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Abstract

This paper is concerned with data-driven unsupervised domain adaptation, where
it is unknown in advance how the joint distribution changes across domains, i.e.,
what factors or modules of the data distribution remain invariant or change across
domains. To develop an automated way of domain adaptation with multiple source
domains, we propose to use a graphical model as a compact way to encode the
change property of the joint distribution, which can be learned from data, and
then view domain adaptation as a problem of Bayesian inference on the graphical
models. Such a graphical model distinguishes between constant and varied modules
of the distribution and specifies the properties of the changes across domains, which
serves as prior knowledge of the changing modules for the purpose of deriving the
posterior of the target variable Y in the target domain. This provides an end-to-end
framework of domain adaptation, in which additional knowledge about how the
joint distribution changes, if available, can be directly incorporated to improve the
graphical representation. We discuss how causality-based domain adaptation can
be put under this umbrella. Experimental results on both synthetic and real data
demonstrate the efficacy of the proposed framework for domain adaptation. The
code is available at https://github.com/mgong2/DA_Infer.

1 Introduction

Over the past decade, various approaches to unsupervised domain adaptation (DA) have been pursued
to leverage the source-domain data to make prediction in the new, target domain. In particular, we
consider the situation with n source domains in which both the d-dimensional feature vectorX , whose
jth dimension is denoted byXj , and label Y are given, i.e., we are given (x(i),y(i)) = (x

(i)
k , y

(i)
k )mik=1,

where i = 1, ..., n, and mi is the sample size of the ith source domain. We denote by x(i)jk the value of
the jth feature of the kth data point (example) in the ith domain. Our goal is to find the classifier for
the target domain, in which only the features xτ = (xτk)

m
k=1 are available. Because the distribution

may change across domains, clearly the optimal way of adaptation or transfer depends on what
information is shared across domains and how to do the transfer.

In the covariate shift scenario, the distribution of the features, P (X), changes, while the conditional
distribution P (Y |X) remains fixed. A common strategy is to reweight examples from the source
domain to match the feature distribution in the target domain–an approach extensively studied in
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machine learning; see e.g., [1, 2, 3, 4]. Another collection of methods learns a domain-invariant feature
representation that has identical distributions across the target and source domains [5, 6, 7, 8, 9].

In addition, it has been found that P (Y |X) usually changes across domains, in contrast to the
covariate shift setting. For the purpose of explaining and modeling the change in P (Y |X), the
problem was studied from a generative perspective [10, 11, 12, 13, 14]–one can make use of the
factorization of the joint distribution corresponding to the causal representation and exploit how
the factors of the joint distribution change, according to commonsense or domain knowledge. The
settings of target shift [10, 14, 12, 15] and conditional shift [12, 16, 17] assume only P (Y ) and
P (X|Y ) change, respectively, and their combination, as generalized target shift [12, 18], was also
studied, and the corresponding methods clearly improved the performance on a number of benchmark
datasets. The methods were extended further by learning feature representations with invariant
conditionals given the label and matching joint distributions [17, 19, 20], and it was shown how
methods based on domain-invariant representations can be understood from this perspective.

How are the distributions in different domains related? Essentially, DA aims to discover and exploit
the constraints in the data distribution implied by multiple domains and make predictions that adapts
to the target domain. To this end, we assume that the distributions of the data in different domains
were independent and identically distributed (I.I.D.) drawn from some “mother” distribution. The
mother distribution encodes the uncertainty in the domain-specific distributions, i.e., how the joint
distribution is different across the domains. Suppose the mother distribution is known, from which
the target-domain distribution is drawn. Furthermore, the target domain contains data points (without
Y values) generated by this distribution. It is then natural to leverage both the mother distribution
and the target-domain feature values to reveal the property of the target-domain distribution for the
purpose of predicting Y . In other words, DA is achieved by exploiting the mother distribution and
the target-domain feature values to derive the information of Y .

Following this argument, we have several questions to answer. First, is there a natural, compact
description of the constraints on the changes of the data distribution (to describe the mother distri-
bution)? Such constraints include which factors of the joint distributions can change, whether they
change independently, and the range of changes. (We represent the joint distribution as a product of
the factors.) Second, how can we find such a description from the available data? Third, how can
we make use of such a description as well as the target-domain data to make optimal prediction?
Traditional graphical models have provided a compact way to encode conditional independence
relations between variables and factorize the joint distribution [21, 22]. We will use an extension of
Directed Acyclic Graphs (DAGs), called augmented DAGs, to factorize the joint distribution and
encode which factors of the joint distribution change across domains. The augmented DAG, together
with the conditional distributions and changeability of the changing modules, gives an augmented
graphical model as a compact representation of how the joint distribution changes. Predicting the Y
values in the target domain is then a problem of Bayesian inference on this graphical model given the
observed target-domain feature values. This provides a natural framework to address the DA problem
in an automated, end-to-end manner.

