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Abstract

Graph neural networks (GNNs), which learn the representation of a node by aggre-
gating its neighbors, have become an effective computational tool in downstream
applications. Over-smoothing is one of the key issues which limit the performance
of GNNs as the number of layers increases. It is because the stacked aggregators
would make node representations converge to indistinguishable vectors. Several
attempts have been made to tackle the issue by bringing linked node pairs close
and unlinked pairs distinct. However, they often ignore the intrinsic community
structures and would result in sub-optimal performance. The representations of
nodes within the same community/class need be similar to facilitate the classifica-
tion, while different classes are expected to be separated in embedding space. To
bridge the gap, we introduce two over-smoothing metrics and a novel technique,
i.e., differentiable group normalization (DGN). It normalizes nodes within the same
group independently to increase their smoothness, and separates node distributions
among different groups to significantly alleviate the over-smoothing issue. Exper-
iments on real-world datasets demonstrate that DGN makes GNN models more
robust to over-smoothing and achieves better performance with deeper GNNs.

1 Introduction

Graph neural networks (GNNs) [1, 2, 3] have emerged as a promising tool for analyzing networked
data, such as biochemical networks [4, 5], social networks [6, 7], and academic networks [8, 9]. The
successful outcomes have led to the development of many advanced GNNs, including graph convolu-
tional networks [10], graph attention networks [11], and simple graph convolution networks [12].

Besides the exploration of graph neural network variants in different applications, understanding
the mechanism and limitation of GNNs is also a crucial task. The core component of GNNs, i.e., a
neighborhood aggregator updating the representation of a node iteratively via mixing itself with its
neighbors’ representations [6, 13], is essentially a low-pass smoothing operation [14]. It is in line
with graph structures since the linked nodes tend to be similar [15]. It has been reported that, as the
number of graph convolutional layers increases, all node representations over a graph will converge
to indistinguishable vectors, and GNNs perform poorly in downstream applications [16, 17]. It is
recognized as an over-smoothing issue. Such an issue prevents GNN models from going deeper to
exploit the multi-hop neighborhood structures and learn better node representations.

A lot of efforts have been devoted to alleviating the over-smoothing issue, such as regularizing
the node distance [18], node/edge dropping [19, 20], batch and pair normalizations [21, 22, 23].
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Most of existing studies focused on measuring the over-smoothing based on node pair distances.
By using these measurements, representations of linked nodes are forced to be close to each other,
while unlinked pairs are separated. Unfortunately, the global graph structures and group/community
characteristics are ignored, which leads to sub-optimal performance. For example, to perform node
classification, an ideal solution is to assign similar vectors to nodes in the same class, instead of only
the connected nodes. In the citation network Pubmed [24], 36% of unconnected node pairs belong to
the same class. These node pairs should instead have a small distance to facilitate node classification.
Thus, we are motivated to tackle the over-smoothing issue in GNNs from a group perspective.

Given the complicated group structures and characteristics, it remains a challenging task to tackle
the over-smoothing issue in GNNs. First, the formation of over-smoothing is complex and related to
both local node relations and global graph structures, which makes it hard to measure and quantify.
Second, the group information is often not directly available in real-world networks. This prevents
existing tools such as group normalization being directly applied to solve our problem [25]. For
example, while the group of adjacent channels with similar features could be directly accessed in
convolutional neural networks [26], it is nontrivial to cluster a network in a suitable way. The node
clustering needs to be in line with the embeddings and labels, during the dynamic learning process.

To bridge the gap, in this paper, we perform a quantitative study on the over-smoothing in GNNs from
a group perspective. We aim to answer two research questions. First, how can we precisely measure
the over-smoothing in GNNs? Second, how can we handle over-smoothing in GNNs? Through
exploring these questions, we make three significant contributions as follows.

• Present two metrics to quantify the over-smoothing in GNNs: (1) Group distance ratio,
clustering the network and measuring the ratio of inter-group representation distance over
intra-group one; (2) Instance information gain, treating node instance independently and
measuring the input information loss during the low-pass smoothing.

