
A Additional related works

The Column Subset Selection Problem is one of the most classical tasks in matrix approxima-
tion (Boutsidis et al., 2008). The original version of the problem compares the projection error
of a subset of size k to the best rank k approximation error. The techniques used for finding good
subsets have included many randomized methods (Deshpande et al., 2006; Boutsidis et al., 2008;
Belhadji et al., 2018; Boutsidis & Woodruff, 2014), as well as deterministic methods (Gu & Eisenstat,
1996). Variants of these algorithms have also been extended to more general losses (Chierichetti et al.,
2017; Khanna et al., 2017; Elenberg et al., 2018). Later on, most works have relaxed the problem
formulation by allowing the number of selected columns |S| to exceed the rank k. These approaches
include deterministic sparsification based algorithms (Boutsidis et al., 2011), greedy selection (e.g.,
Altschuler et al., 2016) and randomized methods (e.g., Drineas et al., 2008; Guruswami & Sinop,
2012; Paul et al., 2015). Note that we study the original version of the CSSP (i.e., without the
relaxation), where the number of columns |S| must be equal to the rank k.

The Nyström method has been given significant attention independently of the CSSP. The guarantees
most comparable to our setting are due to Belabbas & Wolfe (2009), who show the approximation
factor k ` 1 for the trace norm error. Many recent works allow the subset size |S| to exceed the
target rank k, which enables the use of i.i.d. sampling techniques such as leverage scores (Gittens
& Mahoney, 2016) and ridge leverage scores (Alaoui & Mahoney, 2015; Musco & Musco, 2017).
In addition to the trace norm error, these works consider other types of guarantees, e.g., based on
spectral and Frobenius norms, which are not as readily comparable to the CSSP error bounds.

The double descent curve was introduced by Belkin et al. (2019a) to explain the remarkable success
of machine learning models which generalize well despite having more parameters than training data.
This research has been primarily motivated by the success of deep neural networks, but double descent
has also been observed in linear regression (Belkin et al., 2019b; Bartlett et al., 2019; Dereziński et al.,
2019b) and other learning models. Double descent is typically presented by plotting the absolute
generalization error as a function of the number of parameters used in the learning model, although
Poggio et al. (2019) and Liao et al. (2020) showed that the behavior of generalization error is merely
an artifact of the phase transitions in the spectral properties of random matrices. Importantly, although
the descent curves we obtain are reminiscent of the above works, our setting is different in that it is a
deterministic combinatorial optimization problem for relative error. In particular, Corollary 1 shows
that our multiple-descent curve can occur as a purely deterministic property of the optimal CSSP
solution. Despite the differences, there are certain similarities between the two settings, namely (a)
the notion of stable rank we use matches the one used by Bartlett et al. (2019), (b) the peaks in both
the settings are closely aligned – these peaks coincide with the size k crossing the corresponding
sharp drops in the respective spectra, (c) the analysis of bias of the minimum norm solution for double
descent for linear regression under DPP sampling obtained by Dereziński et al. (2019b) leads to
expressions very similar to ours for the CSSP error for DPP sampling.

Determinantal point processes have been shown to provide near-optimal guarantees not only for the
CSSP but also other tasks in numerical linear algebra, such as least squares regression (e.g., Avron
& Boutsidis, 2013; Dereziński & Warmuth, 2018; Dereziński et al., 2019a). They are also used in
recommender systems, stochastic optimization and other tasks in machine learning (for a review, see
Dereziński & Mahoney, 2020; Kulesza & Taskar, 2012). Efficient algorithms for sampling from these
distributions have been proposed both in the CSSP setting (i.e., given matrix A; see, e.g., Deshpande
& Rademacher, 2010; Dereziński, 2019) and in the Nyström setting (i.e., given kernel K; see, e.g.,
Anari et al., 2016; Dereziński et al., 2019). The term “cardinality constrained DPP” (also known as a
“k-DPP” or “volume sampling”) was introduced by Kulesza & Taskar (2011) to differentiate from
standard DPPs which have random cardinality. Our proofs rely in part on converting DPP bounds to
k-DPP bounds via a refinement of the concentration of measure argument used by Dereziński et al.
(2020).

Beyond worst-case analysis of algorithms is crucial to understanding the often-noticed gap between
practical performance and theoretical guarantees of these algorithms. However, there have been
limited number of works in machine learning that undertake finer-grained studies for beyond worst-
case analyses. We refer to Roughgarden (2019) for a recent survey of such studies for a few problems
in machine learning. Mahoney (2012) takes an alternative view and studies implicit statistical
properties of worst case algorithms.

13



B Determinantal point processes

Since our main results rely on randomized subset selection via determinantal point processes (DPPs),
we provide a brief overview of the relevant aspects of this class of distributions. First introduced
by Macchi (1975), a determinantal point process is a probability distribution over subsets S Ñ rns,
where we use rns to denote the set t1, ..., nu. The relative probability of a subset being drawn is
governed by a positive semidefinite (p.s.d.) matrix K P Rnˆn, as stated in the definition below,
where we use KS,S to denote the |S| ˆ |S| submatrix of K with rows and columns indexed by S.
Definition 3. For an n ˆ n p.s.d. matrix K, define S „ DPPpKq as a distribution over all subsets

S Ñ rns so that

PrpSq “
detpKS,Sq

detpI ` Kq
.

