
Stochastic Optimization for Performative Prediction

Celestine Mendler-Dünner⇤, Juan C. Perdomo⇤, Tijana Zrnic⇤, Moritz Hardt†
University of California, Berkeley

{mendler,jcperdomo,tijana.zrnic,hardt}@berkeley.edu

Abstract

In performative prediction, the choice of a model influences the distribution of
future data, typically through actions taken based on the model’s predictions. We
initiate the study of stochastic optimization for performative prediction. What
sets this setting apart from traditional stochastic optimization is the difference
between merely updating model parameters and deploying the new model. The
latter triggers a shift in the distribution that affects future data, while the former
keeps the distribution as is. Assuming smoothness and strong convexity, we prove
rates of convergence for both greedily deploying models after each stochastic
update (greedy deploy) as well as for taking several updates before redeploying
(lazy deploy). In both cases, our bounds smoothly recover the optimal O(1/k)
rate as the strength of performativity decreases. Furthermore, they illustrate how
depending on the strength of performative effects, there exists a regime where
either approach outperforms the other. We experimentally explore the trade-off on
both synthetic data and a strategic classification simulator.

1 Introduction

Prediction in the social world is often performative in that a prediction triggers actions that influence
the outcome. A forecast about the spread of a disease, for example, can lead to drastic public health
action aimed at deterring the spread of the disease. In hindsight, the forecast might then appear to
have been off, but this may largely be due to the actions taken based on it. Performativity arises
naturally in consequential statistical decision-making problems in domains ranging from financial
markets to online advertising.

Recent work [17] introduced and formalized performative prediction, an extension of the classical
supervised learning setup whereby the choice of a model can change the data-generating distribution.
This perspective leads to an important notion of stability requiring that a model is optimal on the
distribution it entails. Stability prevents a certain cat-and-mouse game in which the learner repeatedly
updates a model, because it no longer is accurate on the observed data. Prior work established
conditions under which stability can be achieved through repeated risk minimization on the full
data-generating distribution.

When samples arrive one-by-one over time, however, the learner faces a new challenge compared
with traditional stochastic optimization. With every new sample that arrives, the learner has to decide
whether to deploy the model, thereby triggering a drift in distribution, or to continue to collect
more samples from the same distribution. Never deploying a model avoids distribution shift, but
forgoes the possibility of converging to a stable point. Deploying the model too greedily could lead
to overwhelming distribution shift that hampers convergence. In fact, it is not even clear that fast
convergence to stability is possible at all in an online stochastic setting.
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1.1 Our contributions

In this work, we initiate the study of stochastic optimization for performative prediction. Our main
results are the first convergence guarantees for the stochastic gradient method in performative settings.
Previous finite-sample guarantees had an exponential dependence on the dimension.

We distinguish between two natural variants of the stochastic gradient method. One variant, called
greedy deploy, updates model parameters and deploys the model at every step, after seeing a single
example. The other, called lazy deploy, updates model parameters on multiple samples before
deploying a model. We show that both methods converge to a stable solution. However, which one is
preferable depends both on the cost of model deployment and the strength of performativity.

To state our results more precisely we recall the formal setup of performative prediction. In performa-
tive prediction, we assume that after deploying a model parameterized by ✓, data are drawn from the
distribution D(✓). The distribution map D(·) maps model parameters to data-generating distributions.

Given a loss function `(z; ✓), a peformatively stable model ✓ satisfies the fixed-point condition,

✓ 2 argmin
✓0

E
z⇠D(✓)

`(z; ✓0) .

Performative stability expresses the desideratum that the model ✓ minimizes loss on the distribu-
tion D(✓) that it entails. Once we found a performatively stable model, we therefore have no reason
to deviate from it based on the data that we observe.

The stochastic gradient method in this setting operates in a sequence of rounds. In each round k, the
algorithm starts from a model ✓k and can choose to perform n(k) stochastic gradient updates where
each data point is drawn i.i.d. from the distribution D(✓k). After n(k) stochastic gradient updates,
the algorithm deploys the new model parameters ✓k+1. Henceforth, the data-generating distribution
is D(✓k+1) and the algorithm proceeds to the next round. For greedy deploy, n(k) = 1 for all k,
whereas for lazy deploy n(k) is a hyperparameter we can choose freely.

To analyze the stochastic gradient method, we import the same assumptions that were used in prior
work on performative prediction. Apart from smoothness and strong convexity of the loss function,
the main assumption is that the distribution map is sufficiently Lipschitz. This means that a small
change to the model parameters (in Euclidean distance) leads to small change in the data-generating
distribution (as measured in the Wasserstein metric).

Our first main result shows that under these assumptions, greedy deploy achieves the same conver-
gence rate as the stochastic gradient method in the absence of performativity.
Theorem 1.1 (Greedy deploy, informal). If the loss is smooth and strongly convex and the distribution
map is sufficiently Lipschitz, greedy deploy converges to performative stability at rate O(1/k), where
k is the number of model deployment steps.

Generally speaking, the Lipschitz parameter has to be smaller than the inverse condition number
of the loss function for our bound to guarantee convergence. The exact rate stated in Theorem 3.2
further improves as the Lipschitz constant tends to 0.

In many realistic scenarios, data are plentiful, but deploying a model in a large production environment
is costly. In such a scenario, it makes sense to aim to minimize the number of model deployment steps
by updating the model parameters on multiple data points before initiating another model deployment.
This is precisely what lazy deploy accomplishes as our next result shows.
Theorem 1.2 (Lazy deploy, informal). Under the same assumptions as above, for any ↵ > 0, lazy
deploy converges to performative stability at rate O(1/k↵) provided that O(k1.1↵) samples are
collected between deployments k and k + 1.

In particular, this shows that any distance from optimality � > 0 can be achieved with (1/�)c model
deployments for an arbitrarily small c > 0 at the cost of collecting polynomial in 1/� many samples.

Our main theorems provide upper bounds on the convergence rate of each method. As such they can
only draw an incomplete picture about the relative performance of these methods. Our empirical
investigation therefore aims to shed further light on their relative merits. In particular, our experiments
show that greedy deploy generally performs better than lazy deploy when the distribution map is
very Lipschitz, i.e., the performative effects are small. Conversely, lazy deploy fares better when the
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distribution map is less Lipschitz. These observations are consistent with what our theoretical upper
bounds suggest.

1.2 Related work

Perdomo et al. [17] introduced the performative prediction framework and analyzed algorithms for
finding stable points that operate at the population level. While they also analyze some finite-sample
extensions of these procedures, their analysis relies on concentration of the empirical distribution to
the true distribution in the Wasserstein metric, and hence requires exponential sample complexity. In
contrast, our analysis ensures convergence even if the learner collects a single sample at every step.

There has been a long line of work [3, 4, 5, 6, 12] within the learning theory community studying
concept drift and learning from drifting distributions. Our results differ from these previous works
since in performative prediction, changes in distribution are not a passive feature of the environment,
but rather an active consequence of model deployment. This introduces several new considerations,
such as the conceptual idea of performative stability, which is the main focus of our investigation.

Our work draws upon ideas from the stochastic convex optimization literature [7, 16, 18, 20, 21, 22].
Relative to these previous studies, our work analyzes the behavior of the stochastic gradient method
in performative settings, where the underlying objective changes as a response to model deployment.

Lastly, we can view instances of performative prediction as special cases of reinforcement learning
problems with nice structure, such as a Lipschitz mapping from policy parameters to the induced
distribution over trajectories (see [17] for further discussion). The variants of the stochastic gradient
method we consider can be viewed as policy gradient-like algorithms [1, 10, 23, 24] for this setting.

2 Preliminaries

We start by reviewing the core concepts of the framework of performative prediction. Afterwards,
we set the stage for our analysis of stochastic algorithms by first considering gradient descent at the
population level. In doing so, we highlight some of the fundamental limitations of gradient descent in
performative settings.

2.1 The framework of performative prediction

Throughout our presentation, we focus on predictive models f✓ that are parametrized by a vector
✓ 2 ⇥ ✓ Rd, where the parameter space ⇥ is a closed, convex set. The model or classifier, f✓, maps
instances z 2 Rm to predictions f✓(z). Typically, we think of z as being a feature, label pair (x, y).
We assess the quality of a classifier f✓ via a loss function `(z; ✓).

The key theme in performative prediction is that the choice of deployed model f✓ influences the
future data distribution and hence the expected loss of the classifier f✓. This behavior is formalized
via the notion of a distribution map D(·), which is the key conceptual device of the framework. For
every ✓ 2 ⇥, D(✓) denotes the distribution over instances z induced by the deployment of f✓. In this
paper, we consider the setting where at each step, the learner observes a single sample z ⇠ D(✓),
where f✓ is the most recently deployed classifier. After having observed this sample, the learner
chooses whether to deploy a new model or to leave the distribution as is before collecting the next
sample.