• Propose differentiable group normalization to significantly alleviate over-smoothing. It
softly clusters nodes and normalizes each group independently, which prevents distinct
groups from having close node representations to improve the over-smoothing metrics.

• Empirically show that deeper GNNs, when equipped with the proposed differentiable group
normalization technique, yield better node classification accuracy.

2 Quantitative Analysis of Over-smoothing Issue

In this work, we use the semi-supervised node classification task as an example and illustrate how to
handle the over-smoothing issue. A graph is represented by G = {V, E}, where V and E represent the
sets of nodes and edges, respectively. Each node v ∈ V is associated with a feature vector xv ∈ Rd

and a class label yv . Given a training set Vl accompanied with labels, the goal is to classify the nodes
in the unlabeled set Vu = V \ Vl via learning the mapping function based on GNNs.

2.1 Preliminaries

Following the message passing strategy [27], GNNs update the representation of each node via
aggregating itself and its neighbors’ representations. Mathematically, at the k-th layer, we have,

N (k)
v = AGG({a(k)vv′W

(k)h
(k−1)
v′ : v′ ∈ N (v)}), h(k)v = COM(a(k)vv W

(k)h(k−1)v , N (k)
v ). (1)

N
(k)
v and h(k)v denote the aggregated neighbor embedding and embedding of node v, respectively. We

initialize h(0)v = xv. N (v) = {v′|ev,v′ ∈ E} represents the set of neighbors for node v, where ev,v′

denotes the edge that connects nodes v and v′. W (k) denotes the trainable matrix used to transform
the embedding dimension. a(k)vv′ is the link weight over edge ev,v′ , which could be determined based
on the graph topology or learned by an attention layer. Symbol AGG denotes the neighborhood
aggregator usually implemented by a summation pooling. To update node v, function COM is applied
to combine neighbor information and node embedding from the previous layer. It is observed that the
weighted average in Eq. (1) smooths node embedding with its neighbors to make them similar. For a
full GNN model with K layers, the final node representation is given by hv = h

(K)
v , which captures

the neighborhood structure information within K hops.
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2.2 Measuring Over-smoothing with Group Structures

In GNNs, the neighborhood aggregation strategy smooths nodes’ representations over a graph [14]. It
will make the representations of nodes converge to similar vectors as the number of layersK increases.
This is called the over-smoothing issue, and would cause the performance of GNNs deteriorates as K
increases. To address the issue, the first step is to measure and quantify the over-smoothing [18, 20].
Measurements in existing work are mainly based on the distances between node pairs [19, 23]. A
small distance means that a pair of nodes generally have undistinguished representation vectors,
which might triggers the over-smoothing issue.

However, the over-smoothing is also highly related to global graph structures, which have not been
taken into consideration. For some unlinked node pairs, we would need their representations to be
close if they locate in the same class/community, to facilitate the node classification task. Without
the specific group information, the metrics based on pair distances may fail to indicate the over-
smoothing. Thus, we propose two novel over-smoothing metrics, i.e., group distance ratio and instance
information gain. They quantify the over-smoothing from global (communities/classes/groups) and
local (node individuals) views, respectively.

Definition 1 (Group Distance Ratio). Suppose that there areC classes of node labels. We intuitively
cluster nodes of the same class label into a group to formulate the labeled node community. Formally,
let Li = {hiv} denote the group of representation vectors, where node v is associated with label i.
We have a series of labeled groups {L1, · · · ,LC}. Group distance ratio RGroup measures the ratio
of inter-group distance over intra-group distance in the Euclidean space. We have:

RGroup =

1
(C−1)2

∑
i 6=j(

1
|Li||Lj |

∑
hiv∈Li

∑
hjv′∈Lj

||hiv − hjv′ ||2)
1
C

∑
i(

1
|Li|2

∑
hiv,hiv′∈Li

||hiv − hiv′ ||2)
, (2)

where || · ||2 denotes the L2 norm of a vector and | · | denotes the set cardinality. The numerator
(denominator) represents the average of pairwise representation distances between two different
groups (within a group). One would prefer to reduce the intra-group distance to make representations
of the same class similar, and increase the inter-group distance to relieve the over-smoothing issue. On
the contrary, a small RGroup leads to the over-smoothing issue where all groups are mixed together,
and the intra-group distance is maintained to hinder node classification.