2 Related Work

We are concerned with the scenario where no labeled point is available in the target domain, known as
unsupervised DA. Various assumptions on how distribution changes were proposed to make successful
knowledge transfer possible. For instance, a classical setting assumed that P (X) changes but P (Y |X)
remains the same, i.e., the covariate shift situation; see, e.g., [1]. It is also known as sample selection
bias in [2]. The correction of shift in P (X) can be achieved by re-weighting source domain examples
using importance weights as a function of feature X [1, 2, 3, 4, 23, 24, 25, 26], based on certain
distribution discrepancy measures such as Maximum Mean Discrepancy (MMD) [27]. A common
prerequisite for such an approach is that the support for the source domain includes the target domain,
but of course this is often not the case. Another collection of methods learns a domain-invariant
representation by applying suitable linear transformation or nonlinear transformation or by properly
sampling, which has identical distributions across the target and source domains [5, 6, 7, 8, 9].

In practice, it is very often that P (X) and P (Y |X) change simultaneously across domains. For
instance, both of them are likely to change over time and location for a satellite image classification
system. If the data distribution changes arbitrarily across domains, clearly knowledge from the
sources may not help in predicting Y in the target domain [28]. One has to find what type of
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information should be transferred from sources to the target. A number of works are based on the
factorization of the joint distribution as P (XY ) = P (X|Y )P (Y ), in which either change in P (Y )
or in P (X|Y ) will cause changes in both P (X) and P (Y |X) according to the Bayes rule. One
possibility is to assume the change in both P (X) and P (Y |X) is due to the change in P (Y ), while
P (X|Y ) remains the same, as known as prior shift [10, 14] or target shift [12]. Similarly, one may
assume conditional shift, in which P (Y ) remains the same but P (X|Y ) changes [12]. In practice,
target shift and conditional shift may both happen, which is known as generalized target shift [12].
Various methods have been proposed to deal with these situations. Target shift can be corrected by
re-weighting source domain examples using an importance function of Y , which can be estimated
by density matching [12, 15, 29, 30, 31]. Conditional shift is in general ill-posed because without
further constraints on it, P τ (X|Y ) is generally not identifiable given the source-domain data and the
target-domain feature values. It has been shown to be identifiable when P (X|Y ) changes in some
parametric ways, e.g., when P (X|Y ) changes under location-scale transformations of X [12]. In
addition, the invariant representation learning methods originally proposed for covariate shift can
be adopted to achieve invariant causal mechanism [17]. Pseudo labels in the target domain may be
exploited to refine the matching of conditional distributions [16, 32]. Finally, generalized target shift
has also been addressed by joint learning of domain-invariant representations and instance weighting
function; see e.g., [12, 17, 18, 33].

While the above works either assume X → Y or Y → X , several recent works tried to model the
complex causal relations between the features and label using causal graphs [34, 35, 36], e.g., a subset
of features are the cause of Y and the rest are effects. [34] presents a domain adaptation generative
model according to the causal graph learned from data. [35] explores the features that have invariant
conditional causal mechanisms for cross-domain prediction. [36] proposes an end-to-end method
to transport invariant predictive distributions when a full causal DAG is unavailable. Our approach
differs from these methods in two aspects. First, our method only requires the augmented DAG,
which is easier to learn than a causal DAG. Second, our method can adapt both invariant and changing
features, while [35] and [36] only exploit the features with invariant conditional distributions.

3 DA and Inference on Graphical Models

For the purpose of discover what to transfer in a automated way, in this paper we mainly consider
DA with at least two source domains, although the method can be applied to the single-source case
if proper additional constraints are known. Generally speaking, the availability of multiple source
domains provides more hints helpful to find P τ (X|Y ) as well as P τ (Y |X). Several algorithms
have been proposed to combine source hypothesis from multiple source domains in different ways
[37, 38, 39, 40]. As one may see, existing methods mainly assume the properties of the distribution
shift and utilize the assumptions for DA; furthermore, the involved assumptions are usually rather
strong. Violation of the assumptions may lead to negative transfer.