A restriction to subsets of size k is denoted as k-DPPpKq.

DPPs can be used to introduce diversity in the selected set or to model the preference for selecting dis-
similar items, where the similarity is stated by the kernel matrix K. DPPs are commonly used in many
machine learning applications where these properties are desired, e.g., recommender systems (Warlop
et al., 2019), model interpretation (Kim et al., 2016), text and video summarization (Gong et al.,
2014), and others (Kulesza & Taskar, 2012). They have also played an important role in randomized
numerical linear algebra (Dereziński & Mahoney, 2020).

Given a p.s.d. matrix K P Rnˆn with eigenvalues �1, ...�n, the size of the set S „ DPPpKq is
distributed as a Poisson binomial random variable, namely, the number of successes in n Bernoulli
random trials where the probability of success in the ith trial is given by �i

�i`1 . This leads to a simple
expression for the expected subset size:

Er|S|s “

ÿ

i

�i

�i ` 1
“ trpKpI ` Kq

´1
q. (2)

Note that if S „ DPPp
1
↵Kq, where ↵ ° 0, then PrpSq is proportional to ↵

´|S|
detpKS,Sq, so

rescaling the kernel by a scalar only affects the distribution of the subset sizes, giving us a way to
set the expected size to a desired value (larger ↵ means smaller expected size). Nevertheless, it is
still often preferrable to restrict the size of S to a fixed k, obtaining a k-DPPpKq (Kulesza & Taskar,
2011).

Both DPPs and k-DPPs can be sampled efficiently, with some of the first algorithms provided by
Hough et al. (2006), Deshpande & Rademacher (2010), Kulesza & Taskar (2011) and others. These
approaches rely on an eigendecomposition of the kernel K, at the cost of Opn

3
q. When K “ AJA,

as in the CSSP, and the dimensions satisfy m ! n, then this can be improved to Opnm
2
q. More

recently, algorithms that avoid computing the eigendecomposition have been proposed (Dereziński,
2019; Dereziński et al., 2019; Calandriello et al., 2020; Anari et al., 2016), resulting in running times
of rOpnq when given matrix K and rOpnmq for matrix A, assuming small desired subset size. See
Gautier et al. (2019) for an efficient Python implementation of DPP sampling.

The key property of DPPs that enables our analysis is a formula for the expected value of the
random matrix that is the orthogonal projection onto the subspace spanned by vectors selected by
DPPpAJAq. In the special case when A is a square full rank matrix, the following result can be
derived as a corollary of Theorem 1 by Mutny et al. (2020), and a variant for DPPs over continuous
domains can be found as Lemma 8 of Dereziński et al. (2019b). For completeness, we also provide a
proof in Appendix C.
Lemma 5. For any A and S Ñ rns, let PS be the projection onto the spantai : i P Su. If

S „ DPPpAJAq, then

ErPSs “ ApI ` AJAq
´1AJ

.

Lemma 5 implies a simple closed form expression for the expected error in the CSSP. Here, we
use a rescaling parameter ↵ ° 0 for controlling the distribution of the subset sizes. Note that it is
crucial that we are using a DPP with random subset size, because the corresponding expression for
the expected error of the fixed size k-DPP is combinatorial, and therefore much harder to work with.
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Lemma 6. For any ↵ ° 0, if S „ DPPp
1
↵A

JAq, then

E
“
ErApSq

‰
“ tr

`
AAJ

pI `
1
↵AAJ

q
´1

˘
“ Er|S|s ¨ ↵.

Proof. Using Lemma 5, the expected loss is given by:
E

“
ErApSq

‰
“ E

“
}pI ´ PSqA}

2
F

‰
“ trpAAJErI ´ PSsq

“ tr
`
AAJ

pI ´
1
↵ApI `

1
↵A

JAq
´1AJ

q
˘

p˚q
“ tr

`
AAJ

pI `
1
↵AAJ

q
´1

˘
,

where p˚q follows from the matrix identity pI ` AAJ
q

´1
“ I ´ ApI ` AJAq

´1AJ.

C Proof of Lemma 5

We will use the following standard determinantal summation identity (see Theorem 2.1 in Kulesza &
Taskar, 2012) which corresponds to computing the normalization constant detpI ` Kq for a DPP.
Lemma 7. For any n ˆ n matrix K, we have

detpI ` Kq “

ÿ

SÑrns
detpKS,Sq.

We now proceed with the proof of Lemma 5 (restated below for convenience).
Lemma’ 5. For any A and S Ñ rns, let PS denote the projection onto the spantai : i P Su. If

S „ DPPpAJAq, then

ErPSs “ ApI ` AJAq
´1AJ

.

Proof. Fix m as the column dimension of A and let AS denote the submatrix of A consisting of
the columns indexed by S. We have PS “ ASpKS,Sq

:AS , where : denotes the Moore-Penrose
inverse and K “ AJA. Let v P Rm be an arbitrary vector. When KS,S is invertible, then a standard
determinantal identity states that:

detpKS,SqvJPSv “ detpKS,SqvJASK
´1
S,SA

J
Sv “ detpKS,S ` AJ

Svv
JASq ´ detpKS,Sq.