Definition 2 (Instance Information Gain). In an attributed network, a node’s feature decides its
class label to some extent. We treat each node instance independently, and define instance information
gain GIns as how much input feature information is contained in the final representation. Let X and
H denote the random variables of input feature and representation vector, respectively. We define
their probability distributions with PX and PH, and use PXH to denote their joint distribution. GIns

measures the dependency between node feature and representation via their mutual information:

GIns = I(X ;H) =
∑

xv∈X ,hv∈H

PXH(xv, hv) log
PXH(xv, hv)

PX (xv)PH(hv)
. (3)

We list the details of variable definitions and mutual information calculation in the context of GNNs
in Appendix. With the intensification of the over-smoothing issue, nodes average the neighborhood
information and lose their self features, which leads to a small value of GIns.

2.3 Illustration of Proposed Over-smoothing Metrics

Based on the two proposed metrics, we take simple graph convolution networks (SGC) as an example,
and analyze the over-smoothing issue on Cora dataset [24]. SGC simplifies the model through
removing all the trainable weights between layers to avoid the potential of overfitting [12]. So the
over-smoothing issue would be the major cause of performance dropping in SGC. As shown by the
red lines in Figure 1, the graph convolutions first exploit neighborhood information to improve test
accuracy up to K = 5, after which the over-smoothing issue starts to worsen the performance. At
the same time, instance information gain GIns and group distance ratio RGroup decrease due to the
over-smoothing issue. For the extreme case of K = 120, the input features are filtered out and all
groups of nodes converge to the same representation vector, leading to GIns = 0 and RGroup = 1,
respectively. Our metrics quantify the smoothness of node representations based on group structures,
but also have the similar variation tendency with test accuracy to indicate it well.
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Figure 1: The test accuracy, instance information gain, and group distance ratio of SGC on Cora. We
compare differentiable group normalization with none, batch and pair normalizations.

3 Differentiable Group Normalization

We start with a graph-regularized optimization problem [10, 18]. To optimize the over-smoothing
metrics of GIns and RGroup, one traditional approach is to minimize the loss function:

L = L0 −GIns − λRGroup. (4)

L0 denotes the supervised cross-entropy loss w.r.t. representation probability vectors hv ∈ RC×1

and class labels. λ is a balancing factor. The goal of optimization problem Eq. (4) is to learn node
representations close to the input features and informative for their class labels. Considering the
labeled graph communities, it also improves the intra-group similarity and inter-group distance.
However, it is non-trivial to optimize this objective function due to the non-derivative of non-
parametric statistic GIns [28, 29] and the expensive computation of RGroup.

3.1 Proposed Technique for Addressing Over-smoothing

Instead of directly optimizing regularized problem in Eq. (4), we propose the differentiable group
normalization (DGN) applied between graph convolutional layers to normalize the node embeddings
group by group. The key intuition is to cluster nodes into multiple groups and then normalize them
independently. Consider the labeled node groups (or communities) in networked data. The node
embeddings within each group are expected to be rescaled with a specific mean and variance to
make them similar. Meanwhile, the embedding distributions from different groups are separated
by adjusting their means and variances. We develop an analogue with the group normalization in
convolutional neural networks (CNNs) [25], which clusters a set of adjacent channels with similar
characteristics into a group and treats it independently. Compared with standard CNNs, the challenge
in designing DGN is how to cluster nodes in a suitable way. The clustering needs to be in line with
the embedding and labels, during the dynamic learning process.

We address this challenge by learning a cluster assignment matrix, which softly maps nodes with
close embeddings into a group. Under the supervision of training labels, the nodes close in the
embedding space tend to share a common label. To be specific, we first describe how DGN clusters
and normalizes nodes in a group-wise fashion given an assignment matrix. After that, we discuss
how to learn the assignment matrix to support differentiable node clustering.

