likelihood estimation.

The full-covariance multivariate Gaussian is by far the simplest, and can be fitted in around a
minute via np.cov. The Gaussian copula is slightly more complicated. Its density can be written
as p(x) = N ([s1(x1), . . . , sd(xd)];µ,Σ)

∏d
i=1 |s′i(xi)|. The si are given by the composition of the

inverse CDF of a standard normal and the CDF of the univariate xi. It is possible to exploit this to
learn the si—as well as µ and Σ—however, we found it slightly simpler to directly parametrise the
si via flexible rational-quadratic spline functions [5] of which there are official implementations in
Tensorflow and Pytorch and to jointly learn all parameters via maximum likelihood. We follow the
basic hyperparameter recommendations in [5]. The hyperparameters that required tuning were the
number of bins (we use 128) and the interval widths (which we set to 3 times the standard deviation
of the data). For optimisation, we used a batch size of 512 and trained for 40, 000 iterations.

Finally, we turn to the RQ-NSF model [5]. We largely adopt the architectural choices of [5], and so
for a more detailed explanation, we refer the reader to their work. We use a multi-scale convolutional
architecture comprised of 2 levels, where each level contains 8 ‘steps’. A step consists of an actnorm
layer, an invertible 1 × 1 convolution, and a rational-quadratic coupling transform. The coupling
transforms are parameterised by a block of convolution operations following [9], which use 64 feature
maps. The spline functions use 8 bins and the interval width is set to [-3, 3]. We do not ‘factor out’
half of the variables at the end of each level, but do perform ‘squeeze’ operation and an additional
1× 1 convolution. For optimisation, we set the batch size to 256, the dropout rate to 0.1, and train for
200, 000 iterations, which takes under a day.

7.2 Annealed MCMC Sampling

We here describe how we leverage the specific products-of-experts structure of the TRE model to
perform annealed MCMC sampling. Firstly, we initialise a set of MCMC chains with i.i.d samples
from the noise distribution pm. We could then run an MCMC sampler with the full TRE model as
the target distribution. However, we instead use an annealing procedure, whereby we iteratively
sample from a sequence of distributions that interpolate between pm and p0. Such distributions can
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be obtained by multiplying pm with an increasing number of bridges

pk(x) = pm(x)

m−1∏
i=k

rk(x), k = m− 1, . . . 0. (31)

To obtain an even smoother interpolation, we further define exponentially-averaged intermediate
distributions pk,t(x) = pk(x)βtpk+1(x)1−βt , where {βt} is a decreasing sequence of numbers
ranging from 1 to 0.

In addition to obtaining samples, we can simultaneously use this annealing procedure for estimating
the log-likelihood of the model via annealed importance sampling (AIS) [15]. We may also run
the annealing procedure ‘in reverse’, initialising a chain at a datapoint and iteratively removing
bridges until the target distribution of the MCMC sampler is the noise distribution. Using this reverse
sampling procedure, we can obtain a second, more conservative, estimate of the log-likelihood via
the reverse annealed importance sampling estimator (RAISE) [2].

Whilst in principle any MCMC sampler could be used, the efficiency of different samplers can vary
greatly. We choose to use the gradient-based No-U-turn sampler (NUTS) [7], which is a highly
efficient method for many applications. We use the official Tensorflow implementation along with
most of the default hyperparameter settings. We set the target acceptance rate to 0.6, and use a max
tree depth of 6 during the annealed sampling. We also continue to run the sampler after the annealing
phase is finished, using a max tree depth of 10. We use a total of 1000 intermediate distributions with
100 parallel chains.

Finally, recall from the main text that each noise distribution in our experiments can be expressed as
invertible transformation F of a standard normal distribution. We use this F to further enhance the
efficiency of the NUTS sampler, by performing the sampling in the z-space, and then mapping the
final results back to x-space. Working in z-space, by the rules of transformations of random variables,
the intermediate distributions of (31) become

pk(z) = N (z; 0, I)
m−1∏
i=k

rk(F (z)). (32)

AIS and RAISE can still be applied, just as before, to obtain an estimate of the log-likelihood in
z-space. The change of variables formula for probability density functions can then be applied to
obtain estimated log-likelihoods for the original TRE model in x-space. We note that when the noise
distribution is a normalising flow, prior work has demonstrated that z-space MCMC sampling can be
significantly more effective than working in the original data space [6].

7.3 Experimental settings

We use the standard version of the MNIST dataset [10], with 50, 000 training points, and 10, 000
validation and test points. We follow the same preprocessing steps as [18], ‘dequantizing’ the dataset
with uniform noise, re-scaling to the unit interval, and then mapping to the real line via a logit
transformation.

The architecture for the TRE bridges is given in Figure 1b. The waymark mechanism and associated
grid-search is given in Table 1. A consistent observation across all our MNIST experiments was that
the first ratio-estimator between the data distribution p0 and a slightly perturbed data distribution p1
was extremely prone to overfitting. We found that the only way to mitigate this problem was to simply
drop the ratio by setting the α0 in (2) to a very small value (0.01) rather than exactly 0. Equivalently,
this can be viewed as applying standard TRE to a very slightly perturbed data distribution. We note
that this perturbation is small enough that is barely visible to the human eye when comparing samples.
We conjecture that this problem may stem from the fact that the original MNIST dataset is actually
discrete not continuous and the ‘dequantizing’ perturbation used to make the data continuous is
perhaps not sufficient.

To form mini-batches, we sample 25 datapoints each from p0 and pm, and then generate waymark
trajectories as described in the main text. Thus, the total batch size is 25 × (m + 1). We use the
optimisation settings described at the beginning of this section, training for 200, 000 iterations, which
takes about a day.
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7.4 Additional results

In Figure 5, we present a sensitivity analysis showing how the quality of the learned EBM varies as we
alter the number of waymarks, as well as the space in which the waymarks are generated. We found
that working in x-space yielded lower performance compared to working in z-space, as measured
by the most conservative estimator, RAISE. In particular, we found that the x-space mechanism
required more waymarks (around 15) to avoid any of the logistic losses saturating close to 0, and it
was significantly harder to tune the spacing of the waymarks as indicated by Table 1.

Finally, for the models whose results were given in the main paper, we display extended image
samples in Figure 6. Note that these samples are ordered by log-density (lowest density in top left
corner, highest in bottom right).

5 10 15 20 25 30
1.22

1.24

1.26

1.28

1.30

1.32

1.34

1.36
Estimated bpd with z-space waymarks

direct
AIS
RAISE

5 10 15 20 25 30

Estimated bpd with x-space waymarks
direct
AIS
RAISE

Figure 5: Waymark sensitivity analysis for TRE with copula noise distribution. Both plots show
the estimated bits per dimension (bpd) as a function of waymark number. On the left we apply the
linear combination waymark mechanism in z-space, whilst on the right we apply it in x-space. As
described in Section 2, we terminate runs where any of the TRE losses saturate close to 0, which is
exactly what happened when using the x-space mechanism for 5 and 10 waymarks.
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(a) Samples from TRE model with Gaussian noise distribution, ordered by log-density.

(b) Samples from TRE model with copula noise distribution, ordered by log-density.

(c) Samples from TRE model with RQ-NSF noise distribution, ordered by log-density.

Figure 6: Extended MNIST samples
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