When KS,S is not invertible then detpKS,Sq “ detpKS,S ` AJ
Svv

JASq “ 0, because the rank of
KS,S ` AJ

Svv
JAS “ AJ

SpI ` vvJ
qAS cannot be higher than the rank of KS,S “ AJ

SAS . Thus,

detpI ` KqvJErPSsv “

ÿ

SÑrns: detpKS,Sq°0

detpKS,SqvJASK
´1
S,SA

J
Sv

“

ÿ

SÑrns
detpKS,S ` AJ

Svv
JASq ´ detpKS,Sq

“

ÿ

SÑrns
det

`
rK ` AJvvJAsS,S

˘
´

ÿ

SÑrns
detpKS,Sq

p˚q
“ detpI ` K ` AJvvJAq ´ detpI ` Kq

“ detpI ` KqvJApI ` Kq
´1AJv,

where p˚q involves two applications of Lemma 7. Since the above calculation holds for arbitrary
vector v, the claim follows.

D Proofs omitted from Section 2

Lemma’ 1. For any A, 0 § ✏ † 1 and s † k † ts, where ts “ s ` srspAq, suppose that

S „ DPPp
1
↵A

JAq for ↵ “
�spkqOPTk

p1´✏qpk´sq and �spkq “

b
1 `

2pk´sq
ts´k . Then:

E
“
ErApSq

‰

OPTk
§
�spkq

1 ´ ✏
and Er|S|s § k ´ ✏

k ´ s

�spkq
,

where �spkq “
`
1 `

s
k´s

˘
�spkq.
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Proof. Let �1 • �2 • ... be the eigenvalues of AJA. Note that scaling the matrix A by any constant
c and scaling ↵ by c

2 preserves the distribution of S as well as the approximation ratio, so without loss
of generality, assume that �s`1 “ 1. Furthermore, using the shorthands l “ k ´ s and r “ srspAq,
we have ts ´ k “ r ´ l and so �spkq “

b
r`l
r´l . We now lower bound the optimum as follows:

OPTk “

ÿ

j°k

�j “ srspAq ´

kÿ

j“s`1

�j • r ´ l.

We will next define an alternate sequence of eigenvalues which is in some sense “worst-case”, by
shifting the spectral mass away from the tail. Let �1

s`1 “ ... “ �
1
k “ 1, and for i ° k set �1

i “ ��i,
where � “

r´l
OPTk

§ 1. Additionally, define:

↵
1

“ �↵ “
�spkqpr ´ lq

p1 ´ ✏ql
“

?
r2 ´ l2

p1 ´ ✏ql
,

↵
2

“ p1 ´ ✏q

?
r ` l `

?
r ´ l

2
?
r ` l

↵
1

“
p
?
r ` l `

?
r ´ lq

?
r ´ l

r ` l ´ pr ´ lq
“

?
r ´ l

?
r ` l ´

?
r ´ l

. (3)

and note that ↵2
§ ↵

1
§ ↵. Moreover, for s ` 1 § i § k, we let ↵1

i “ ↵
2, while for i ° k we set

↵
1
i “ ↵

1. We proceed to bound the expected subset size Er|S|s by converting all the eigenvalues from
�i to �

1
i and ↵ to ↵

1
i, which will allow us to easily bound the entire expression:

Er|S|s “

ÿ

i

�i

�i ` ↵
§ s `

kÿ

i“s`1

�i

�i ` ↵1
i

`

ÿ

i°k

��i

��i ` �↵
§ s `

kÿ

i“s`1

�
1
i

�1
i ` ↵2 `

ÿ

i°k

�
1
i

�1
i ` ↵1 .

(4)
We bound each of the two sums separately starting with the first one:

kÿ

i“s`1

�
1
i

�1
i ` ↵2 “

l

1 ` ↵2 “ l ´
l

1 `
1
↵2

“ l ´
l

1 `

?
r`l´?

r´l?
r´l

“ l ´
l
?
r ´ l

?
r ` l

. (5)

To bound the second sum, we use the fact that
∞

i°k �
1
i “ � OPTk “ r ´ l, and obtain:

ÿ

i°k

�
1
i

�1
i ` ↵1 §

1

↵1
ÿ

i°k

�
1
i “

r ´ l

↵1 “ p1 ´ ✏q
l
?
r ´ l

?
r ` l

. (6)

Combining the two sums, we conclude that Er|S|s § s ` l ´ ✏ l

b
r´l
r`l “ k ´

✏ l
�spkq . Finally, Lemma

6 yields:

E
“
ErApSq

‰

OPTk
“

Er|S|s ¨ ↵

OPTk
§

k

k ´ s

�spkq

1 ´ ✏
“
�spkq

1 ´ ✏
,

which concludes the proof.

Lemma’ 2. Let S be sampled as in Lemma 1 with ✏ §
1
2 . If s `

7
✏4 ln

2 1
✏ § k § ts ´ 1, then

Prp|S| ° kq § ✏.