Group Normalization. Let H(k) = [h
(k)
1 , · · · , h(k)n ]T ∈ Rn×d(k)

denote the embedding matrix
generated from the k-th graph convolutional layer. Taking H(k) as input, DGN softly assigns nodes
into groups and normalizes them independently to output a new embedding matrix for the next
layer. Formally, we define the number of groups as G, and denote the cluster assignment matrix by
S(k) ∈ Rn×G. G is a hyperparameter that could be tuned per dataset. The i-th column of S(k), i.e.,
S(k)[:, i], indicates the assignment probabilities of nodes in a graph to the i-th group. Supposing that
S(k) has already been computed, we cluster and normalize nodes in each group as follows:

H
(k)
i = S(k)[:, i] ◦H(k) ∈ Rn×d(k)

; H̃
(k)
i = γi(

H
(k)
i − µi

σi
) + βi ∈ Rn×d(k)

. (5)

Symbol ◦ denotes the row-wise multiplication. The left part in the above equation represents the
soft node clustering for group i, whose embedding matrix is given by H(k)

i . The right part performs
the standard normalization operation. In particular, µi and σi denote the vectors of running mean
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and standard deviation of group i, respectively, and γi and βi denote the trainable scale and shift
vectors, respectively. Given the input embedding H(k) and the series of normalized embeddings
{H̃(k)

1 , · · · , H̃(k)
G }, DGN generates the final embedding matrix H̃(k) for the next layer as follows:

H̃(k) = H(k) + λ

G∑
i=1

H̃
(k)
i ∈ Rn×d(k)

. (6)

λ is a balancing factor as mentioned before. Inspecting the loss function in Eq. (4), DGN utilizes
components H(k) and

∑G
i=1 H̃

(k)
i to improve terms GIns and RGroup, respectively. In particular, we

preserve the input embedding H(k) to avoid over-normalization and keep the input feature of each
node to some extent. Note that the linear combination of H(k) in DGN is different from the skip
connection in GNN models [30, 31], which instead connects the embedding output H(k−1) from the
last layer. The technique of skip connection could be included to further boost the model performance.
Group normalization

∑G
i=1 H̃

(k)
i rescales the node embeddings within each group independently to

make them similar. Ideally, we assign the close node embeddings with a common label to a group.
Node embeddings of the group are then distributed closely around the corresponding running mean.
Thus for different groups associate with distinct node labels, we disentangle their running means
and separates the node embedding distributions. By applying DGN between the successive graph
convolutional layers, we are able to optimize Problem (4) to mitigate the over-smoothing issue.

Differentiable Clustering. We apply a linear model to compute the cluster assignment matrix S(k)

used in Eq. (5). The mathematical expression is given by:

S(k) = softmax(H(k)U (k)). (7)

U (k) ∈ Rd(k)×G denotes the trainable weights for a DGN module applied after the k-th graph
convolutional layer. softmax function is applied in a row-wise way to produce the normalized
probability vector w.r.t all the G groups for each node. Through the inner product between H(k) and
U (k), the nodes with close embeddings are assigned to the same group with a high probability. Here
we give a simple and effective way to compute S(k). Advanced neural networks could be applied.

Time Complexity Analysis. Suppose that the time complexity of embedding normalization at each
group is O(T ), where T is a constant depending on embedding dimension d(k) and node number
n. The time cost of group normalization

∑G
i=1 H̃

(k)
i is O(GT ). Both the differentiable clustering

(in Eq. (5)) and the linear model (in Eq. (7)) have a time cost of O(nd(k)G). Thus the total time
complexity of a DGN layer is given by O(nd(k)G+GT ), which linearly increases with G.