An essential question then naturally arises–is it possible to develop a data-driven approach to
automatically figure out what information to transfer from the sources to the target and make optimal
prediction in the target domain, under mild conditions? This paper aims at an attempt to answer this
question, by representing the properties of distribution change with a graphical model, estimating the
graphical model from data, and treating prediction in the target domain as a problem of inference on
the graphical model given the target-domain feature values. Below we present the used graphical
models and how to use them for DA.

3.1 Describing Distribution Change Properties with Augmented Graphical Models

In the target domain, the Y values are to be predicted, and we aim at their optimal prediction with
respect to the joint distribution. To find the target-domain distribution, one has to leverage source-
domain data and exploit the connection between the distributions in different domains. It is then
natural to factorize the joint distribution into different components or modules–it would facilitate
recovering the target distribution if as few components as possible change across the domains.
Furthermore, in estimation of the changing modules in the target domain, it will be beneficial if
those changes are not coupled so that one can do “divide-and-conquer”; otherwise, if the changes are
coupled, one has to estimate the changes together and would suffer from “curse-of-dimensionality”.
In other words, DA benefits from a compact description of how the data distribution can change
across domains–such a description, together with the given feature values in the target domain, helps
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recover the target joint distribution and enables optimal prediction. In this section we introduce our
graphical model as such a way to describe distribution changes.

Traditional graphical models provide a compact, yet flexible, way to decompose the joint distribution
of as a product of simpler, lower-dimensional factors [41, 22], as a consequence of conditional
independence relations between the variables. For our purpose, we need encode not only conditional
independence relations between the variables, but also whether the conditional distributions change
across domains. To this end, we propose an augmented Directed Acyclic Graph (DAG) as a flexible
yet compact way to describe how a joint distribution changes across domains, assuming that the
distributions in all domains can be represented by such a graph. It is an augmented graph in the sense
that it is over not only features Xi and Y , but also external latent variables θ.

Figure 1 gives an example of such a graph. Nodes in gray are in the Markov Blanket (MB) of Y .
The θ variables are mutually independent, and take the same value across all data points within each
domain and may take different values across domains. They indicate the property of distribution
shift–for any variable with a θ variable directly into it, its conditional distribution given its parents
(implied by the DAG over Xi and Y) depends on the corresponding θ variable, and hence may
change across domains. In other words, the distributions across domains differ only in the values
of the θ variables. Once their values are given, the domain-specific joint distribution is given by
P (X, Y |θ), which can be factorized according to the augmented DAG. In the example given in
Figure 1, distribution factors P (X1), P (Y |X1), and P (X3|Y,X2), among others, change across
domains, while P (X5|Y ) and P (X7|X3) are invariant. The joint data distribution in the ith domain
can be written as

P (X, Y |θ(i)) = P (X1|θ(i)1 )P (Y |X1, θ
(i)
Y )P (X5|Y )P (X2|Y,X4, θ

(i)
2 )P (X3|Y,X2, θ

(i)
3 )×

P (X4)P (X6|X4, θ
(i)
6 )P (X7|X3).

We have several remarks to make on the used augmented graph. First, since the θi are independent,
the corresponding conditional distributions change independently across domains. Because of such a
independence property , one can model and learn the changes in the corresponding factors separately.
Second, we note that each node in the augmented graph may be a set of variables, as a “supernode”
instead of a single one. For instance, for the digit recognition problem, one can view the pixels of the
digit image as such a “supernode” in the graph.

3.1.1 Relation to Causal Graphs

X4X2 X6YX1

X3 X7X5

θ1 θY θ2θ3 θ6

mi

Figure 1: An augmented DAG over Y and Xi. See main text
for its interpretation.

If the causal graph underlying the
observed data is known, there is no
confounder (hidden direct common
cause of two variables), and the ob-
served data are perfect random sam-
ples from the populations, then one
can directly benefit from the causal
model for transfer learning, as shown
in [42, 12, 43]. In fact, in this case our
graphical representation will encode the same conditional independence relations as the original
causal model.