Proof. Let pi “
�1
i

�1
i`↵1

i
be the Bernoulli probabilities for bi „ Bernoullippiq and X “

∞
i°s bi,

where �
1
i and ↵

1
i are as defined in the proof of Lemma 1. Note that |S| is distributed as a Poisson

binomial random variable such that the success probability associated with the ith eigenvalue is
upper-bounded by pi for each i ° s. It follows that Prp|S| ° kq § PrpX ° lq, where l “ k ´ s.
Moreover, letting r “ srspAq, in the proof of Lemma 1 we showed that:

k ´ ErXs • ✏
l
?
r ´ l

?
r ` l

,

and furthermore, using the derivations in (5) and (6) together with the formula Varrbis “ pip1 ´ piq,
we obtain that:

VarrXs §

kÿ

i“s`1

p1 ´ piq `

ÿ

i°k

pi §
l
?
r ´ l

?
r ` l

` p1 ´ ✏q
l
?
r ´ l

?
r ` l

“ p2 ´ ✏q
l
?
r ´ l

?
r ` l

.
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Using Theorem 2.6 from Chung & Lu (2006) with � “ ✏
l
?
r´l?
r`l

, we have:

Prp|S| ° kq § PrpX ° lq § PrpX ° ErXs ` �q § exp

´
´

�
2

2pVarrXs ` �{3q

¯

§ exp

´
´

�
2

2p
2´✏
✏ � ` �{3q

¯
§ expp´✏�{4q “ exp

´
´

✏
2
l
?
r ´ l

4
?
r ` l

¯
.

Note that since 7 § l § r ´ 1, we have l
?
r´l?
r`l

•
l?

2l`1
•

7
16

?

l, so by simple algebra it follows that

for l •
7
✏4 ln

2 1
✏ , we have l

?
r´l?
r`l

•
4
✏2 ln

1
✏ and therefore Prp|S| ° kq § ✏.

Lemma’ 3. For any A P Rmˆn
, k P rns and ↵ ° 0, if S „ DPPp

1
↵A

JAq and S
1

„ k-DPPpAJAq,

then

E
“
ErApS

1
q
‰

§ E
“
ErApSq | |S| § k

‰
.

Proof. Let �1 • �2 • ... denote the eigenvalues of AJA and let ek be the kth elementary symmetric
polynomial of A:

ek “

ÿ

T :|T |“k

detpAJ
TAT q “

ÿ

T :|T |“k

π

iPT
�i.

Also let ēk “ ek{
`
n
k

˘
denote the kth elementary symmetric mean. Newton’s inequalities imply that:

1 •
ēk´1ēk`1

ē2k

“
ek´1ek`1

e2k

`
n
k

˘
`

n
k´1

˘
`
n
k

˘
`

n
k`1

˘ “
ek´1ek`1

e2k

n ` 1 ´ k

k

k ` 1

n ´ k
.

The results of Deshpande et al. (2006) and Guruswami & Sinop (2012) establish that ErErApSq |

|S| “ ks “ pk ` 1q
ek`1

ek
, so it follows that:

ErErApSq | |S| “ ks

ErErApSq | |S| “ k ´ 1s
“

k ` 1

k

ek`1ek´1

e2k

§
n ´ k

n ` 1 ´ k
§ 1. (7)

Finally, note that ErErApSq | |S| § ks is a weighted average of components ErErApSq | |S| “ ss

for s P rks, and (7) implies that the smallest of those components is associated with s “ k. Since the
weighted average is lower bounded by the smallest component, this completes the proof.

E Proof of Theorem 2

Before showing Theorem 2, we give an additional lemma which covers the corner case of the theorem
when k is close to n.

Lemma 8. Given A P Rmˆn
and s † k † n, let �1 • ... • �n ° 0 be the eigenvalues of AJA. If

S „ k-DPPpAJAq and we let b “ mintk ´ s, n ´ ku, then for any 0 † ✏ §
1
2 we have

ErErApSqs

OPTk
§

`
1 ´ e

´ ✏2b
10

˘´1
p1 ´ ✏q

´1
 spkq,

where  spkq “
�s`1

�n

`
1 `

s
k´s

˘
.
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Proof. Let ↵ “
�s`1

p1´✏q�n

OPTk
k´s . Note that OPTk “

∞
i°k �i • pn ´ kq�n. Define bi „

Bernoullip
�i

�i`↵ q and let X “
∞

i°s bi. We have:

ErXs “

ÿ

i°s

�i

�i ` ↵

§
pn ´ sq�s`1

�s`1 `
�s`1

�n

pn´kq�n

p1´✏qpk´sq

“
1

1
n´s `

1
p1´✏qpk´sq

n´k
n´s

“
1

1
n´s `

1
p1´✏qpk´sq p1 ´

k´s
n´s q

“
1

1
p1´✏qpk´sq ´

✏
1´✏

1
n´s

“
1 ´ ✏

1
k´s ´

✏
n´s

.

Let S1
„ DPPp

1
↵A

JAq. It follows that

k ´ Er|S
1
|s • k ´ ps ` ErXsq

• pk ´ sq ´
1 ´ ✏

1
k´s ´

✏
n´s

“ pk ´ sq

ˆ
1 ´

1 ´ ✏

1 ´ ✏
k´s
n´s

˙

“ pk ´ sq
✏ ´ ✏

k´s
n´s

1 ´ ✏
k´s
n´s

• ✏ pk ´ sq

ˆ
1 ´

k ´ s

n ´ s

˙

“ ✏ ¨
pk ´ sqpn ´ kq

n ´ s

•
✏

2
¨ mintk ´ s, n ´ ku.

From this, it follows that:

ErErApS
1
qs

OPTk
“

Er|S|s ¨ ↵

OPTk
§ p1 ´ ✏q

´1 k

k ´ s

�s`1

�n
“ p1 ´ ✏q

´1
´
1 `

s

k ´ s

¯
�s`1

�n
.