Comparison with Prior Work. To the best of our knowledge, the existing work mainly focuses on
analyzing and improving the node pair distance to relieve the over-smoothing issue [18, 20, 23]. One
of the general solutions is to train GNN models regularized by the pair distance [18]. Recently, there
are two related studies applying batch normalization [21] or pair normalization [23] to keep the overall
pair distance in a graph. The pair normalization is a “slim” realization of the batch normalization
by removing the trainable scale and shift. However, the metric of pair distance and the resulting
techniques ignore the global graph structure, and may achieve sub-optimal performance in practice.
In this work, we measure the over-smoothing based on communities/groups and independent node
instances. We then formulate the problem in Eq. (4) to optimize the proposed metrics, and propose
DGN to solve it in an efficient way, which in turn addresses the over-smoothing issue. Parallel
to this research, the similar group normalization approaches of attentive normalization (AN) [32]
and attentive context normalization (ACN) [33] are used for the semantic segmentation at computer
vision domain. Specially, ACN has only one group and AN additionally samples random groups
during model inference. They are not in line with the transductive node classification task where the
underlying graph has a series of fixed community structures. Furthermore, the motivations for our
DGN and AN/ACN are different. While AN/ACN target at capturing the long-range relations between
pixels, DGN intends to improve the distance between different groups to mitigate the over-smoothing.

3.2 Evaluating Differentiable Group Normalization on Attributed Graphs

We apply DGN to the SGC model to validate its effectiveness in relieving the over-smoothing issue.
Furthermore, we compare with the other two available normalization techniques used upon GNNs,
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Figure 2: The test accuracies of SGC, GCN, and GAT models on Cora with missing features. We
compare differentiable group normalization with none, batch and pair normalizations.

i.e., batch normalization and pair normalization. As shown in Figure 1, the test accuracy of DGN
remains stable with the increase in the number of layers. By preserving the input embedding and
normalizing node groups independently, DGN achieves superior performance in terms of instance
information gain as well as group distance ratio. The promising results indicate that our DGN tackles
the over-smoothing issue more effectively, compared with none, batch and pair normalizations.

It should be noted that, the highest accuracy of 79.7% is achieved with DGN when K = 20. This
observation contradicts with the common belief that GNN models work best with a few layers on
current benchmark datasets [34]. With the integration of advanced techniques, such as DGN, we are
able to exploit deeper GNN architectures to unleash the power of deep learning in network analysis.

3.3 Evaluation in Scenario with Missing Features

To further illustrate that DGN could enable us to achieve better performance with deeper GNN
architectures, we apply it to a more complex scenario. We assume that the attributes of nodes in the
test set are missing. It is a common scenario in practice [23]. For example, in social networks, new
users are often lack of profiles and tags [35]. To perform prediction tasks on new users, we would
rely on the node attributes of existing users and their connections to new users. In such a scenario,
we would like to apply more layers to exploit the neighborhood structure many hops away to improve
node representation learning. Since the over-smoothing issue gets worse with the increasing of layer
numbers, the benefit of applying normalization will be more obvious in this scenario.

We remove the input features of both validation and test sets in Cora, and replace them with zeros [23].
Figure 2 presents the results on three widely-used models, i.e., SGC, graph convolutional networks
(GCN), and graph attention networks (GAT). Due to the over-smoothing issue, GNN models without
any normalization fail to distinguish nodes quickly with the increasing number of layers. In contrast,
the normalization techniques reach their highest performance at larger layer numbers, after which
they drop slowly. We observe that DGN obtains the best performance with 50, 20, and 8 layers for
SGC, GCN, and GAT, respectively. These layer numbers are significantly larger than those of the
widely-used shallow models (e.g., two or three layers).

4 Experiments

We now empirically evaluate the effectiveness and robustness of DGN on real-world datasets. We aim
to answer three questions as follows. Q1: Compared with the state-of-the-art normalization methods,
can DGN alleviate the over-smoothing issue in GNNs in a better way? Q2: Can DGN help GNN
models achieve better performance by enabling deeper GNNs? Q3: How do the hyperparameters
influence the performance of DGN? The implementation of our approaches is publicly available at
https://github.com/Kaixiong-Zhou/DGN.

4.1 Experiment Setup

Datasets. Joining the practice of previous work, we evaluate GNN models by performing the node
classification task on four datasets: Cora, Citeseer, Pubmed [24], and CoauthorCS [36]. We also
create graphs by removing features in validation and test sets. The dataset statistics are in Appendix.