We adopt the following Lipschitzness assumption on the distribution map. It captures the idea that if
two classifiers make similar predictions, then they also induce similar distributions.
Definition 1 (✏-sensitivity [17]). A distribution map D(·) is ✏-sensitive if for all ✓, ✓0 2 ⇥:

W1

�
D(✓),D(✓0)

�
 ✏k✓ � ✓

0
k2,

where W1 denotes the Wasserstein-1, or earth mover’s distance.

The value of ✏ indicates the strength of performative effects; small ✏ means that the distribution
induced by the model f✓ is not overly sensitive to the choice of ✓, while large ✏ indicates high
sensitivity. As an extreme case, ✏ = 0 implies D(✓) = D(✓0) for all ✓, ✓0 2 ⇥ and hence there are no
performative effects, as in classical supervised learning.
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Given how the choice of classifier induces a change in distribution, a naturally appealing property of
a predictive model in performative settings is that it achieves minimal risk on the distribution that it
induces. This solution concept is referred to as performative stability.
Definition 2 (Performative stability). A classifier f✓PS is peformatively stable if

✓PS 2 argmin
✓

E
z⇠D(✓PS)

`(z; ✓).

We refer to ✓PS as being performatively stable, or simply stable, if f✓PS is performatively stable.

Performative stability captures an equilibrium state in which a classifier induces a shift in distribution
by the environment, yet remains simultaneously optimal for this new distribution. These solutions
are referred to as stable since they eliminate the need for retraining. Besides eliminating the need
for retraining, performatively stable classifiers were also shown to have nearly optimal predictive
power on the distribution they induce. More specifically, stable points approximately minimize the
performative risk, PR(✓) = Ez⇠D(✓) `(z; ✓), in the case of a strongly convex loss and a reasonably
small sensitivity parameter ✏ (Theorem 4.3, [17]).

To illustrate these abstract concepts, we instantiate a simple traffic prediction example with performa-
tive effects which will serve as a running example throughout the paper.
Example 1 (ETA estimation). Suppose that each day we want to estimate the duration of a trip
on a fixed route from the current weather conditions. Let x 2 {0, 1} denote a binary indicator of
whether the current day is sunny or rainy, and suppose that Pr {x = 1} = p 2 (0, 1). Let f✓ denote
the deployed classifier which predicts trip duration y from x. Assume y behaves according to the
following model:

y = µ+ w · x� ✏ · (f✓(x)� µ),

where µ > 0 denotes the usual time needed to complete the route on a sunny day, w > 0 denotes
additional incurred time due to bad weather, and �✏ · (f✓(x)� µ) denotes the performative effects,
for some ✏ 2 (0, 1). Namely, if the model predicts a faster than usual time to the destination, more
people want to take the route, thus worsening the traffic conditions and making y large. If, on the
other hand, the model predicts a longer trip, then few people follow the route and y is smaller.
Suppose that the model class is all predictors of the form f✓(x) = x✓1 + ✓2, where ✓ = (✓1, ✓2)
and ✓1 2 (0, w), ✓2 2 (0, 2µ). It is not hard to see that the distribution map corresponding to this
data-generating process is ✏-sensitive.

Assume that we measure predictive performance according to the squared loss, `((x, y); ✓) =
1
2 (y � ✓1x� ✓2)2. Then, a simple calculation reveals that the unique performatively stable classifier,
satisfying Definition 2, corresponds to

✓PS =

✓
w

1 + ✏
, µ

◆
.

In fact, one can show that ✓PS is simultaneously optimal in the sense that it minimizes the performative
risk, ✓PS = argmin✓ PR(✓) = argmin✓ E(x,y)⇠D(✓) `((x, y); ✓).

2.2 Population-level results

Before analyzing optimization algorithms in stochastic settings, we first consider their behavior at the
population level. Throughout our analysis, we make the following assumptions on the loss `(z; ✓),
which hold for broad classes of objectives. To ease readability, we let Z = [✓2⇥supp(D(✓)).

(A1) (joint smoothness) A loss function `(z; ✓) is �-jointly smooth if the gradient3
r✓`(z; ✓)

is �-Lipschitz in ✓ and z, that is for all ✓, ✓
0
2 ⇥ and z, z

0
2 Z it holds that

kr`(z; ✓)�r`(z; ✓0)k2  � k✓ � ✓
0
k2 and kr`(z; ✓)�r`(z0; ✓)k2  � kz � z

0
k2.

(A2) (strong convexity) A loss function `(z; ✓) is �-strongly convex if for all ✓, ✓0 2 ⇥ and z 2 Z

it holds that `(z; ✓) � `(z; ✓0)+r`(z; ✓0)>(✓� ✓
0)+ �

2 k✓ � ✓
0
k
2
2. For � = 0, this condition

is equivalent to convexity.

We will refer to �
� , where � is as in (A1) and � as in (A2), as the condition number.

3Gradients of the loss ` are always taken with respect to the parameters ✓.
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In this paper we are interested in the convergence of optimization methods to performatively stable
classifiers. However, unlike classical risk minimizers in supervised learning, it is not a priori clear
that performatively stable classifiers always exist. We thus recall the following fact.
Fact 2.1 ( [17]). Assume that the loss is �-jointly smooth (A1) and �-strongly convex (A2). If D(·) is
✏-sensitive with ✏ <

�
� , then there exists a unique performatively stable point ✓PS 2 ⇥.

We note that it is not possible to reduce sensitivity by merely rescaling the problem, while keeping
the ratio �/� the same; the critical condition ✏�/� < 1 remains unaltered by scaling.4

The upper bound ✏ < �/� on the sensitivity parameter is not only crucial for the existence of unique
stable points but also for algorithmic convergence. It defines a regime outside which gradient descent
is not guaranteed to converge even at the population level. To be more precise, consider repeated
gradient descent (RGD), defined recursively as

✓k+1 = ✓k � ⌘k E
z⇠D(✓k)

[r`(z; ✓k)], k � 1, where ✓1 2 ⇥ is initialized arbitrarily.

As shown in the following result, RGD need not converge if ✏ � �
� . Furthermore, a strongly convex

loss is necessary to ensure convergence, even if performative effects are arbitrarily weak.
Proposition 2.2. Suppose that the distribution map D(·) is ✏-sensitive. Repeated gradient descent
can fail to converge in any of the following cases, for any choice of positive step size sequence {⌘k}:

(a) The loss is �-jointly smooth (A1) and convex, but not strongly convex (A2), for any �, ✏ > 0.
(b) The loss is �-jointly smooth (A1) and �-strongly convex (A2), but ✏ � �

� , for any �
� > 0.

On the other hand, if ✏ < �/� we prove that RGD converges to a unique performatively stable point
at a linear rate. Proposition 2.3 strengthens the corresponding result of Perdomo et al. [17], who
showed linear convergence of RGD for ✏ < �/(� + �). Proofs can be found in Appendix C.
Proposition 2.3. Assume that the loss is �-jointly smooth (A1) and �-strongly convex (A2), and
suppose that the distribution map D(·) is ✏-sensitive. Let ✏ < �/�, and suppose that ✓PS 2 Int(⇥).
Then, repeated gradient descent (RGD) with a constant step size ⌘k = ��✏�

2(1+✏2)�2 converges to the

stable point ✓PS at a linear rate, k✓k+1� ✓PSk2  � for k � 4(1+ ✏
2) �2

(��✏�)2 log(k✓1� ✓PSk2 / �).

Together, these results show that �/� is a sharp threshold for the convergence of gradient descent
in performative settings, thereby resolving an open problem due to Perdomo et al. [17]. Having
characterized the convergence regime of gradient descent, we now move on to presenting our main
technical results, focusing on the case of a smooth, strongly convex loss with ✏ < �/�.

3 Stochastic optimization results

We introduce two variants of the stochastic gradient method for optimization in performative settings
(i.e. stochastic gradient descent, SGD), which we refer to as greedy deploy and lazy deploy. Each
method performs a stochastic gradient update to the model parameters at every iteration, however
they choose to deploy these updated models at different time intervals.

To analyze these methods, in addition to (A1) and (A2), we make the following assumption which is
customary in the stochastic optimization literature [7, 19].

(A3) (second moment bound) There exist constants �2 and L
2 such that for all ✓, ✓0 2 ⇥:

E
z⇠D(✓)

⇥
kr`(z; ✓0)k22

⇤
 �

2 + L
2
k✓

0
�G(✓)k22, where G(✓)

def
= argmin

✓0
E

z⇠D(✓)
`(z; ✓0).