We now give an upper bound on Prp|S
1
| ° kq by considering two cases.

Case 1: k´s § n´k. Then, using � “ ✏pk´sq{2, we have pk´sq ´ErXs • �, so using Theorem
2.4 from Chung & Lu (2006), we get:

Prp|S
1
| ° kq § PrpX ° k ´ sq § PrpX ° ErXs ` �q § e

´ �2

2pk´sq “ e
´✏2pk´sq{8

.
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Case 2: k ´ s ° n ´ k. Then, using Theorem 2.4 from Chung & Lu (2006) with � “ k ´ Er|S
1
|s “

✏pn´kq
2 `�, where � ° 0, we get:

Prp|S
1
| ° kq “ Prpn ´ |S

1
| † n ´ kq

§ exp

´
´

�
2

2Ern ´ |S1|s

¯

“ exp

´
´

�

2

✏
2 pn ´ kq `�

n ´ k `
✏
2 pn ´ kq `�

¯

§ exp

´
´

�

2

✏
2 pn ´ kq

n ´ k `
✏
2 pn ´ kq

¯

“ exp

´
´

✏
2
pn ´ kq

8p1 ` ✏{2q

¯

p˚q
§ exp

´
´

✏
2
pn ´ kq

10

¯
,

where in p˚q we used the fact that ✏ P p0,
1
2 q. Now, the result follows easily by invoking Lemma 3:

E
“
ErApSq

‰
§ E

“
ErApS

1
q | |S

1
| § k

‰
§

E
“
ErApS

1
q
‰

Prp|S1| § kq

§
`
1 ´ e

´ ✏2b
10

˘´1
p1 ´ ✏q

´1�s`1

�n

´
1 `

s

k ´ s

¯
¨ OPTk,

which completes the proof.

Note that since b • 1, setting ✏ “
1
2 in Lemma 8 yields the following simpler (but usually much

weaker) bound:

ErErApSqs

OPTk
§ 2

`
1 ´ e

´ 1
40

˘´1
 spkq § 82 spkq.

Theorem’ 2. Let �1 •�2 • ... be the eigenvalues of AJA. There is an absolute constant c such that

for any 0†c1 §c2, with � “ c2{c1, if:

1. (polynomial spectral decay) c1i
´p

§�i §c2i
´p

@i, with p ° 1, then S „ k-DPPpAJAq satisfies

ErErApSqs

OPTk
§ c�p.

2. (exponential spectral decay) c1p1´�q
i

§ �i § c2p1´�q
i

@i, with � P p0, 1q, then S „ k-

DPPpAJAq satisfies

ErErApSqs

OPTk
§ c�p1 ` �kq.

Proof. (1) Polynomial decay. We provide the proof by splitting it into two cases.

Case 1(a):
`
k`1
n

˘p´1
§

1
2

We can use upper and lower integrals to bound the sum
∞

i•s
1
ip as:

ª

x•ps`1q

1

ip
dx §

ÿ

i•s

1

ip
§

ª

x•s

1

ip
dx ùñ

nÿ

i“s`1

1

ip
•

ps ` 2q
1´p

p ´ 1
´

pn ` 1q
1´p

p ´ 1
.
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We lower bound the stable rank for s § k using the upper/lower bounds on the eigenvalues and the
condition for Case 1(a):

srspAq “

∞n
i“s`1 �i

�s`1

•
c1

c2

ˆ
ps ` 2q

1´p

pp ´ 1qps ` 1q´p
´

pn ` 1q
1´p

pp ´ 1qps ` 1q´p

˙

“
1

�

ˆ
s ` 2

p ´ 1

´
1 ´

1

s ` 2

¯p
´

s ` 1

p ´ 1

´
s ` 1

n ` 1

¯p´1
˙

•
1

�

ˆ
s ` 2

p ´ 1
´ 1 ´

s ` 1

p ´ 1
¨
1

2

˙
“

1

2�

s ` 1

p ´ 1
´

1

�
.

Further using u “ k ´ s, we can call upon Theorem 1 to get,

�spkq §
k

u

c
1 `

2u

srs ´ u
§

k

u
`

k

1
2�

s`1
p´1 ´ �´1 ´ u

“
k

u
`

p2p ´ 2qk

�´1ps ` 1 ´ 2p ` 2q ´ p2p ´ 2qu

§
k

u
`

p2p ´ 2 ` �
´1

qk

�´1pk ` 3 ´ 2pq ´ p2p ´ 2 ` �´1qu

Optimizing over u, we see that the minimum is reached for u “ û “
k`3´2p

2�p2p´2`�´1q which achieves

the value 4p�p2p´2q`1qk
k`3´2p which is upper bounded by 12�pk

pk´2pq .

We assume k • û ° 60p ° 60. If not, Deshpande et al. (2006) ensure an upper bound of
pk ` 1q § 60p ` 1 † 61p. With p † k{60, we get:

12�pk

k ´ 2p
§

12�pk

k ´ k{30
“

12�p

1 ´ 1{30
§

360

29
�p.

Since we assumed that û ° 60, then k ´ s °
7
✏4 ln

2 1
✏ for ✏ “ 0.5 which means p1` 2✏q

2
§ 4, which

makes the approximation ratio upper bounded by 1440
29 �p. The overall bound thus becomes 61�p.