Implementations. Following the previous settings, we choose the hyperparameters of GNN models
and optimizer as follows. We set the number of hidden units to 16 for GCN and GAT models. The
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Dataset Model Layers 2/5 Layers 15/60 Layers 30/120 #KNN BN PN DGN NN BN PN DGN NN BN PN DGN

Cora
GCN 82.2 73.9 71.0 82.0 18.1 70.3 67.2 75.2 13.1 67.2 64.3 73.2 2
GAT 80.9 77.8 74.4 81.1 16.8 33.1 49.6 71.8 13.0 25.0 30.2 51.3 2
SGC 75.8 76.3 75.4 77.9 29.4 72.1 71.7 77.8 25.1 51.2 65.5 73.7 20

Citeseer
GCN 70.6 51.3 60.5 69.5 15.2 46.9 46.7 53.1 9.4 47.9 47.1 52.6 2
GAT 70.2 61.5 62.0 69.3 22.6 28.0 41.4 52.6 7.7 21.4 33.3 45.6 2
SGC 69.6 58.8 64.8 69.5 66.3 50.5 65.0 63.4 60.8 47.3 63.1 64.7 30

Pubmed
GCN 79.3 74.9 71.1 79.5 22.5 73.7 70.6 76.1 18.0 70.4 70.4 76.9 2
GAT 77.8 76.2 72.4 77.5 37.5 56.2 68.8 75.9 18.0 46.6 58.2 73.3 5
SGC 71.5 76.5 75.8 76.8 34.2 75.2 77.1 77.4 23.1 71.6 76.7 77.1 10

Coauthors
GCN 92.3 86.0 77.8 92.3 72.2 78.5 69.5 83.7 3.3 84.7 64.5 84.4 1
GAT 91.5 89.4 85.9 91.8 6.0 77.7 53.1 84.5 3.3 16.7 48.1 75.5 1
SGC 89.9 88.7 86.0 90.2 10.2 59.7 76.4 81.3 5.8 30.5 52.6 60.8 1

Table 1: Test accuracy in percentage on the attributed networks. Layers a/b denote the layer number
a in models GCN & GAT and that of b in model SGC. #K denotes the optimal layer numbers where
DGN achieves the highest performance.

number of attention heads in GAT is 1. Since a larger parameter size in GCN and GAT may lead
to overfitting and affects the study of over-smoothing issue, we compare normalization methods by
varying the number of layersK in {1, 2, · · · , 10, 15, · · · , 30}. For SGC, we increase the testing range
and vary K in {1, 5, 10, 20, · · · , 120}. We train with a maximum of 1000 epochs using the Adam
optimizer [37] and early stopping. Weights in GNN models are initialized with Glorot algorithm [38].
We use the following sets of hyperparameters for Citeseer, Cora, CoauthorCS: 0.6 (dropout rate),
5 · 10−4 (L2 regularization), 5 · 10−3 (learning rate), and for Pubmed: 0.6 (dropout rate), 1 · 10−3
(L2 regularization), 1 · 10−2 (learning rate). We run each experiment 5 times and report the average.

Baselines. We compare with none normalization (NN), batch normalization (BN) [21, 22] and pair
normalization (PN) [23]. Their technical details are listed in Appendix.

DGN Configurations. The key hyperparameters include group number G and balancing factor
λ. Depending on the number of class labels, we apply 5 groups to Pubmed and 10 groups to the
others. The criterion is to use more groups to separate representation distributions in networked data
accompanied with more class labels. λ is tuned on validation sets to find a good trade-off between
preserving input features and group normalization. We introduce the selection of λ in Appendix.

4.2 Experiment Results

Studies on alleviating the over-smoothing problem. To answer Q1, Table 1 summarizes the results
of applying the different normalization techniques to GNN models on all the datasets. We report the
performances of GCN and GAT with 2/15/30 layers, and SGC with 5/60/120 layers due to space
limit. We provide the test accuracies, instance information gain and group distance ratio under all
depths in Appendix. Given the same layers, it can be observed that DGN almost outperforms the
other normalizations for all cases. DGN significantly slows down the performance dropping with
the increment of layers, and alleviates the over-smoothing issue. That is because the self-preserved
component H(k) in Eq. (6) keeps the informative input features and avoids over-normalization to
distinguish the different nodes. This component is especially crucial for models with a few layers
since the over-smoothing issue has not appeared. The other group normalization component in Eq. (6)
processes each group of nodes independently. It disentangles the representation similarity between
groups, and hence reduces the over-smoothness of nodes over a graph accompanied with graph
convolutions. The optimal layer numbers #K of SGC are generally larger than those of other GNN
models, since the redundant weights are removed to avoid the over-fitting issue.