Given the operator G(·), performative stability can equivalently be expressed as ✓PS 2 G(✓PS).

4The reason is that the notion of joint smoothness we consider does not scale like strong convexity when
rescaling ✓. For example, rescaling ✓ 7! 2✓ (thus making ✏ 7! ✏/2) would downscale the strong convexity
parameter and the parameter corresponding to the usual notion of smoothness in optimization by 4, however the
smoothness in z would downscale by 2.
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Greedy Deploy

Input: step size sequence {⌘k}
1
k=1

Deploy initial classifier ✓1 2 ⇥
For each k = 1, 2, . . .

– Observe z
(k)
⇠ D(✓k)

– Update model parameters:
✓k+1 = ✓k � ⌘kr`(z(k); ✓k)

– Deploy ✓k+1

Lazy Deploy

Input: step size sequence {⌘k,j}
1
k,j=1

Deploy initial classifier ✓1 2 ⇥
For each k = 1, 2, . . .

– Set 'k,1 = ✓k

– For each j = 1, . . . , n(k) :

1. Observe z
(k)
j ⇠ D(✓k)

2. Update model parameters:
'k,j+1 = 'k,j � ⌘k,jr`(z

(k)
j ;'k,j)

– Deploy ✓k+1 = 'k,n(k)+1

Figure 1: Stochastic gradient method for performative prediction. Greedy deploy publishes the new classifier at
every step while lazy deploy performs several gradient updates before releasing the new model.

3.1 Greedy deploy

A natural algorithm for stochastic optimization in performative prediction is a direct extension of
the stochastic gradient method, whereby at every time step, we observe a sample z

(k)
⇠ D(✓k),

compute a gradient update to the current model parameters ✓k, and deploy the new classifier ✓k+1

(see left panel in Figure 1). We call this algorithm greedy deploy. In the context of our previous
traffic prediction example, this greedy procedure corresponds to iteratively updating and redeploying
the model based off information from the most recent trip.

While this procedure is algorithmically identical to the stochastic gradient method in traditional
convex optimization, in performative prediction, the distribution of the observed samples depends on
the trajectory of the algorithm. We begin by stating a technical lemma which introduces a recursion
for the distance between ✓k and ✓PS.
Lemma 3.1. Assume (A1), (A2) and (A3). If the distribution map D(·) is ✏-sensitive with ✏ < �/�,
then greedy deploy with step size ⌘k satisfies the following recursion for all k � 1:

E
⇥
k✓k+1 � ✓PSk

2
2

⇤


 
1� 2⌘k(� � ✏�) + ⌘

2
kL

2

✓
1 + ✏

�

�

◆2
!
E
⇥
k✓k � ✓PSk

2
2

⇤
+ ⌘

2
k�

2
.

Similar recursions underlie many proofs of SGD, and Lemma 3.1 can be seen as their generalization
to the performative setting. Furthermore, we see how the bound implies a strong contraction to the
performatively stable point if the performative effects are weak, that is when ✏⌧ �/�.

Using this recursion, a simple induction argument suffices to prove that greedy deploy converges to
the performatively stable solution (see Appendix D). Moreover, it does so at the usual O(1/k) rate.
Theorem 3.2. Assume (A1), (A2) and (A3). If the distribution map D(·) is ✏-sensitive with ✏ <

�
� ,

then for all k � 0 greedy deploy with step size ⌘k =
�
(� � ✏�)k + 8L2

/(� � ✏�)
��1 satisfies

E
⇥
k✓k+1 � ✓PSk

2
2

⇤


Mgreedy

(� � ✏�)2k + 8L2
,

where Mgreedy = max
�
2�2

, 8L2
k✓1 � ✓PSk

2
2

 
.

Comparing this result to the traditional analysis of SGD for smooth, strongly convex objectives
(e.g. [18]), we see that the traditional factor of � is replaced by �� ✏�, which we view as the effective
strong convexity parameter of the performative prediction problem. When ✏ = 0, there are no
performative effects and the problem of finding the stable solution reduces to that of finding the risk
minimizer on a fixed, static distribution. Consequently, it is natural for the two bounds to identify.

3.2 Lazy deploy

Contrary to greedy deploy, lazy deploy collects multiple data points and hence takes multiple
stochastic gradient steps between consecutive model deployments. In the setting from Example 1,
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this corresponds to observing the traffic conditions across multiple days, and potentially diverse
conditions, before deploying a new model. This modification significantly changes the trajectory of
lazy deploy relative to greedy deploy, given that the observed samples follow the distribution of the
last deployed model, which might differ from the current iterate. More precisely, after deploying ✓k,
we perform n(k) stochastic gradient steps to the model parameters, using samples from D(✓k) before
we deploy the last iterate as ✓k+1 (see right panel in Figure 1).

At a high level, lazy deploy converges to performative stability because it progressively approximates
repeated risk minimization (RRM), defined recursively as,

✓k+1 = argmin
✓02⇥

E
z⇠D(✓k)

`(z; ✓0) for k � 1 and ✓1 2 ⇥ initialized arbitrarily.

Perdomo et al. [17] show that RRM converges to a performatively stable classifier at a linear rate
when ✏ < �/�. Since the underlying distribution remains static between deployments, a classical
analysis of SGD shows that for large n(k) these “offline" iterates 'k,j converge to the risk minimizer
on the distribution corresponding to the previously deployed classifier. In particular, for large n(k),
✓k+1 ⇡ G(✓k). By virtue of approximately tracing out the trajectory of RRM, lazy deploy converges
to ✓PS as well. This sketch is formalized in the following theorem. For details we refer to Appendix E.
Theorem 3.3. Assume (A1), (A2), and (A3), and that the distribution map D(·) is ✏-sensitive with
✏ <

�
� . For any ↵ > 0, running lazy deploy with n(k) � n0k

↵
, k = 1, 2, . . . many steps between

deployments and step size sequence ⌘k,j = (�j + 8L2
/�)�1, satisfies

E
⇥
k✓k+1 � ✓PSk

2
2

⇤
 c

k
· k✓1 � ✓PSk

2
2 +

✓
c
⌦(k) +

2

k↵·(1�o(1))

◆
·Mlazy, (1)

where c =
�
✏
�
�

�2
+ o(1) and Mlazy = 3(�+�)2

�2(1�c) . Here, o(1) is independent of k and vanishes as n0

grows; n0 is chosen large enough such that c < 1.

3.3 Discussion

In this section, we have presented how varying the intervals at which we deploy models trained
with stochastic gradient descent in performative prediction leads to qualitatively different algorithms.
While greedy deploy resembles classical SGD with a step size sequence adapted to the strength of
distribution shift, lazy deploy can be viewed as a rough approximation of repeated risk minimization.

As we alluded to previously, the convergence behavior of both algorithms is critically affected by
the strength of performative effects ✏. For ✏⌧ �/�, the effective strong convexity parameter � � ✏�

of the performative prediction problem is large. In this setting, the relevant distribution shift of
deploying a new model is neglible and greedy deploy behaves almost like SGD in classical supervised
learning, converging quickly to performative stability.

Conversely, for ✏ close to the convergence threshold, the contraction of greedy deploy to the per-
formatively stable classifier is weak. In this regime, we expect lazy deploy to perform better since
the convergence of the offline iterates 'k,j to the risk minimizer on the current distribution G(✓k) is
unaffected by the value of ✏. Lazy deploy then converges by closely mimicking the behavior of RRM.

Furthermore, both algorithms differ in their sensitivity to different initializations. In greedy deploy,
the initial distance k✓1 � ✓PSk

2
2 decays polynomially, while in lazy deploy it decays at a linear rate.

This suggests that the lazy deploy algorithm is more robust to poor initialization. While we derive
these insights purely by inspecting our upper bounds, we find that these heuristic observations also
hold empirically, as shown in the next section.

In terms of the asymptotics of both algorithms, we identify the following tradeoff between the number
of samples and the number of deployments sufficient to converge to performative stability.
Corollary 3.4. Assume (A1), (A2), and (A3), and that D(·) is ✏-sensitive with ✏ <

�
� .

– To ensure that greedy deploy returns a solution ✓
? such that, E

⇥
k✓

?
� ✓PSk

2
2

⇤
 �, it suffices to

collect O(1 / �) samples and to deploy O(1 / �) classifiers.
– To achieve the same guarantee using lazy deploy, it suffices to collect O(1 / �

↵+1
(1�!)·↵ ) samples

and to deploy O(1 / �
1
↵ ) classifiers, for any ↵ > 0 and some ! = 1� o(1) which tends to 1 as

n0 grows.
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(a) ✏ = 0.2 (b) ✏ = 0.6 (c) ✏ = 0.9

Figure 2: Convergence of lazy and greedy deploy to performative stability for varying values of ✏. We use
n(k) = k for lazy deploy. The results are for the synthetic Gaussian example with µ = 10, � = 0.1.