Case 1(b):
`
k`1
n

˘p´1
°

1
2

From Lemma 8, we know that the approximation ratio is upper bounded by constant factor times
 spkq “

�s`1

�n

k
k´s . Consider,

 spkq “
�s`1

�n

k

k ´ s
§ �

n
p

ps ` 1qp

k

k ´ s
“ �

ˆ
n

k ` 1

˙p´1
k ` 1

n

pk ` 1q
p

ps ` 1qp

k

k ´ s
§ 2�

ˆ
k ` 1

s ` 1

˙p
k

k ´ s
,

which holds true for all s § k, and is optimized for s “ ŝ “
pk´1
p`1 . We get that the approximation

ratio is bounded as:

 spkq § �
kpp ` 1q

k ` 1

ˆ
p ` 1

p

˙p

§ e�pp ` 1q § 2e�p.

Combining in the factor based on ✏ in Lemma 8, we get an upper bound of 164e�p that is larger than
the bound obtained in the case 1(a) above and hence covers all the subcases.

(2) Exponential decay.

We first lower bound the stable rank of A of order s:

srspAq “

ÿ

j°s

�j{�s`1 •
c1p1 ´ p1 ´ �q

n´s
q{�

c2
“

1 ´ p1 ´ �q
n´s

��
.
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We present the proof by considering two subcases separately : when k § n ´
ln 2
� and k ° n ´

ln 2
� .

Case 2(a): k § n ´
ln 2
� . From the assumption, letting s § k we have

s § n ´
ln 2

�

ùñ s § n ´
ln 2

ln
1

1´�

ùñ pn ´ sq ln
1

1 ´ �
• ln 2

ñ 1 ´ p1 ´ �q
n´s

•
1

2

ùñ srspKq •
1

2��
,

where the second inequality follows because x
1`x § lnp1 ` xq with x “ �{p1 ´ �q.

We will use u “ k ´ s. From Theorem 1, using srs •
1

2�� we have the following upper bound:

�spkq §
k

u

ˆ
1 `

2��u

1 ´ 2��u

˙
“

k

u
¨

1

1 ´ 2��u
.

RHS is minimized for û “
1

4�� . We let ✏ “ 0.5 and assume that û • 60 which is bigger than 7
✏4 ln

2 1
✏ .

If not, then � •
4

60� °
1
� and the worst-case bound of Deshpande et al. (2006) ensures that the

approximation factor is no more than k ` 1 § �p1 `
1
� kq § �p1 ` �kq. By a similar argument we

can assume that k • 60.

If k § û, in this case we can set s “ 0, i.e., u “ k, obtaining �spkq §
1

1´2��k § 2. And so the
approximation ratio is bounded by p1 ` 2✏q

2
¨ 2 § 8. On the other hand, if k ° û, we can set u “ û,

which implies �spkq § 8��k, and so the approximation ratio is bounded by 32��k. The overall
bound is thus 61�p1 ` �kq covering all possible subcases.

Case 2(b): k ° n ´
ln 2
� . We make use of Lemma 8 for the case when k is close to n. The

approximation guarantee uses:

 spkq “
�s`1

�n

k

k ´ s
,

where s † k. For our bound, we choose s “ tk ´
ln 2
� u. This implies that n´ s †

2 ln 2
� ` 1 “

�`ln 4
� .

It follows that
�s`1

�n
§

�

p1 ´ �qn´s
§

�

p1 ´ �qp�`ln 4q{� “ �

”
p1 ´ �q

´ 1
�

ı�`ln 4
§ �e

�`ln 4
1´� .

If � •
1
20 , then the worst-case result of Deshpande et al. (2006) suffices to show that the approximation

ratio is bounded by k`1 § 20p1`�kq, so assume that � †
1
20 . Then we have e

�`ln 4
1´� † 5. Combining

this with the fact that k
k´s §

�k
ln 2 , we obtain:

�spkq §
5��k

ln 2
.

Combining with factor based on ✏ in Lemma 8, we get 82 ¨
5��k
ln 2 . Thus, the bound of 82¨5

ln 2 �p1 ` �kq

holds in all cases, completing the proof.

F Proof of Lemma 4

Lemma’ 4. Fix � P p0, 1q and consider unit vectors ai,j P Rm
in general position, where i P rts,

j P rlis, such that
∞

j ai,j “ 0 for each i, and for any i, j, i
1
, j

1
, if i ‰ i

1
then ai,j is orthogonal to
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ai1,j1 . Also, let unit vectors tviuiPrts be orthogonal to each other and to all ai,j . There are positive

scalars ↵i,�i for i P rts such that matrix A with columns ↵iai,j ` �ivi over all i and j satisfies:

min
|S|“ki

ErApSq

OPTki

• p1 ´ �qli, for ki “ l1 ` ... ` li ´ 1.