It is worth noting that the causal model, on its own, might not be sufficient to explain the properties of
the data, for instance, because of selection bias [44], which is often present in the sample. Furthermore,
it is notoriously difficult to find causal relations based on observational data; to achieve it, one often
has to make rather strong assumptions on the causal model (such as faithfulness [45]) and sampling
process. On the other hand, it is rather easy to find the graphical model purely as a description of
conditional independence relationships in the variables as well as the properties of changes in the
distribution modules. The underlying causal structure may be very different from the augmented DAG
we adopt. For instance, let Y be disease and X the corresponding symptoms. It is natural to have Y
as a cause of X . Suppose we have data collected in different clinics (domains) and that subjects are
assigned to different clinics in a probabilistic way according to how severe the symptoms (X) are.
Then one can see that across domains we have changing P (X) but a fixed P (Y |X) and, accordingly,
in the augmented DAG has a directed link from X to Y , contrary to the causal direction. For detailed
examples as well as the involved causal graphs and augmented DAGs, please see Appendix A1.
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3.2 Inference on Augmented Graphical Models for DA

We now aim to predict the value of Y given the observed features xτ in the target domain, which is
about P (Yτ |xτ ), where Yτ is the concatenation of Y across all data points in the target domain. To
this end, we have several issues to address. First, which features should be included in the prediction
procedure? Second, as illustrated in Figure 1, a number of distribution factors change across domains,
indicated by the links from the θ variables, and it is not necessary to consider all of them for the
purpose of DA–which changing factors should be adapted to the target-domain data?

Let us first show the general results on calculation of P (Yτ |xτ ), based on which prediction in
the target domain is made. We then discuss how to simplify the estimator, thanks to the specific
augmented graphical structure over X and Y . As the data are I.I.D. given the values of θ, we know
P (x,y |θ) =

∏
k P (xk, yk |θ) and P (x |θ) =

∏
k P (xk |θ). Also bearing in mind that the value

of θ is shared within the same domain, we have

P (Yτ = yτ |xτ ) =
∫
P (yτ |xτ ,θ)P (θ|xτ )dθ (1)

where P (θ|xτ ) =
∏
k

[∑
yτk
P (xτk, y

τ
k |θ)

]
P (θ)/

∫ ∏
k

[∑
yτk
P (xτk, y

τ
k |θ)

]
P (θ)dθ. For compu-

tational efficiency, we make prediction separately for different data points based on

P (yτk |xτ ) =
∑

yτ
k′ , k

′ 6=k

P (yτ |xτ ) =
∫
P (yτk |xτk,θ)P (θ|xτ )dθ. (2)

In the above expression, P (θ) is given in the augmented graphical model, P (yτk ,x
τ
k |θ) can be

calculated by using the chain rule on the augmented graphical model, Here we assume that the density
P (yτk ,x

τ
k |θ) is tractable, and we will show approximate inference procedures in Section 4.3 when

we use implicit models to model P (xτk, y
τ
k |θ). Also, P (yτk |xτk,θ) can be estimated by training a

probabilistic classifier on the generated data from our model.

Moreover, for the purpose of predicting Y , not all Xj are needed for the prediction of Y , and not all
changing distribution modules need to adapt to the target domain. We exploit the graph structure to
simplify the above expression. Let V = CH(Y ) ∪ {Y }, where CH(Y ) denotes the set of children
of Y relative to the considered augmented DAG. Also denote by PA(Vj) the parent set of Vj . The
conditional distribution of Vj given its parents is P (Vj |PA(Vj), θVj ), where θVj is the empty set if
this conditional distribution does not change across domains. Let

Cjk := P (vτjk |PA(vτjk), θVj ) (3)

be shorthand for the conditional distribution of Vj taking value vτjk conditioning on its parents taking
the kth value in the target domain and the value of θVj . P (x

τ
k, y

τ
k |θ) can be factorized as

P (xτk, y
τ
k |θ) =

[ ∏
Vj∈V

Cjk
]
·
[ ∏
Wj /∈V

P (wτjk |PA(wτjk), θWj
)
]

︸ ︷︷ ︸
,Nk, which does not dependent on yτk

.

Substituting the above expression into Eq. 2, one can see that Nk, defined above, will not appear in
the final expression, so finally

P (yτk |xτ ) =
∫
P (yτk |xτk,θ)

∏
k

[∑
yτk

∏
Vj∈V Cjk

]∏
Vj∈V P (θVj )∫ ∏

k

[∑
yτk

∏
Vj∈V Cjk

]∏
Vj∈V P (θVj )dθVj

dθ. (4)

It is natural to see from the above final expression of P (yτk |xτ ) that 1) only the conditional distribu-
tions for Y and its children (variables in V) need to be adapted (their corresponding θ variables are
involved in the expression) and that 2) among all features, only those in the MB of Y are involved in
the expression.