We see from the above result that by choosing large enough values of n0 and ↵, we can make the
sample complexity of the lazy deploy algorithm come arbitrarily close to that of greedy deploy. How-
ever, to match the same convergence guarantee, lazy deploy only performs O(1 / �

1
↵ ) deployments,

which is significantly better than the O(1 / �) deployments for greedy.

This reduction in the number of deployments is particularly relevant when considering the settings
that performative prediction is meant to address. Whenever we use prediction in social settings, there
are important social costs associated with making users adapt to a new model [15]. Furthermore, in
industry, there are often significant technical challenges associated with deploying a new classifier [2].
By choosing n(k) = n0k

↵ appropriately, we can reduce the number of deployments necessary for
lazy deploy to converge while at the same time improving the sample complexity of the algorithm.

4 Experiments

We complement our theoretical analysis of greedy and lazy deploy with a series of empirical eval-
uations. First, we carry out experiments using synthetic data where we can analytically compute
stable points and carefully evaluate the tradeoffs suggested by our theory. Second, we evaluate
the performance of these procedures on a strategic classification simulator previously used as a
benchmark for optimization in performative settings by [17].

4.1 Synthetic data

For our first experiment, we consider the task of estimating the mean of a Gaussian random variable
under performative effects. In particular, we consider minimizing the expected squared loss `(z; ✓) =
1
2 (z � ✓)2 where z ⇠ D(✓) = N (µ + ✏✓,�

2). For ✏ > 0, the true mean of a distribution D(✓)
depends on our revealed estimate ✓. Furthermore, for ✏ < �/� = 1, the problem has a unique stable
point. A short algebraic manipulation shows that ✓PS = µ

1�✏ . As per our theory, both greedy and lazy
deploy converge to performative stability for all ✏ < 1.

Effect of performativity. We compare the convergence behavior of lazy deploy and greedy deploy
for various values of ✏ in Figure 2. We choose step sizes for both algorithms according to our theorems
in Section 3. In the case of lazy deploy, we set ↵ = 1, and hence n(k) / k.

We see that when performative effects are weak, i.e. ✏ ⌧ �/�, greedy deploy outperforms lazy.
Lazy deploy in turn is better at coping with large distribution shifts from strong performative effects.
These results confirm the conclusions from our theory and show that the choice of greedy vs lazy
deployment can indeed have a large impact on algorithm performance depending on the value of ✏.

Deployment schedules. We also experiment with different deployment schedules n(k) for lazy
deploy. As described in Theorem 3.3, we can choose n(k) / k

↵ for all ↵ > 0. The results for
↵ 2 {0.5, 1, 2} and ✏ 2 {.2, .6, .9}, are depicted in Figure 4 in the Appendix. We find that shorter
deployment schedules, i.e., smaller ↵, lead to faster progress during initial stages of the optimization,
whereas longer deployments schedules fare better in the long run while at the same time significantly
reducing the number of deployments.
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Figure 3: Convergence of lazy and greedy deploy to performative stability. Results are for the strategic
classification experiments with ✏ = 100. (left panel) convergence as a function of the number of samples. (right
panel) convergence as a function of the number of deployments.

4.2 Strategic classification

In addition to the experiments on synthetic data, we also evaluate the performance of the two
optimization procedures in a simulated strategic classification setting. Strategic classification is a
two-player game between an institution which deploys a classifier f✓ and individual agents who
manipulate their features in order to achieve a more favorable classification.

Perdomo et al. [17] introduce a credit scoring simulator in which a bank deploys a logistic regression
classifier to determine the probability that an individual will default on a loan. Individuals correspond
to feature, label pairs (x, y) drawn from a Kaggle credit scoring dataset [9]. Given the bank’s choice
of a classifier f✓, individuals solve an optimization problem to compute the best-response set of
features, xBR. This optimization procedure is parameterized by a value ✏ which determines the extent
to which agents can change their respective features. The bank then observes the manipulated data
points (xBR, y). This data-generating process can be described by a distribution map, which we can
verify is ✏-sensitive. For additional details we refer to Appendix A.

At each time step, the learner observes a single sample from the distribution in which the individual’s
features have been manipulated in response to the most recently deployed classifier. This is in
contrast to the experimental setup in [17], where the learner gets to observe the entire distribution of
manipulated features at every step. While we cannot compute the stable point analytically in this
setting, we can calculate it empirically by running RRM until convergence.

Results. The inverse condition number of this problem is much smaller than in the Gaussian example;
we have �/� ⇡ 10�2. We fist pick ✏ within the regime of provable convergence, i.e., ✏ = 10�3, and
compare the two methods. As expected, for such a small value of ✏ greedy deploy is the preferred
method. Results are depicted in Figure 6 in the Appendix.

Furthermore, we explore the behavior of these algorithms outside the regime of provable convergence
with ✏� �/�. We choose step sizes for both algorithms as defined in Section 3 with the exception
that we ignore the ✏-dependence in the step size schedule of greedy deploy and choose the same
initial step size as for lazy deploy (Theorem 3.2). As illustrated in Figure 3 (left), lazy significantly
outperforms greedy deploy in this setting. Moreover, the performance of lazy deploy significantly
improves with ↵. In addition to speeding up convergence, choosing larger sample collection schedules
n(k) substantially reduces the number of deployments, as seen in Figure 3 (right).
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Broader impact statement

The motivation for studying performative prediction comes from the observation that whenever we
use supervised learning in social settings, we almost never make predictions for predictions’ sake,
but rather to inform decision making within some broader context [11]. Banks predict default risks to
decide to whom they will allocate loans. Commuters use estimated time of arrival (ETA) prediction
to choose which route to take to work. Governments predict crime rates to decide how to deploy
police forces [8, 13]. In each of these settings, our choice of predictive model leads to changes in the
way the broader system behaves and hence in the distribution over observed data.

Our work introduces optimization procedures for finding classifiers with good predictive performance
for these performative settings. Here, we use good to indicate that these models are accurate. However,
as is clear from examples in recent history, the societal impacts of having an accurate model depend
on the context in which prediction is used, and the intent of the system designer. As a society, we
can benefit from having robust and reliable systems to forecast congestion in cities, yet it would be
remiss of us to overlook how these advances could also be used to infringe upon civil liberties.

As a subfield of learning theory, performative prediction is only just starting to receive attention from
the community and papers in this area are largely theoretical in nature. Therefore, much remains to
be seen in terms of the broader impact of these ideas. We eagerly welcome feedback and comments
from members of the community as to how we may ensure the success of this research agenda.

References
[1] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and Ap-

proximation with Policy Gradient Methods in Markov Decision Processes. volume 125 of
Proceedings of Machine Learning Research, pages 64–66. PMLR, 09–12 Jul 2020.

[2] Algorithmia. 2020 State of Enterprise Machine Learning. 2020. https://info.
algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/
Algorithmia_2020_State_of_Enterprise_ML.pdf.

[3] Peter L. Bartlett. Learning with a Slowly Changing Distribution. In Proceedings of the
Conference on Computational Learning Theory (COLT), pages 243–252, 1992.

[4] Peter L. Bartlett, Shai Ben-David, and Sanjeev R. Kulkarni. Learning Changing Concepts by
Exploiting the Structure of Change. Machine Learning, 41(2):153–174, 2000.

[5] Rakesh D Barve and Philip M Long. On the Complexity of Learning from Drifting Distributions.
Information and Computation, 138(2):170–193, 1997.

[6] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-Stationary Stochastic Optimization. Opera-
tions Research, 63(5):1227–1244, 2015.

[7] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization Methods for Large-Scale
Machine Learning. SIAM Review, 60(2):223–311, 2018.

[8] Danielle Ensign, Sorelle A. Friedler, Scott Neville, Carlos Scheidegger, and Suresh Venkatasub-
ramanian. Runaway Feedback Loops in Predictive Policing. In Proceedings of the 1st ACM
Conference on Fairness, Accountability and Transparency, pages 160–171, 2018.

[9] Kaggle. Give Me Some Credit. https://www.kaggle.com/c/GiveMeSomeCredit/data,
2012.

[10] Sham M Kakade. A Natural Policy Gradient. In Advances in Neural Information Processing
Systems, pages 1531–1538, 2002.

[11] Amanda Kube, Sanmay Das, and Patrick J Fowler. Allocating Interventions Based on Predicted
Outcomes: A Case Study on Homelessness Services. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 622–629, 2019.