Studies on enabling deeper and better GNNs. To answer Q2, we compare all of the concerned
normalization methods over GCN, GAT, and SGC in the scenario with missing features. As we have
discussed, the normalization techniques will show their power in relieving the over-smoothing issue
and exploring the deeper architectures especially for this scenario. In Table 2, Acc represents the
best test accuracy yielded by model equipped with the optimal layer number #K. It is shown that
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Model Norm Cora Citeseer Pubmed CoauthorCS Improvement%Acc #K Acc #K Acc #K Acc #K

GCN

NN 57.3 3 44.0 6 36.4 4 67.3 3 42.2
BN 71.8 20 45.1 25 70.4 30 82.7 30 5.2
PN 65.6 20 43.6 25 63.1 30 63.5 4 19.2

DGN 76.3 20 50.2 30 72.0 30 83.7 25 -

GAT

NN 50.1 2 40.8 4 38.5 4 63.7 3 51.0
BN 72.7 5 48.7 5 60.7 4 80.5 6 9.8
PN 68.8 8 50.3 6 63.2 20 66.6 3 14.7

DGN 75.8 8 54.5 5 72.3 20 83.6 15 -

SGC

NN 63.4 5 51.2 40 63.7 5 71.0 5 20.1
BN 78.5 20 50.4 20 72.3 50 84.4 20 6.2
PN 73.4 50 58.0 120 75.2 30 80.1 10 4.5

DGN 80.2 50 58.2 90 76.2 90 85.8 20 -
Table 2: The highest accuracy (%) and the accompanied optimal layers in the scenario with missing
features. We calculate the average improvement achieved by DGN over each GNN framework.

Dataset Model Layers 2 Layers 16 Layers 64
NN BN PN DGN NN BN PN DGN NN BN PN DGN

Cora GCNII∗ 81.9 76.4 67.4 82.7 84.4 70.2 64.9 84.8 85.3 69.2 68.6 85.6
Table 3: Test accuracy in percentage on the attributed dataset Cora over GCNII backbone.

the values of #K are much larger than those in Table 1, which empirically validate the assumption
that a deeper GNN architecture is particularly required in the missing-feature scenario to exploit
the neighborhood information many hops away. More importantly, DGN significantly outperforms
the other normalization methods on all the cases. The average improvements over NN, BN and PN
achieved by DGN are 37.8%, 7.1% and 12.8%, respectively. Via clustering and disentangling the
different groups, DGN tackles the over-smoothing issue to enable the exploration of more powerful
deeper architectures. We present the comprehensive analyses in terms of test accuracy, instance
information gain and group distance ratio under all depths in Appendix.

Evaluation on deep GNN architecture. As a general normalization layer, DGN could also be
applied to the existing deep GNN architectures to further improve the node classification performance.
Recently, model GCNII∗ [39] has been proposed to prevent the over-smoothing by the residual
connection and the identity mapping, which achieves the new state-of-the-art results with a 64-layer
architecture. To support answering Q2, we compare the different normalization approaches over the
GCNII∗ backbone based on the provided implementation. Table 3 shows the test accuracies obtained
on dataset Cora, where DGN consistently outperforms the other normalization approaches under the
different network depths. Note that NN (i.e., none normalization is included) represents the original
GCNII∗ model, which could be further improved with our DGN. These results validate that DGN is a
general normalization module to relieve the over-smoothing issue for the different GNN architectures.