3.2.1 Benefits from a Bayesian Treatment

Many traditional procedures for unsupervised DA are concerned with the identifiability of the joint
distribution in the unlabeled target domain [42, 12, 17]. If the joint distribution is identifiable, a
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classifier can be learned by minimizing the loss with respect to the target-domain joint distribution.
For instance, the so-called location-scale transformation is assumed for the features given the label
Y [12], rendering the target-domain joint distribution identifiable. Otherwise, successful DA is not
guaranteed without further constraints. Even in the situation where the target-domain joint distribution
is not identifiable, the Bayesian treatment, by incorporating the prior distribution of θ and inferring
the posterior of Y in the target domain, may provide very informative prediction–the prior distribution
of θ constrains the changeability of the distribution modules, and such constraints may enable “soft”
identifiability. For an illustrative example on this, please see Appendix A2.

4 Implementation of Data-Driven DA
In practice we are given data and the graphical model is often not available. For DA, we then need to
learn (the relevant part of) the augmented graphical model from data, which includes the augmented
DAG structure, the conditional distribution of each variable in CH(Y ) ∪ {Y } given its parents, and
the prior distribution of the relevant θ variables, and then develop computational methods for inferring
Y on it given the target-domain data.

4.1 Learning the Augmented DAG

For wide applicability of the proposed method, we aim to find a nonparametric method to learn
the augmented DAG, instead of assuming restrictive conditional models such as linear ones. We
note that in the causality community, finding causal relations from nonstationary or heterogeneous
data has attracted some attention in recent years. In particular, under a set of assumptions, a
nonparametric method to tackle this causal discovery problem, called Causal Discovery from NOn-
stationary/heterogeneous Data (CD-NOD) [46, 47, 48], was recently proposed. The method is an
extension of the PC algorithm [49] and consists of 1) figuring out where the causal mechanisms
change, 2) estimation of the skeleton of the causal graph, and 3) determination of more causal
directions compared to PC by using the independent change property of causal modules. Here we
adapt their method for learning the portion of the augmented DAG needed for DA, without resorting
to the assumptions made in their work.

g3 (rep-
resented
by neural
network)

Y

X2

E3

θ3

X3

Figure 2: LV-CGAN for model-
ing P (X3 |Y,X2, θ3) implied by the
graph given in Figure 1.

Denote by S the set of Y and all Xi. The adapted method has
the following three steps. The first two are directly adapted
from CD-NOD. Step 1 is to find changing distribution factors
and estimate undirected graph. Let C be the domain index. It
applies the first stage of the PC algorithm to S ∪ {C} to find
an undirected graph. It is interesting to note that if variable
Si ∈ S is adjacent to C, then Si is conditionally dependent
on C given any subset of the remaining variables, and hence,
P (Si |PA(Si)) must change across domains. Compared to
the dataset shift detection method [50], our procedure is more
general because it applies to multiple domains and can dis-
tinguish between invariant and changing conditional distribu-
tions and further even leverage useful information in the changing conditional distributions. Step 2 is
to determine edge directions, by applying the orientation rules in PC, with the additional constraints
that all the θ variables are exogenous and independent. Furthermore, if Si and Sj are adjacent and
are both adjacent to C, use the direction between them which gives independent changes in their
conditional distributions, P (Si |PA(Si)) and P (Sj |PA(Sj)) [47]. If the changes are dependent
in both directions, merge Si and Sj as (part of) a “supernode‘’, and merge their corresponding θ
variables. Step 3 finally Instantiates a DAG from the output of Step 2, which is a partially DAG. It is
worth noting that our procedure is essentially local graph learning (focusing on only Y and variables
in its Markov blanket). Thus, the complexity is not very sensitive to the original dimensions of the
data, but to how large the Markov blanket is. For details of this procedure, see Appendix A3.