[12] Anthony Kuh, Thomas Petsche, and Ronald L Rivest. Learning Time-Varying Concepts. In
Advances in Neural Information Processing Systems (NIPS), pages 183–189, 1991.

[13] Kristian Lum and William Isaac. To Predict and Serve? Significance, 13(5):14–19, 2016.
[14] John Miller, Chloe Hsu, Jordan Troutman, Juan Perdomo, Tijana Zrnic, Lydia Liu, Yu Sun,

Ludwig Schmidt, and Moritz Hardt. WhyNot, 2020.

10

https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://www.kaggle.com/c/GiveMeSomeCredit/data


[15] Smitha Milli, John Miller, Anca D. Dragan, and Moritz Hardt. The Social Cost of Strategic
Classification. In Proceedings of the Conference on Fairness, Accountability, and Transparency
(FAT*), page 230–239. Association for Computing Machinery, 2019.

[16] Eric Moulines and Francis R Bach. Non-Asymptotic Analysis of Stochastic Approximation
Algorithms for Machine Learning. In Advances in Neural Information Processing Systems
(NIPS), pages 451–459, 2011.

[17] Juan C. Perdomo, Tijana Zrnic, Celestine Mendler-Dünner, and Moritz Hardt. Performative
Prediction. In Proceedings of the International Conference on Machine Learning (ICML), 2020.

[18] Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making Gradient Descent Optimal
for Strongly Convex Stochastic Optimization. In Proceedings of the International Conference
on Machine Learning (ICML), pages 1571–1578, 2012.

[19] Benjamin Recht and Stephen J. Wright. Optimization for Modern Data Analysis. 2019. Preprint
available at http://eecs.berkeley.edu/~brecht/opt4mlbook.

[20] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

[21] Tom Schaul, Sixin Zhang, and Yann LeCun. No More Pesky Learning Rates. In Proceedings of
the International Conference on Machine Learning (ICML), volume 28, pages 343–351, 2013.

[22] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic Convex
Optimization. In Proceedings of the Conference on Computational Learning Theory (COLT),
2009.

[23] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In Advances in Neural
Information Processing Systems, pages 1057–1063, 2000.

[24] Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Rein-
forcement Learning. Machine learning, 8(3-4):229–256, 1992.

11

http://eecs.berkeley.edu/~brecht/opt4mlbook


(a) ✏ = 0.2 (b) ✏ = 0.6 (c) ✏ = 0.9

(d) ✏ = 0.2 (e) ✏ = 0.6 (f) ✏ = 0.9

Figure 4: Convergence to performative stability of lazy deploy for the synthetic Gaussian example with µ = 10,
� = 0.1. (top row) We show convergence of lazy deploy as a function of the number of samples collected for
various values of ✏. (bottom row) We plot convergence in the same setting, but now as a function of the number
of deployments. For comparison we add greedy deploy (red) and RRM (dashed, gray line). The stars indicate
the value attained at the end of our simulation (50k SGD updates).

A Additional evaluations and details on experimental setup

Algorithm parameters. If not stated otherwise we use the step size schedule proposed by our theory:

– greedy deploy (Theorem 3.3): ⌘k,j =
c⌘

j+k0
, where c⌘ = 1

� and k0 = 8L2

�2 .

– lazy deploy (Theorem 3.2): ⌘k = c⌘
k+k0

, where c⌘ = 1
��✏� and k0 = 8L2

(��✏�)2 .

In Figure 3, since we experiment with ✏ = 100 which is outside the regime of our theory, we adapt
the ✏-dependence of the step size in greedy deploy. In particular, we pick c⌘ = 100

� and k0 = 8L2

�2 for
both algorithms. The factor 100 was found empirically to reduce runtime.

The deployment schedule n(k) for lazy deploy is parameterized by ↵ as n(k) = n0k
↵, where we

choose n0 = 1 for our experiments.

Confidence invervals. We repeat all our experiments 30 times and plot the mean µs and the shaded
area µs ± z

sp
n

where s denotes the standard deviation computed over the runs and z = 1.645. The
value of z is chosen to ensure 90% coverage assuming Gaussian errors in the data.

A.1 Details for synthetic Gaussian experiments

The distribution map for the synthetic example is given by D(✓) = N (µ + ✓✏,�
2) where we use

µ = 10 and � = 0.1 for our experiments. The SGD updates take the following form:

– greedy deploy: ✓k+1 = ✓k + ⌘k(z(k) � ✓k) where z
(k)
⇠ D(✓k).
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– lazy deploy: 'k,j+1 = 'k,j + ⌘k,j(z
(k)
j � 'k,j), where z

(k)
j ⇠ D(✓k).

We initialize all optimization procedures at the risk minimizer ✓1 = µ to mitigate effects of bad
initialization and to instead focus on the effects of performativity.

A.2 Strategic classification simulator

For these experiments, we use the same experimental setup used by Perdomo et al. [17] as imple-
mented in the WhyNot library [14]. We nevertheless include the all the relevant details for the sake of
completeness.

Input: base distribution D, classifier f✓, cost function c, and utility function u

Sampling procedure for D(✓):
1. Sample (x, y) ⇠ D

2. Compute best response xBR  argmaxx0 u(x0
, ✓)� c(x0

, x)
3. Output sample (xBR, y)

Figure 5: Distribution map for strategic classification (Perdomo et al. [17]).

The distribution map for this strategic classification example is described in Figure 5. The base
distribution D is a subsampled version of the Kaggle dataset [9] with d = 10 features and n = 18357
examples. Labels are binary variables y 2 {0, 1} and indicate whether an individual defaulted on
a loan or not. We preprocess the data and normalize features to have zero mean and unit standard
deviation. Out of the ten features, three are treated as strategic features. These are dimensions 1, 6, 8
corresponding to features such as the number of open credit lines.

The empirical distribution on these 18k points is considered to be the true distribution. To run our
stochastic optimization experiments, we simply sample a single example from the data set according
to the data-generating process described in Figure 5.

Individual utilities u(✓, x) = �✓>x are linear and the costs are quadratic c(x0
, x) = 1

2✏kx
0
� xk.

Together, these lead to an ✏-sensitive distribution map as shown in [17].

The loss of the institution is a logistic loss with `2 regularization:

1

n

nX

i=1

⇥
log(1 + exp(x>

i ✓))� yix
>
i ✓

⇤
+

�

2
k✓k

2

This loss is �-strongly convex and � = max
�
2, 1

4n

Pn
i=1kxik

2
2 + �

 
. jointly smooth [17]. We fix

� = 103/n for all experiments. When evaluated on the base distribution, the objective has parameters
� = 4.72, � = 0.054 which yields �

� = 0.011.

Figure 6: Convergence of lazy and greedy deploy to performative stability. Results are for the strategic
classification experiments with ✏ = 0.001. (left panel) convergence as a function of the number of samples
collected. (center panel) convergence as a function of the number of deployments. (right panel) excess
performative risk with respect the the stable classifier ✓PS as a function of stochastic gradient updates.
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B Technical lemmas

Lemma B.1 (Kantorovich-Rubinstein). A distribution map D(·) is ✏-sensitive if and only if for all
✓, ✓

0
2 ⇥:

sup

⇢��� E
Z⇠D(✓)

g(Z)� E
Z⇠D(✓0)

g(Z)
���  ✏k✓ � ✓

0
k2 : g : Rp

! R, g 1-Lipschitz
�
.

Lemma B.2 (Lemma C.4 in [17]). Let f : Rn
! Rd be an L-Lipschitz function, and let X,X

0
2 Rn

be random variables such that W1(X,X
0)  C. Then

kE[f(X)]� E[f(X 0)]k2  LC.

Lemma B.3 (First-order optimality condition). Let f be convex and let ⌦ be a closed convex set on
which f is differentiable, then

x⇤ 2 argmin
x2⌦

f(x)

if and only if
rf(x⇤)

T (y � x⇤) � 0, 8y 2 ⌦.

Lemma B.4 (Theorem 3.5 in [17]). Suppose the loss function is �-strongly convex (A2) and �-jointly
smooth (A3). Then, for all ✓, ✓0 2 ⇥, it holds that,

kG(✓)�G(✓0)k2  ✏
�

�
k✓ � ✓

0
k2.

Lemma B.5. Let s 2 (0, 1), and fix ↵ > 0, then,

tX

k=1

k
�↵

s
t�k


s
t(1�2�1/↵)

1� s
+

2t�↵

1� s
.