Proof. Say pAi is the matrix obtained by stacking all the ai,j and let �i,1 • �i,2 • ... • �i,li´1

denote the non-zero eigenvalues of pAJ
i

pAi. We write ãi,j “ ↵iai,j ` �ivi and note that for each
i, 1li is an eigenvector of pAJ

i
pAi with eigenvalue 0. Further, AJA is a block-diagonal matrix with

blocks Bi “ ↵
2
i

pAJ
i

pAi ` �
2
i 1li1

J
li

:

AJA “

»

—–
B1 0 0

0
. . . 0

0 0 Bt

fi

�fl

Therefore, the eigenvalues of AJA are ↵
2
1�1,1, ...,↵

2
1�1,l1´1,�

2
1 l1, ...,↵

2
t�t,1, ...,↵

2
t�t,lt´1,�

2
t lt,

and so we can always choose the parameters so that ↵i " �i " ↵i`1 for each i, ensuring that these
eigenvalues are in decreasing order. Let us fix an arbitrary c P rts. From the above, it follows that for
kc “

` ∞
i§c li

˘
´ 1 we have:

OPTkc “ lc�
2
c `

ÿ

i°c

trpBiq “ lc�
2
c ` �c,

where we use �c “
∞

i°c trpBiq as a shorthand. Since the centroid of tãc,1, . . . , ãc,lcu is �vc, we
can write ãc,lc “ lc�vc ´

∞
j†lc

ãc,j . For selecting the set S Ä rns of size kc, since ↵i " ↵i`1, we
can assume without loss of generality that S does not select any vectors ãi,j such that i ° c and does
not drop any such that i † c, and so for some j

1
P rlcs we let Sj1 be the index set such that PSj1 is

the projection onto the span of
´ î

i†c

î
jtãi,ju

¯
Y tãc,1, . . . , ãc,lcuztãc,j1 u. We now lower bound

the squared projection error of that set:

ErApSj1 q “ }ãc,j1 ´ PSj1 ãc,j1 }2 `

ÿ

i°c

liÿ

j“1

}ãi,j ´ PSj1 ãi,j}
2

“

››››lc�vc ´

ÿ

j†lc

ãc,j ´ PSj1

´
lc�vc ´

ÿ

j†lc

ãc,j
¯››››

2

`

ÿ

i°c

liÿ

j“1

}ãi,j}
2

“ l
2
c�

2
}vc ´ PSj1vc}

2
` �c

“ lcpOPTkc ´ �cq}vc ´ PSj1vc}
2

` �c

• lcOPTkc}vc ´ PSj1vc}
2

´ lc�c.

Note that lim�Ñ0 PSj1vc “ 0 because vc is orthogonal to the subspace spanned by Sj1 , so we can
choose �c small enough so that }v ´ PSj1v}

2
• 1 ´

�
2 for each j

1
P rlcs. Furthermore, we have

�c “

ÿ

i°c

trpBiq “

ÿ

i°c

↵
2
i li ` �

2
i li § 2↵

2
c`1

ÿ

i°c

li,

So, if we ensure that ↵2
c`1 §

�
4 lc�

2
c {p

∞
i°c liq, then:

lc�c § 2lc↵
2
c`1

ÿ

i°c

li §
�

2
¨ l

2
c�

2
§

�

2
lc ¨ OPTkc ,

which implies that ErApSj1 q • p1 ´ �qlcOPTkc . Note that all the conditions we required on ↵i and
�i can be satisfied by a sufficiently quickly decreasing sequence ↵1 " �1 " ↵2 " �2 " ... " ↵t "

�t ° 0, which completes the proof.
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G Proof of Corollary 1

Corollary’ 1. For t P N and � P p0, 1q, there is a sequence k
l
1 † k

u
1 † k

l
2 † k

u
2 † ... † k

l
t † k

u
t

and A P Rmˆn
such that for any i P rts:

min
S:|S|“kl

i

ErApSq

OPTkl
i

§ 1 ` � and

min
S:|S|“ku

i

ErApSq

OPTku
i

• p1 ´ �qpk
u
i ` 1q.

Proof. We will use Theorem 3 to construct the matrix A using the sequence we build below to make
sure the upper and lower bounds are satisfied. Theorem 3 uses Lemma 4 to construct the matrix A
which has a “step” eigenvalue profile i.e. there are multiple groups of eigenvalues and in each group
the eigenvalue is constant (each group corresponds to a regular simplex, see Section 3). Below we
consider a single such group that starts at s “ k

u
i and ends at w “ k

u
i`1, and we let k “ k

l
i`1, for

any i P t0, . . . , t ´ 1u, with k
u
0 “ 0.

Theorem 1 implies that there is a set S with an upper bound on the approximation factor
ErApSq{OPTk of p1 ` 2✏q

2
`
1 `

s
k´s

˘`
1 `

k´s
ts´k

˘
. Consider the following three conditions to

ensure that each of the three terms in the above approximation factor is less than p1 ` �1q where
�1 “ �{7:

1. ✏ §
p1`�1q1{2´1

2 ùñ p1 ` 2✏q
2

§ p1 ` �1q. Let ⌧✏ “
7
✏4 ln

2 1
✏ , where ✏ is chosen so as to

satisfy the above condition.

2. k •
s
�1

` s ` ⌧✏ ensures that p1 `
s

k´s q § p1 ` �1q and that k ´ s • ⌧✏.

3. w • kp1 `
1
�1

q ` 1.

To see the usefulness of condition 3, note that each group of vectors in column set of A constructed
from Theorem 3 form a shifted regular simplex. A regular simplex has the smallest eigenvalue 0

and the rest of the eigenvalues are all pw ´ sq↵
2
{pw ´ s ´ 1q, where ↵ is the length of each of the

pw ´ sq vectors in the simplex. Thus, we can lower bound the stable rank of the shifted simplex as
srspAq •

pw´sq↵2

pw´sq↵2 pw ´ s ´ 1q “ pw ´ s ´ 1q. From condition 3:

w • kp1`
1

�1
q`1 ùñ s`srspAq • kp1`

1

�1
q ùñ ts • kp1`

1

�1
q´

s

�1
ùñ 1`

k ´ s

ts ´ k
§ p1`�1q.