4.2 Latent-Variable CGAN for Modeling Changing Conditional Distributions

The second practical issue to be addressed is how to represent and learn the conditional distributions
involved in (4). In some applications domain knowledge is available, and one may adopt specific
models, like the Gaussian process model, that are expected to be suitable for the application domain.
In this paper, in light of the power of the Generative Adversarial Network (GAN) [51] in capturing
the property of high-dimensional distributions and generating new random samples and the capacity
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of Conditional GAN (CGAN) [52] in learning flexible conditional distribution, we propose an
extension of CGAN, namely, Latent-Variable CGAN (LV-CGAN), to model and learn a class of
conditional distributions P (Si |PA(Si), θSi), with θSi as a latent variable. As an example, Figure 2
shows the structure of the LV-CGAN to model the conditional distribution of P (X3 |Y,X2) across
domains implied by the augmented DAG given in Figure 1. The whole network, including its
parameters, is shared, and only the value of θ3 may vary across domains. Hence, it explicitly models
both changing and invariant portions in the conditional distribution. In the i-th domain, θ3 takes
value θ(i)3 and encodes the domain-specific information. The network specifies a model distribution
Q(X3|Y,X2, θ3) by the generative process X3 = g3(Y,X2, E3, θ3), which transforms random noise
E3 toX3, conditioning on Y , X2, and θ3. E3 is independent of Y andX2, and its distribution is fixed
(we used the standard Gaussian distribution). g3 is a function represented by a neural network (NN)
and shared by all domains. Q(X3|Y,X2, θ

(i)
3 ) is trained to approximate the conditional distribution

P (X3 |Y,X2) in the ith domain. For invariant conditional distributions such as P (X5|Y ) in Figure 1,
the θ input vanishes and it becomes a CGAN. Compared to existing causal generative models [53, 54],
which is learned on a single domain, our LV-CGAN aims to model the distribution changes across
domains and generate labeled data in the target domain for cross-domain prediction.

4.3 Learning and Inference
Because we use GAN to model the distributions, the inference rules (2) and (4) are not be directly
applied because of the intractability of the involved distributions. To tackle this problem, we
develop a stochastic variational inference (SVI) [55] procedure to directly approximate the posterior
P (θ|xτ ,yτ ) in the source domain and P (θ|xτ ) in the target domain. For simplicity of notation, we
denote the i-th source domain data as Di, the target domain data as Dτ , and the combined source and
target domain data as D. We rely on the evidence lower bound (ELBO) of marginal likelihood in
both source and target domains:

log p(D) ≥−
s∑
i=1

KL(q(θ|Di)|p(θ)) + Eq(θ|Di)
[ mi∑
k=1

log pg(x
(i)
k , y

(i)
k |θ)

]
− KL(q(θ|Dτ )|p(θ)) + Eq(θ|Dτ )

[ m∑
k=1

log pg(x
τ
k|θ)

]
. (5)

We approximate the posterior of θ in source and target domains with the Gaussian distribution
q(θ|Di) = N (θ|µ(i), σ(i)), q(θ|Dτ ) = N (θ|µτ , στ ). Then we can learn the model parameters in g
as well as the the variational parameters in each domain by the variational EM algorithm.

Up to now, we have followed the standard SVI procedure and assume that the density pg(X,Y,θ)
induced by the GAN generator g is tractable, which is not true in our case. To extend the standard
SVI for implicit distributions, we replace

∑mi
k=1 log pg(x

(i)
k , y

(i)
k ,θ) with Jensen-Shannon divergence

or Maximum Mean Discrepancy [56] that compares the empirical distributions of the i-th source
domain data and the data generated from g. We perform the same procedure in the target domain.
More details and theoretical justification of this procedure can be found in Appendix A4.

After learning the variational parameters, we can sample θ for the target domain and generate samples
form g to learn a classifier to approximate P (yτk |xτ ). To make the procedure more efficient, we can
make use of the decomposition of the joint distribution pg(X,Y,θ) over the augmented graph, as
shown in Eq. 4. The detailed derivations and justifications can be found in Appendix A5.

5 Experiments
5.1 Simulations

We simulate binary classification data from the graph on Figure 1, where we vary the number of
source domains between 2, 4 and 9. We model each module in the graph with 1-hidden-layer MLPs
with 32 nodes. In each replication, we randomly sample the MLP parameters and domain-specific
θ values from N(0, I). We sampled 500 points in each source domain and the target domain. We
compare our approach, denoted by Infer against alternatives. We include a hypothesis combination
method, denoted simple_adapt [37], linear mixture of source conditionals [13] denoted by weigh
and comb_classif respectively. We also compare to the pooling SVM (denoted poolSVM), which
merges all source data to train the SVM, as well as domain-invariant component analysis (DICA) [57],
and Learning marginal predictors (LMP) [58]. The results are presented in Table 1. From the results,
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Table 1: Accuracy on simulated datasets for the baselines and proposed method. The values presented
are averages over 10 replicates for each experiment. Standard deviation is in parentheses.