Proof. Denote by ak
def
= k

�↵. Let Mt = max{m 2 N : am > 2at}. We decompose the sum
depending on Mt as follows:

tX

k=1

aks
t�k =

MtX

k=1

aks
t�k +

tX

k=Mt+1

aks
t�k

.

We bound the first term trivially, by applying the fact that ak  1. For the second term, we use the
fact that ak  2at for k > Mt. We thus get:

tX

k=1

aks
t�k


MtX

k=1

s
t�k + 2at

tX

k=Mt+1

s
t�k


s
t�Mt

1� s
+

2at
1� s

.

Since ak = k
�↵, then Mt 

t
21/↵

, and so

s
t�Mt

1� s
+

2at
1� s


s
t(1�2�1/↵)

1� s
+

2at
1� s

.

C Population-level results: proofs

C.1 Proof of Proposition 2.2

First we state a counterexample to prove claim (a), and then we generalize our construction to prove
claim (b).
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a) Let ⇥ = R2, and let z ⇠ D(✓) be a point mass at ✏✓. This distribution map is clearly ✏-sensitive.
Furthermore, define the loss as,

`(z; ✓) = � · ✓
>

0 �1
1 0

�
z,

where � is an arbitrary positive scalar. Note that this objective is linear in ✓ and hence convex.
Furthermore, it is �-jointly smooth and has a unique performatively stable point at the origin.

Repeated gradient descent has the dynamics:

✓k+1 = ✓k � ⌘k E
z⇠D(✓k)

r`(z; ✓k)

= ✓k � ⌘k✏�


0 �1
1 0

�
✓k.

In particular, we can write

✓t+1 =


1 ck

�ck 1

�
✓k

def
= Ck✓k,

where ck = ⌘k�✏ > 0. The matrix Ck has eigenvalues 1± ic and hence |�1| = |�2| =
p
1 + c2 > 1.

Therefore, k✓t+1k2 > k✓tk2, thus proving that repeated gradient descent cannot converge.

Intuitively, if we initialize RGD at any point other than the stable point at origin in this example,
gradient flow "spirals outwards".

b) Now we generalize claim (a) to show that ✏ < �
� is a sharp threshold for convergence of RGD.

Let ⇥ = R2 and let z ⇠ D(✓) be a point mass at ✏✓. As before, this map is clearly ✏-sensitive. Define
the loss to be

`(z; ✓) = ✓
>

a �b

b a

�
z +

�

2
k✓k

2
2.

This loss is �-strongly convex in ✓. Notice that the gradient

r`(z; ✓) =


a �b

b a

�
z + �✓

is � = max{�, a2 + b
2
}-jointly smooth, given that it is �-Lipschitz in ✓ and a

2 + b
2-Lipschitz in

z. Here, a2 + b
2 is the operator norm of the 2x2 matrix. Repeated gradient descent performs the

following update:

✓k+1 = ✓k � ⌘k E
z⇠D(✓k)

r`(z; ✓k)

=


1� ⌘k(✏a+ �) ⌘k✏b

�⌘k✏b 1� ⌘k(✏a+ �)

�
✓k.

If we set b =
p
� � a2 for � � �, then the loss is �-jointly smooth. Assume that � < 1, and set

a = ��. If ✏ � �
� , then the update becomes of the form:

✓k+1 =


1 + ck,0 ck,1

�ck,1 1 + ck,0

�
✓k

def
= Ck✓k,

for some ck,0 � 0, ck,1 > 0. The matrix Ck has eigenvalues equal to 1 + ck,0 ± ick,1, and these
eigenvalues have modulus equal to (1 + ck,0)2 + c

2
k,1 > 1. Therefore, RGD is an expansive update

for all choices of step size ⌘k > 0, implying that it cannot converge.

C.2 Proof of Proposition 2.3

This proof is essentially a consequence of Lemma 3.1. By following the steps of Lemma 3.1, we get

k✓k+1 � ✓PSk
2
2  k✓k � ✓PSk

2
2 � 2⌘k(Er`(z(k); ✓k))>(✓k � ✓PS) + ⌘

2
kEr`(z(k); ✓k)k22

def
= B1 � 2⌘B2 + ⌘

2
B3.
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Following the same approach as in Lemma 3.1, we get
B2 � (� � ✏�)k✓k � ✓PSk

2
2.

The bound on B3 is slightly different, as we no longer make assumptions on the second moment of
the gradients; we proceed as follows:
kEr`(z(k); ✓k)k22 = kEr`(z(k); ✓k)� Er`(z(✓PS); ✓PS)k

2
2

 kEr`(z(k); ✓k)� Er`(z(k); ✓PS) + Er`(z(k); ✓PS)� Er`(z(✓PS); ✓PS)k
2
2

 2kEr`(z(k); ✓k)� Er`(z(k); ✓PS)k
2
2

+ 2kEr`(z(k); ✓PS)� Er`(z(✓PS); ✓PS)k
2
2

 2�2
k✓k � ✓PSk

2
2 + 2�2

✏
2
k✓k � ✓PSk

2
2

 2�2
�
1 + ✏

2
�
k✓k � ✓PSk

2
2,

where in the third inequality we apply the fact that the loss if �-jointly smooth, together with Lemma
B.2. Putting everything together, this implies

k✓k+1 � ✓PSk
2
2  (1� 2⌘(� � ✏�) + 2⌘2�2(1 + ✏

2))k✓k � ✓PSk
2
2.

Using the fact that
p
1� x  1� x

2 for x 2 [0, 1], we get

k✓k+1 � ✓PSk2  (1� ⌘(� � ✏�) + ⌘
2
�
2(1 + ✏

2))k✓k � ✓PSk2.

By setting ⌘ = ��✏�
2(1+✏2)�2 , we can conclude

k✓k+1 � ✓PSk2 

✓
1�

(� � ✏�)2

4(1 + ✏2)�2

◆
k✓k � ✓PSk2.

Note that (��✏�)2

4(1+✏2)�2 < 1 because (� � ✏�)2  �
2 + ✏

2
�
2
 (1 + ✏

2)�2.

We can unroll the above recursion to get

k✓k+1 � ✓PSk2 

✓
1�

(� � ✏�)2

4(1 + ✏2)�2

◆k

k✓1 � ✓PSk2

 exp

✓
�

k(� � ✏�)2

4(1 + ✏2)�2

◆
k✓1 � ✓PSk2.

Setting the right-hand side to � and expressing k completes the proof.

D Greedy deploy: proofs

D.1 Proof of Lemma 3.1

Throughout the proof, we will use z(✓PS) to denote a sample from D(✓PS) which is independent from
the whole trajectory of greedy deploy (e.g. {✓j , z(j)}j , etc.).

Since ⇥ is closed and convex, we know
k✓k+1 � ✓PSk

2
2 = k⇧⇥(✓k � ⌘kr`(z

(k); ✓k))� ✓PSk
2
2  k✓k � ⌘kr`(z

(k); ✓k)� ✓PSk
2
2.

Squaring the right-hand side and expanding out the square,
E
⇥
k✓k � ⌘kr`(z

(k); ✓k)� ✓PSk
2
2

⇤

= E
⇥
k✓k � ✓PSk

2
2

⇤
� 2⌘k E

⇥
r`(z(k); ✓k)

>(✓k � ✓PS)
⇤
+ ⌘

2
k E

⇥
kr`(z(k); ✓k)k

2
2

⇤

def
= B1 � 2⌘kB2 + ⌘

2
kB3.

We begin by lower bounding B2. Since ✓PS is optimal for the distribution it induces, by Lemma B.3
we have E

⇥
r`(z(✓PS); ✓PS)>(✓k � ✓PS)

⇤
� 0. This allows us to bound B2 as:

B2 � E
h
(r`(z(k); ✓k)�r`(z

(✓PS); ✓k) +r`(z
(✓PS); ✓k)�r`(z

(✓PS); ✓PS))
>(✓k � ✓PS)

i

= E
h
(r`(z(k); ✓k)�r`(z

(✓PS); ✓k)
>(✓k � ✓PS)

i

+ E
h
(r`(z(✓PS); ✓k)�r`(z

(✓PS); ✓PS))
>(✓k � ✓PS)

i
.
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For the first term, we have that

E
h�
r`(z(k); ✓k)�r`(z

(✓PS); ✓k)
�>

(✓k � ✓PS)
i

= E
h
E
h
(r`(z(k); ✓k)�r`(z

(✓PS); ✓k)
>(✓k � ✓PS) | ✓k

ii

� � ✏� E
⇥
k✓k � ✓PSk

2
2

⇤
.