Thus if all the above three conditions are satisfied, the approximation ratio can be upper bounded by
p1 ` �1q

3
§ p1 ` �q, since �1 “ �{7.

Similarly for the lower bound, we will need condition 4 below.

4. w •
2s
� `

2
� .

Now, we apply Theorem 3 using ki “ w and ki´1 “ s to get the following lower bound with
�2 “ �{2:

min
S:|S|“w

ErApSq

OPTw
• p1 ´ �2qpw ´ sq • pw ` 1q ´

�

2
pw ` 1 `

2s

�
`

2

�
q • p1 ´ �qpw ` 1q,

where the last inequality follows from condition 4. Also, observe that we can replace conditions 3
and 4 with a single stronger condition: w • kp1 `

7
� q ` 1 `

2
� .

We now iteratively construct the sequence that satisfies all of the above conditions:

1. k
u
0 “ 0
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2. For 1 § i § t

(a) k
l
i “

P 7ku
i´1

� ` k
u
i´1 ` ⌧✏

T
.

(b) k
u
i “ rklip1 ` 7{�q `

2
� ` 1s.

We can now use Theorem 3 with subsequence tk
u
i u which also constructs the matrix A through

Lemma 4, to ensure that the lower bound of p1 ` �qpk
u
i ` 1q is satisfied for A for all i. We can also

use Theorem 1 for the same matrix A and k “ k
l
i for any i to ensure that the upper bound of p1 ` �q

is also satisfied for any i.

H Empirical evaluation with greedy subset selection

In this section, we provide a more detailed empirical evaluation to complement what we presented
in Section 4. Our aim here is to demonstrate that our improved analysis of the CSSP/Nyström
approximation factor can be useful in understanding the performance of not only the k-DPP method,
but also of greedy subset selection. Note that our theory does not strictly apply to the greedy algorithm.
Nevertheless, we show that, similar to the k-DPP method, greedy selection also exhibits the improved
guarantees and the multiple-descent curve predicted by our analysis.

The most standard version of the greedy algorithm (see, e.g., Altschuler et al., 2016) starts with an
empty set and then iteratively adds columns that minimize the approximation error at every step, until
we reach a set of size k. The pseudo-code is given below.

Greedy subset selection algorithm for CSSP/Nyström

Input: k P rns and an m ˆ n matrix A (CSSP), or an n ˆ n p.s.d. matrix K “ AJA
(Nyström)

S – H

for i “ 1 to k do

Pick i P rnszS that minimizes ErApS Y tiuq, or equivalently, }K ´ pKpS Y tiuq}˚
S – S Y tiu

end for

return S

In our empirical evaluation we use the same experimental setup as in Section 4, by running greedy on a
toy dataset with the linear kernel xai,ajyK “ aJ

i aj that has one sharp spectrum drop (controlled by the
condition number ), and two Libsvm datasets with the RBF kernel xai,ajyK “ expp´}ai áj}

2
{�

2
q

for three values of the RBF parameter �. The main question motivating these experiments is: does the
approximation factor of the greedy algorithm exhibit the multiple-descent curve that is predicted in
our analysis, and are the peaks in this curve aligned with the sharp drops in the spectrum of the data?

The plots in Figure 4 confirm that the Nyström approximation factor of greedy subset selection
exhibits similar peaks and valleys as those indicated by our theoretical and empirical analysis of
the k-DPP method. This is most clearly observed for the toy dataset (Figure 4 left), where the peak
grows with the condition number , and for the bodyfat dataset (Figure 4 center), where the size
of the peak is proportional to the RBF parameter �. Moreover, we observe that when the spectral
decay is slow/smooth, which corresponds to smaller values of �, then the approximation factor of the
greedy algorithm stays relatively close to 1. For the eunite2001 dataset (Figure 4 right), the behavior
of the approximation factor is very non-linear, with several peaks occurring for large values of �.
Interestingly, while the peaks do align with some of the drops in the spectrum, not all of the spectrum
drops result in a peak for the greedy algorithm. This goes in line with our analysis, in the sense that a
sharp drop in the spectrum following the kth eigenvalue is a necessary but not sufficient condition for
the approximation factor of the optimal subset S of size k to exhibit a peak.

Our empirical evaluation leads to an overall conclusion that the multiple-descent curve of the
CSSP/Nyström approximation factor is a phenomenon exhibited by both randomized methods, such
as the k-DPP, and deterministic algorithms, such as greedy subset selection. While the exact behavior
of this curve is algorithm-dependent, significant insight can be gained about it by studying the
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Figure 4: Top plots show the Nyström approximation factor }K ´ pKpSq}˚{OPTk, where S is
constructed using greedy subset selection, against the subset size k, for a toy dataset ( is the
condition number) and two Libsvm datasets (� is the RBF parameter). Bottom plots show the spectral
decay for the top 40 eigenvalues of each kernel K, demonstrating how the peaks in the Nyström
approximation factor align with the drops in the spectrum.

spectral properties of the data. Our results suggest that performing a theoretical analysis of the
multiple-descent phenomenon for greedy methods is a promising direction for future work.
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