DICA weigh simple_adapt comb_classif LMP poolSVM Infer
9 sources 80.04(15.5) 72.1(14.5) 70.0(14.3) 72.34(16.24) 78.90(13.81) 71.8(11.43) 83.90(9.02)
4 sources 74.16(13.2) 67.88(13.7) 65.22(16.00) 69.64(15.8) 79.06(13.93) 70.08(12.25) 85.38(11.31)
2 sources 86.56(13.63) 75.04(18.8) 69.42(17.87) 74.28(18.2) 84.52(13.72) 83.84(13.7) 93.10(7.17).

Table 2: Accuracy on the Wi-Fi & Flow data. Standard deviation is in parentheses.
DICA weigh LMP poolSVM Soft-Max poolNN Infer

t2, t3→ t1 29.32(2.5) 43.71(3.02) 46.80(1.4) 40.25(1.6) 44.86(5.1) 42.88(1.6) 70.8(2.7)
t1, t3→ t2 24.5(3.6) 38.19(1.9) 39.11(2.1) 48.70(1.8) 44.95(4.4) 47.41(2.1) 84.5(2.9)
t1, t2→ t3 21.7(3.9) 36.03(1.85) 39.28(2.05) 40.46(1.4) 43.63(4.1) 41.00(1.8) 83.0(7.3)
Flow 3 sources 79.2(11.0) 84.2(9.3) 91.6 (8.4) 92.1(7.5) 89.0(9.7) 95.7(5.2) 96.8(3.5)
Flow 5 sources 83.1(12.0) 92.9(7.0) 92.3 (6.4) 94.7(6.1) 89.7(8.0) 96.0(5.1) 97.1(3.5)

it can be seen that the proposed method outperforms the baselines by a large margin. Regarding
significance of the results, we compared our method with the two other most powerful methods
(DICA and LMP) using Wilcoxon signed rank test. The the p-values are 0.074, 0.009, 0.203 (against
DICA) and 0.067, 0.074, 0.074 (against LMP), for 2, 4, and 9 source domains, respectively.

5.2 Wi-Fi Localization Dataset
We then perform evaluations on the cross-domain indoor WiFi location dataset [59]. The WiFi data
were collected from a building hallway area, which was discretized into a space of grids. At each
grid point, the strength of WiFi signals received from D access points was collected. We aim to
predict the location of the device from the D-dimensional WiFi signals. For the multiple-source
setting, we cast it as a classification problem, where each location is assigned with a discrete label.
We consider the task of transfer between different time periods, because the distribution of signal
strength changes with time while the underlying graphical model is rather stable, which satisfies our
assumption. The WiFi data were collected by the same device during three different time periods
t1, t2, and t3 in the same hallway. Three sub-tasks including t2, t3 → t1, t1, t3 → t2, and
t1, t2→ t3 are taken for performance evaluation. We thus obtained 19 possible labels, and in each
domain we sampled 700 points in 10 replicates. We learn the graphical model and changing modules
from the two source domains, and perform learning and Bayesian inference in all the domains. It
took around six hours on the Wifi data with 69 variables. The graph learned from the Wifi t1 and t2
data is given in the Appendix A6. We implement our LV-CGAN by using Multi-Layer Perceptions
(MLPs) with one hidden layer (32 nodes) to model the function of each module and set the dimension
of input noise E and θ involved in each module to 1. The reported result is classification accuracy of
location labels. We use the same baselines as in the simulated dataset, excluding simple_adapt and
comb_classif, and add a stronger baseline poolNN which replaces SVM in poolSVM with NN. We
also compare with a recent adversarial learning method Soft-Max [60]. We present the results in
Table 2. The results show that our method outperforms all baselines by a large margin.

5.3 Flow Cytometry Dataset
We also evaluate our method on the Graft vs. Host Disease Flow Cytommetry dataset (GvHD) [61].
The dataset consists of blood cells from patients, and the task is to classify each cell whether it is
a lymphocite based on cell surface biomarkers. It is reasonable to assume that each patient has a
different distribution of cells, and being able to predict the cell type in a new unlabeled patient given
existing labeled patient data is an important task. There are 29 patients with 7 cell surface biomarkers,
and we performed 29 experiments for each patient, where we treat it as a target domain subsample
rest of the patients as source domains. We use the same baseline methods as in the Wifi dataset. We
present classification accuracy results for 3 and 5 source domains in Table 2. The results show that
our method is much better than most of the methods and performs slightly better than poolNN, which
is a very strong baseline on this dataset.