Having applied the law of iterated expectation, the above inequality follows from the fact that,
conditional on ✓k, the functionr`(z; ✓k)>(✓k� ✓PS) is �k✓k� ✓PSk2�Lipschitz in z. To verify this
claim, we can apply the Cauchy-Schwarz inequality followed by the fact that the gradient is �-jointly
smooth. Then, we apply Lemma B.1 and the fact that D(·) is ✏-sensitive to get the final bound.

Now, we use strong convexity to bound the second term,

E
h
(r`(z(✓PS); ✓k)�r`(z

(✓PS); ✓PS))
>(✓k � ✓PS)

i

= E
⇥
E
h
(r`(z(✓PS); ✓k)�r`(z

(✓PS); ✓PS))
>(✓k � ✓PS) | ✓k

i ⇤

� � E
⇥
k✓k � ✓PSk

2
2

⇤
.

Therefore, we get that

B2 � (� � ✏�)E
⇥
k✓k � ✓PSk

2
2

⇤
.

Now we move on to bounding B3. Using our assumption on the variance on the gradients yields the
following bound, we get

E
h
kr`(z(k); ✓k)k

2
2

i
 �

2 + L
2 E

⇥
k✓k �G(✓k)k

2
2

⇤

= �
2 + L

2 E
⇥
k✓k � ✓PS + ✓PS �G(✓k)k

2
2

⇤

 �
2 + L

2
⇣
E
⇥
(k✓k � ✓PSk2 + k✓PS �G(✓k)k2)

2 ⇤⌘

 �
2 + L

2

✓
1 + ✏

�

�

◆2

E
⇥
k✓k � ✓PSk

2
2

⇤
,

where in the last step we use Lemma B.4, which implies k✓PS �G(✓k)k2  ✏
�
� k✓k � ✓PSk2.

Putting all the steps together completes the proof.

D.2 Proof of Theorem 3.2

From Lemma 3.1, we have that the following recursion holds:

E
⇥
k✓k+1 � ✓PSk

2
2

⇤


 
1� 2⌘k(� � ✏�) + ⌘

2
kL

2

✓
1 + ✏

�

�

◆2
!
E
⇥
k✓k � ✓PSk

2
2

⇤
+ ⌘

2
k�

2
.

Using the fact that ✏ < �
� , we get that,

E
⇥
k✓k+1 � ✓PSk

2
2

⇤

�
1� 2⌘k(� � ✏�) + 4⌘2kL

2
�
E
⇥
k✓k � ✓PSk

2
2

⇤
+ ⌘

2
k�

2
.

We proceed by using induction. As in the theorem statement, we let ⌘k = 1
(��✏�)(k+k0)

, where we

denote k0 = 8L2

(��✏�)2 . The base case, k = 0, is trivially true by construction of the bound and choice
of k0. Now, we adopt the inductive hypothesis that

E
⇥
k✓k+1 � ✓PSk

2
2

⇤


max
�
2�2

, 8L2
k✓1 � ✓PSk

2
2

 

(� � ✏�)2(k + k0)
.
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Then, by Lemma 3.1, it is true that

E
⇥
k✓k+2 � ✓PSk

2
2

⇤

�
1� 2⌘k(� � ✏�) + 4⌘2kL

2
�
E
⇥
k✓k+1 � ✓PSk

2
2

⇤
+ ⌘

2
k�

2


1

(� � ✏�)2

0

@
k + k0 � 2 + 4L2

(��✏�)2k0

(k + k0)2
max

�
2�2

, 8L2
k✓1 � ✓PSk

2
2

 
+

�
2

(k + k0)2

1

A


1

(� � ✏�)2

✓
k + k0 � 1.5

(k + k0)2
max

�
2�2

, 8L2
k✓1 � ✓PSk

2
2

 
+

�
2

(k + k0)2

◆


1

(� � ✏�)2

✓
k + k0 � 1

(k + k0)2
max

�
2�2

, 8L2
k✓1 � ✓PSk

2
2

 
�

0.5 · 2�2
� �

2

(k + k0)2

◆

=
1

(� � ✏�)2
·
k + k0 � 1

(k + k0)2
max

�
2�2

, 8L2
k✓1 � ✓PSk

2
2

 


1

(� � ✏�)2
·

1

k + 1 + k0
max

�
2�2

, 8L2
k✓1 � ✓PSk

2
2

 
,

where the last step follows because (k+k0)2 > (k+k0)2�1 = (k+k0+1)(k+k0�1). Therefore,
we have shown E

⇥
k✓k+2 � ✓PSk

2
2

⇤


Mgreedy

(��✏�)2(k+1+k0)
, which completes the proof by induction.

E Lazy deploy: proofs

To prove Theorem 3.3, we use the following classical result about convergence of SGD on a static
distribution (see, e.g., [18]). The step size is chosen such that it matches the step size of Theorem 3.2
when ✏ = 0. We include the proof for completeness.
Lemma E.1. Under assumptions (A1), (A2), and (A3), lazy deploy satisfies the following:

E
⇥
k'k,j+1 �G(✓k)k

2
2

⇤

�
1� 2⌘k,j� + ⌘

2
k,jL

2
�
E
⇥
k'k,j �G(✓k)k

2
2

⇤
+ ⌘

2
k,j�

2
.

If, additionally, ⌘k,j = 1
�j+8L2/� , then for all k � 1, j � 0, the following is true

E
⇥
k'k,j+1 �G(✓k)k

2
2

⇤


Mlazy

�2j + L2
,

where Mlazy
def
= max

�
1.2�2

, 8L2 E[k✓k �G(✓k)k22]
 

.

Proof. First we prove the recursion. Since ⇥ is closed and convex, we know

E
⇥
k'k,j+1 �G(✓k)k

2
2

⇤

= E
���⇧⇥

⇣
'k,j � ⌘k,jr`(z

(k)
j ;'k,j)

⌘
�G(✓k)

���
2

2

�

 E
⇥ ���'k,j � ⌘k,jr`(z

(k)
j ;'k,j)�G(✓k)

���
2

2

⇤

= E
⇥
k'k,j �G(✓k)k

2
2

⇤
� 2⌘k,j E

⇥
r`(z(k)j ;'k,j)

>('k,j �G(✓k))
⇤
+ ⌘

2
k,j E

⇥
kr`(z(k)j ;'k,j)k

2
2

⇤
.

Next, we examine the cross-term. By the first-order optimality conditions for convex functions
(Lemma B.3), we know that E

h
r`(z(k)j ;G(✓k))>('k,j �G(✓k))

i
� 0. Using this lemma along

with strong convexity, we can lower bound this term as follows,

E
⇥
r`(z(k)j ;'k,j)

>('k,j �G(✓k))
⇤
� E

⇥
(r`(z(k)j ;'k,j)�r`(z

(k)
j ;G(✓k))

>('k,j �G(✓k))
⇤

� � E
⇥
k'k,j �G(✓k)k

2
2

⇤
.

For the final term, we use our assumption on the second moment of the gradients,

E
h
kr`(z(k)j ;'k,j)k

2
2

i
 �

2 + L
2 E

⇥
k'k,j �G(✓k)k

2
2

⇤
.

Putting everything together, we get the desired recursion,

E
⇥
k'k,j+1 �G(✓k)k

2
2

⇤
 (1� 2⌘k,j� + ⌘

2
k,jL

2)E
⇥
k'k,j �G(✓k)k

2
2

⇤
+ ⌘

2
k,j�

2
.
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Now we turn to proving the second part of the lemma. Similarly to Theorem 3.2, we prove the result
using induction. As in the theorem statement, we let ⌘k,j = 1

�(j+k0)
, where we denote k0 = 8L2

�2 .
The base case, j = 0, is trivially true by construction of the bound and choice of k0. Now, we adopt
the inductive hypothesis that

E
⇥
k'k,j+1 �G(✓k)k

2
2

⇤


max
�
1.2�2

, 8L2 E
⇥
k✓k �G(✓k)k22

⇤ 

�2(j + k0)
.

Then, by part (a) of this lemma, it is true that

E
⇥
k'k,j+2 �G(✓k)k

2
2

⇤

�
1� 2⌘k,j� + ⌘

2
k,jL

2
�
E
⇥
k'k,j+1 �G(✓k)k

2
2

⇤
+ ⌘

2
k,j�

2


1

�2

 
j + k0 � 2 + L2

�2k0

(j + k0)2
max

�
1.2�2

, 8L2 E
⇥
k✓k �G(✓k)k

2
2

⇤ 
+

�
2

(j + k0)2

!