Hyperparameter studies. We study the impact of hyperparameters, group number G and balancing
factor λ, on DGN in order to answer research question Q3. Over the GCN framework associated with
20 convolutional layers, we evaluate DGN by considering G and λ from sets [1, 5, 10, 15, 20, 30] and
[0.001, 0.005, 0.01, 0.03, 0.05, 0.1], respectively. The left part in Figure 3 presents the test accuracy
for each hyperparameter combination. We observe that: (i) The model performance is damaged
greatly when λ is close to zero (e.g., λ = 0.001). In this case, group normalization contributes slightly
in DGN, resulting in over-smoothing in the GCN model. (ii) Model performance is not sensitive to
the value of G, and an appropriate λ value could be tuned to optimize the trade-off between instance
gain and group normalization. It is because DGN learns to use the appropriate number of groups
by end-to-end training. In particular, some groups might not be used as shown in the right part of
Figure 3, at which only 6 out of 10 groups (denoted by black triangles) are adopted. (iii) Even when
G = 1, DGN still outperforms BN by utilizing the self-preserved component to achieve an accuracy
of 74.7%, where λ = 0.1. Via increasing the group number, the model performance could be further
improved, e.g., the accuracy of 76.3% where G = 10 and λ = 0.01.
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Figure 3: Left: Test accuracies of GCN with 20 layers on Cora with missing features, where
hyperparameters G and λ are studied. Middle: Node representation visualization for GCN without
normalization and with K = 20. Right: Node representation visualization for GCN with DGN layer
and K = 20 (node colors represent classes, and black triangles denote the running means of groups).

Node representation visualization. We investigate how DGN clusters nodes into different groups
to tackle the over-smoothing issue. The middle and right parts of Figure 3 visualize the node
representations achieved by GCN models without normalization tool and with the DGN approach,
respectively. It is observed that the node representations of different classes mix together when the
layer number reaches 20 in the GCN model without normalization. In contrast, our DGN method
softly assigns nodes into a series of groups, whose running means at the corresponding normalization
modules are highlighted with black triangles. Through normalizing each group independently, the
running means are separated to improve inter-group distances and disentangle node representations.
In particular, we notice that the running means locate at the borders among different classes (e.g., the
upper-right triangle at the border between red and pink classes). That is because the soft assignment
may cluster nodes of two or three classes into the same group. Compared with batch or pair
normalization, the independent normalization for each group only includes a few classes in DGN.
In this way, we relieve the representation noise from other node classes during normalization, and
improve the group distance ratio as illustrated in Appendix.

5 Conclusion

In this paper, we propose two over-smoothing metrics based on graph structures, i.e., group distance
ratio and instance information gain. By inspecting GNN models through the lens of these two
metrics, we present a novel normalization layer, DGN, to boost model performance against over-
smoothing. It normalizes each group of similar nodes independently to separate node representations
of different classes. Experiments on real-world classification tasks show that DGN greatly slowed
down performance degradation by alleviating the over-smoothing issue. DGN enables us to explore
deeper GNNs and achieve higher performance in analyzing attributed networks and the scenario with
missing features. Our research will facilitate deep learning models for potential graph applications.

Acknowledgements

This work is, in part, supported by NSF (#IIS-1750074, #IIS-1718840, and #IIS-1900990). The
views, opinions, and/or findings contained in this paper are those of the authors and should not be
interpreted as representing any funding agencies.

Broader Impact

The successful outcome of this work will lead to advances in building up deep graph neural networks
and dealing with complex graph-structured data. The developed metrics and algorithms have an
immediate and strong impact on a number of fields, including (1) Over-smoothing Quantitative
Analysis: GNN models tend to result in the over-smoothing issue with the increase in the number of
layers. During the practical development of deeper GNN models, the proposed instance information
gain and group distance ratio effectively indicate the over-smoothing issue, in order to push the
model exploration toward a good direction. (2) Deep GNN Modeling: The proposed differentiable
group normalization tool successfully tackles the over-smoothing issue and enables the modeling of
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deeper GNN variants. It encourages us to fully unleash the power of deep learning in processing the
networked data. (3) Real-world Network Analytics Applications: The proposed research will broadly
shed light on utilizing deep GNN models in various applications, such as social network analysis,
brain network analysis, and e-commerce network analysis. For such complex graph-structured data,
deep GNN models can exploit the multi-hop neighborhood information to boost the task performance.
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