5.4 Digits Datasets
Following the experimental setting in [60], we build a multi-source domain dataset by combing four
digits datasets, including MNIST, MNIST-M, SVHN, and SynthDigits. We take MNIST, MNIST-M,
and SVHN in turn as the target domain and use the rest domains as source domains, which leads to
three domain adaptation tasks. We randomly sample 20,000 labeled images for training in the source
domain, and test on 9,000 examples in the target domain. We use Y → X (as in previous work such
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MNIST SVHN SynthDigits MNIST-M

Figure 3: The generated images in each domain in the T+S+D/M task. Each row of an image
corresponds to a fixed Y value, ranging from 0 to 9. MNIST-M is the unlabeled target domain while
the rest are source domains.

as [17]), where X is the image, as the graph for adaptation. We leverage a recently proposed twin
auxiliary classifier GAN framework [62] to match conditional distributions of generated and real data.
More implementation details can be found in the Appendix A7.

We compare our method with recent deep multi-source adaptation method MDAN [60], with two
variants Hard-Max and Soft-Max, and several baseline methods evaluated in [60], including poolNN
and denoted weight described above and poolDANN) that considers the combined source domains
as a single source domain and perform the DANN method [9]. Because our classifier network is
different from that used in [60], we also report the poolNN method with our network architecture,
denoted as poolNN_Ours.

The quantitative results are shown in Table 3. It can be seen that our method achieves much better
performance than alternatives on the two hard tasks. This is very impressive because our baseline
classifier (poolNN_Ours) performs worse poolNN in [60]. Figure 3 shows the generated images in
each domain in the T+S+D/M task. Each row of an image corresponds to a fixed Y value, ranging
from 0 to 9. It can be seen that our method generates correct images for the corresponding labels,
indicating that our method successfully transfer label knowledge from source domains and recovers
the conditional distribution P (X|Y ) (also P (Y |X)) in the unlabeled target domain. The generated
images for the other two tasks are given in the Appendix A8.

Table 3: Accuracy on the digits data. T: MNIST; M: MNIST-M; S: SVHN; D: SynthDigits.

weigh poolNN poolDANN Hard-Max Soft-Max poolNN_Ours Infer
S +M +D/T 75.5 93.8 92.5 97.6 97.9 94.9 96.64
T + S +D/M 56.3 56.1 65.1 66.3 68.7 59.6 89.89
M + T +D/S 60.4 77.1 77.6 80.2 81.6 67.8 89.34

6 Conclusion and Discussions

In this paper, we proposed a framework to deal with unsupervised domain adaptation with multiple
source domains by considering domain adaptation as an inference problem on a particular type of
graphical model over the target variable and features or their combinations as super-nodes, which
encodes the change properties of the data across domains. The graphical model can be directly
estimated from data, leading to an automated, end-to-end approach to domain adaptation. As future
work, we will study how the sparsity level of the learned graph affects the final prediction performance
and, more importantly, aim to improve the computational efficiency of the method by resorting to
more efficient inference procedures. Dealing with transfer learning with different feature spaces
(known as heterogeneous transfer learning) by extending our approach is also a direction to explore.

Acknowledgement

We are grateful to the anonymous reviewers, whose comments helped improve the paper. KZ would
like to acknowledge the support by the United States Air Force under Contract No. FA8650-17-C-
7715.

9



Broader Impact

Domain adaptation aims to learn predictive models that can generalize to new domains that have
different distribution than the training distributions. It is an essential step towards more generalizable
and adaptive learning paradigms. We propose a brand new domain adaptation framework based on
the graphical model that encodes conditional independence as well as distribution change properties.
Our framework will inspire more effective DA algorithms that take advantage of the underlying data
generating process. Open source algorithms and codes will benefit science, society, and the economy
internationally through the further applications to analyzing social, business, and health data.

The research may greatly benefit practitioners in industry communities, where large amounts of
unlabeled and heterogeneous data are ubiquitous. It will greatly save the expenses to label new
datasets once some characteristics of the data changes. For example, a disease diagnosis model can
be easily adapted to new hospitals without much labeling effort. A possible negative effect is that
data annotators may lose their job.

The proposed method does not leverage any bias in the data.
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