1

�2

✓
j + k0 � 15/8

(j + k0)2
max

�
1.2�2

, 8L2 E
⇥
k✓k �G(✓k)k

2
2

⇤ 
+

�
2

(j + k0)2

◆


1

�2

✓
j + k0 � 1

(j + k0)2
max

�
1.2�2

, 8L2 E
⇥
k✓k �G(✓k)k

2
2

⇤ 
�

7/8 · 1.2�2 + �
2

(j + k0)2

◆

=
1

�2
·
j + k0 � 1

(j + k0)2
max

�
1.2�2

, 8L2 E
⇥
k✓k �G(✓k)k

2
2

⇤ 


1

�2
·

1

j + 1 + k0
max

�
1.2�2

, 8L2 E
⇥
k✓k �G(✓k)k

2
2

⇤ 
,

where the last step follows because (j+k0)2 > (j+k0)2�1 = (j+k0+1)(j+k0�1). Therefore,
we have shown E

⇥
k'k,j+2 �G(✓k)k22

⇤


Mlazy

�2(j+1+k0)
, which completes the proof by induction.

E.1 Proof of Theorem 3.3

First we state two deterministic identities used in the proof, which follow from Lemma B.4:

kG(✓)� ✓PSk2  ✏
�

�
k✓ � ✓PSk2, (2)

k✓ �G(✓)k2  k✓ � ✓PSk2 + k✓PS �G(✓)k2 

✓
1 + ✏

�

�

◆
k✓ � ✓PSk2. (3)

Note that identity (3) implies k✓ �G(✓)k2 < 2k✓ � ✓PSk2 if ✏ < �
� .

By triangle inequality, we have

E
⇥
k✓k+1 � ✓PSk

2
2

⇤

= E
⇥
k✓k+1 �G(✓k) +G(✓k)� ✓PSk

2
2

⇤

 E
⇥
k✓k+1 �G(✓k)k

2
2

⇤
+ 2E [k✓k+1 �G(✓k)k2kG(✓k)� ✓PSk2] + E

⇥
kG(✓k)� ✓PSk

2
2

⇤
. (4)

Denoting k0 = 8L2

�2 , Lemma E.1 bounds the first term by

E
⇥
k✓k+1 �G(✓k)k

2
2

⇤
= E

⇥
E
⇥
k✓k+1 �G(✓k)k

2
2 | ✓k

⇤⇤


1.2�2 + 8L2 E

⇥
k✓k �G(✓k)k22

⇤

�2(n(k) + k0)


1.2�2 + 32L2 E

⇥
k✓k � ✓PSk

2
2

⇤

�2(n(k) + k0)
,

where in the last step we apply identity (3). Note also that by Jensen’s inequality, we know

E [k✓k+1 �G(✓k)k2] 
1.1� + 6LE [k✓k �G(✓k)k2]

�
p
n(k) + k0

.
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We can use this inequality, together with identities (2) and (3), to bound the cross-term in equation
(4) as follows:

2E [k✓k+1 �G(✓k)k2kG(✓k)� ✓PSk2]

 2✏
�

�
E [k✓k+1 �G(✓k)k2k✓k � ✓PSk2]


2✏��p

n(k) + k0

E
✓

6L

�
k✓k �G(✓k)k2 +

1.1�

�

◆
k✓k � ✓PSk2

�


2✏��p

n(k) + k0

E
✓

6L

�

✓
1 + ✏

�

�

◆
k✓k � ✓PSk2 +

1.1�

�

◆
k✓k � ✓PSk2

�


24✏�L

�2
p
n(k) + k0

E
⇥
k✓k � ✓PSk

2
2

⇤
+

2.2�✏�

�2
p

n(k) + k0

E [k✓k � ✓PSk2] .

We bound the latter term by applying the AM-GM inequality; in particular, for all ↵0 2 (0, 1), it
holds that

2.2�✏�

�2
p
n(k) + k0

E [k✓k � ✓PSk2] 
1.1�✏�

�2

 
1

(n(k) + k0)↵0
+

E
⇥
k✓k � ✓PSk

2
2

⇤

(n(k) + k0)1�↵0

!
.

Thus, the final bound on the cross-term in equation (4) is

2E [k✓k+1 �G(✓k)k2kG(✓k)� ✓PSk2] 

 
24✏�L

�2
p
n(k) + k0

+
1.1�✏�

�2(n(k) + k0)1�↵0

!
E
⇥
k✓k � ✓PSk

2
2

⇤

+
1.1�✏�

�2(n(k) + k0)↵0
.

The final term in equation (4) can be bounded by identity (2):

E
⇥
kG(✓k)� ✓PSk

2
2

⇤


✓
✏
�

�

◆2

E
⇥
k✓k � ✓PSk

2
2

⇤
.

Putting all the steps together, we have derived the following recursion, true for all ↵0 2 (0, 1):

E
⇥
k✓k+1 � ✓PSk22

⇤

 

32L2

�2(n(k) + k0)
+

24✏�L

�2
p

n(k) + k0
+

1.1�✏�
�2(n(k) + k0)1�↵0

+

✓
✏
�
�

◆2
!
E
⇥
k✓k � ✓PSk22

⇤

+
1.2�2

�2(n(k) + k0)
+

1.1�✏�
�2(n(k) + k0)↵0

 cE
⇥
k✓k � ✓PSk22

⇤
+

1.2�2

�2(n(k) + k0)
+

1.1�✏�
�2(n(k) + k0)↵0

, (5)

where we define

c
def
=

32L2

�2n0
+

24✏�L

�2pn0
+

1.1�✏�

�2n
1�↵0
0

+

✓
✏
�

�

◆2

. (6)

We pick n0 large enough such that there exists ↵0 > 0 for which c < 1.

Unrolling the recursion given by equation (5), we get

E
⇥
k✓k+1 � ✓PSk

2
2

⇤
 c

k
k✓1 � ✓PSk

2
2 +

1

�2

kX

j=1

c
k�j

✓
1.2�2

n(j) + k0
+

1.1�✏�

(n(j) + k0)↵0

◆
.

Since ↵0 < 1, we can upper bound the second term as

1

�2

kX

j=1

c
k�j

✓
1.2�2

n(j) + k0
+

1.1�✏�

(n(j) + k0)↵0

◆


1.2�2

�2

kX

j=1

c
k�j 1

n(j) + k0
+

1.1�✏�

�2

kX

j=1

c
k�j 1

(n(j) + k0)↵0


1

�2(1� c)

✓
1.2�2

n0
(2k�↵ + c

(1�2�1/↵)k) +
1.1�✏�

n
↵0
0

(2k�↵·↵0 + c
(1�2�1/(↵↵0))k)

◆
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where in the second inequality we apply Lemma B.5 after plugging in the choice of n(k). Using the
fact that ↵0 2 (0, 1) and hence c

(1�2�1/(↵↵0))k
< c

(1�2�1/↵)k, as well as ✏ < �
� and n0 � 1, gives

1

�2(1� c)

✓
1.2�2

n0
(2k�↵ + c

(1�2�1/↵)k) +
1.1�✏�

n
↵0
0

(2k�↵·↵0 + c
(1�2�1/(↵↵0))k)

◆


1.2�2 + 1.1��

�2(1� c)

⇣
4k�↵↵0 + 2c(1�2�1/↵)k

⌘


3(� + �)2

�2(1� c)

⇣
2k�↵↵0 + c

⌦(k)
⌘
.

It remains to set ↵0; we set ↵0 = max{� 2 (0, 1) : c < 1} (note that the existence of such ↵0 is
guaranteed by the choice of n0). Clearly, ↵0 ! 1 as n0 grows, and so putting everything together
gives

E
⇥
k✓k+1 � ✓PSk

2
2

⇤
 c

k
k✓1 � ✓PSk

2
2 +

3(� + �)2

�2(1� c)

✓
2

k↵·(1�o(1))
+ c

⌦(k)

◆
,

as desired.

F Proof of Corollary 3.4

From Theorem 3.2, we know that for greedy deploy, E
⇥
k✓k+1 � ✓PSk

2
2

⇤
= O( 1k ) where k indexes

both the number of classifiers and the number of samples collected. By inverting this bound, we see
that to ensure E

⇥
k✓k+1 � ✓PSk

2
2

⇤
 �, it suffices to collect O( 1� ) samples.

From our analogous convergence result for lazy deploy (Theorem 3.3), we know that after the
k-th deployment, it holds that E

⇥
k✓k+1 � ✓PSk

2
2

⇤
= O(1/k↵·!), for some ! = 1� o(1) which is

independent of k and tends to 1 as n0 grows. If we collect ⇥(j↵) samples for each deployment
j = 1 . . . k, after k deployments the total number of samples N is ⇥(k↵+1). Therefore,

E
⇥
k✓k+1 � ✓PSk

2
2

⇤
= O(1 / N

↵·!
↵+1 ).

By inverting these bounds, we get our desired result for the asymptotics of lazy deploy.
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