
Appendices
In Appendix A, we prove the theoretical results presented in this manuscript. Appendix B presents
details of the χ-VAE. Appendix C provides known bounds for posterior expectation estimators. In
Appendix D, we present the analytical derivations in the bivariate Gaussian setting. Appendix E and F
provide details of the pPCA and MNIST experiments. In Appendix G, we discuss why alternative
divergences would be especially suitable for the M1+M2 model. Appendix H presents additional
information about the single-cell transcriptomics experiment.

A Proofs

A.1 Proof of Lemma 1

Lemma 1. (Concentration of the log-likelihood ratio) For an observation x, let Σ be the variance of
the posterior distribution under the pPCA model, pθ(z ∣ x). Let

A(x) = Σ
1/2

[D(x)]
−1

Σ
1/2
− I. (6)

For z following the posterior distribution, logw(x, z) is a sub-exponential random variable. Further,
there exists a t∗(x) such that, under the posterior pθ(z ∣ x) and for all t > t∗(x),

P (∣logw(x, z) −∆KL(pθ ∥ qφ)∣ ≥ t) ≤ e
−

t
8∥A(x)∥2 . (7)

Proof. Here we first give the closed-form expression of the posterior and then prove the concentration
bounds on the log-likelihood ratio. Let M =W ⊺W + σ2I . For notational convenience, we do not
explicitly denote dependence on random variable x.

Step 1: Tractable posterior. Using the Gaussian conditioning formula [24], we have that

pθ(z ∣ x) = Normal (M−1W ⊺
(x − µ), σ2M−1) . (14)

Step 2: Concentration of the log-ratio. For this, since x is a fixed point, we note a =M−1W ⊺(x − µ)
and b = ν(x). We can express the log density ratio as

w(z, x) = log
pθ(z ∣ x)

qφ(z ∣ x)
(15)

= −
1

2
log det(σ2M−1D−1

) −
1

2σ2
(z − a)⊺M(z − a) +

1

2
(z − b)⊺D−1

(z − b) (16)

= C + z⊺[
D−1

2
−
M

2σ2
]z + [D−1b −

Ma

σ2
]
⊺z, (17)

where C is a constant. To further characterize the tail behavior, let ε be an isotropic multivariate
normal distribution, and let us express the log-ratio as a function of ε instead of the posterior
probability. We have that z =M−1W ⊺(x − µ) + σM−1/2ε. The log ratio can now be written as

logw(z, x) = C ′
+ ε⊺[

σ2M−1/2D−1M−1/2 − I

2
]ε + [σM−1/2D−1b −

M
1/2a

σ
]
⊺ε. (18)

Because ε is isotropic Gaussian, we can compute the deviation of this log-ratio and provide concen-
tration bounds. Because ε is Gaussian and ε↦ logw(z, x) is a quadratic function, we show that the
log-ratio under the posterior is a sub-exponential random variable.

The following lemma makes this statement precise, and it carries an implication similar to the classic
result in [51].

Lemma 2. Let d ∈ N∗ and ε ∼ Normal(0, Id). For matrix A ∈ Rd×d and vector b ∈ Rd, random

variable v = ε⊺Aε+b⊺ε is sub-exponential with parameters (
√

2 ∥A∥
2
F +

∥b∥2
2/4,4 ∥A∥2). In particular,
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we have the following concentration bounds:

P [∣v∣ ≥ t] ≤ 2 exp

⎧⎪⎪
⎨
⎪⎪⎩

−
t2

8 ∥A∥
2
F + ∥b∥

2
2 + 4 ∥A∥2 t

⎫⎪⎪
⎬
⎪⎪⎭

for all t > 0. (19)

P [∣v∣ ≥ t] ≤ exp{−
t

8 ∥A∥2

} for all t >
8 ∥A∥

2
F + ∥b∥

2
2

16 ∥A∥2

. (20)

For A = σ2M−1/2D−1M−1/2
−I

2
and b = σM−1/2D−1b − M

1/2a
σ

, we can apply Lemma 2. We deduce
a concentration bound on the log-ratio around its mean, which is the forward Kullback-Leibler
divergence L = ∆KL(pθ(z ∣ x) ∥ qφ(z ∣ x)). More precisely, we have that

pθ (∣logw(z, x) −L∣ ≥ t ∣ x) ≤ 2 exp

⎧⎪⎪
⎨
⎪⎪⎩

−
t2

8 ∥A∥
2
F + ∥b∥

2
2 + 4 ∥A∥2 t

⎫⎪⎪
⎬
⎪⎪⎭

for all t > 0, (21)

as well as the deviation bound for large t, which ends the proof.

A.2 Proof of Lemma 2

Proof. Let λ ∈ R+. We have that Ev = Tr(A). We wish to bound the moment generating function

E[eλ(v−Tr(A))
] = e−λTr(A)E[eλ(ε

⊺Aε+b⊺ε)
]. (22)

Sums of arbitrary correlated variables are hard to analyze. Here we rely on the property that Gaussian
vectors are invariant under rotation. Let A = QΛQ⊺ be the eigenvalue decomposition for A and
denote ε = Qξ and b = Qβ. Since Q is an orthogonal matrix, ξ also follows an isotropic normal
distribution and

E[eλ(v−Tr(A))
] = e−λTr(A)E[eλ(ξ

⊺Λξ+β⊺ξ)
] (23)

= e−λTr(A)E [
d

∏
i=1

eλξ
2
iΛi+λβiξi] (24)

= e−λTr(A)

d

∏
i=1

E [eλξ
2
iΛi+λβiξi] (25)

=
d

∏
i=1

E [eλξ
2
iΛi+λβiξi−λΛi] . (26)

Because each component ξi follows a isotropic Gaussian distribution, we can compute the moment
generating functions in closed form:

E [eλξ
2
iΛi+λβiξi−λΛi] =

e−λΛi

√
2π
∫

+∞

−∞

eλΛiu
2
+λβiue−

u2

2 du (27)

=
e−λΛi

√
2π
∫

+∞

−∞

e[λΛi−
1
2 ]u

2
+λβiudu. (28)

This integral is convergent if and only if λ < 1/2Λi. In that case, after a change of variable, we have
that

E [eλξ
2
iΛi+λβiξi−λΛi] =

e−λΛi

√
π
√

1 − 2λΛi
∫

+∞

−∞

e
−s2+

√
2λβis

√
1−2λΛi ds (29)

=
e−λΛie

λ2β2
i

2(1−2λΛi)

√
1 − 2λΛi

. (30)

Then, using the fact that for a < 1/2, we have e−a ≤ e2a2√
1 − 2a, we can further simplify for λ < 1

4Λi

E [eλξ
2
iΛi+λβiξi−λΛi] ≤ e

2λ2Λ2
i+

λ2β2
i

2(1−2λΛi) (31)

≤ e[2Λ2
i+

β2
i
4 ]λ2

. (32)
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Putting back all the components of ξ, we have that for all λ < 1
4∥Λ∥2

= 1
4∥A∥2

E[eλ(v−Tr(A))
] ≤ exp

⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎣
2 ∥Λ∥

2
F +

∥β∥
2
2

4

⎤
⎥
⎥
⎥
⎦
λ2

⎫⎪⎪
⎬
⎪⎪⎭

(33)

≤ exp

⎧⎪⎪
⎨
⎪⎪⎩

⎡
⎢
⎢
⎢
⎣
2 ∥A∥

2
F +

∥b∥
2
2

4

⎤
⎥
⎥
⎥
⎦
λ2

⎫⎪⎪
⎬
⎪⎪⎭

, (34)

where the last inequality is in fact an equality because Q is an isometry. Therefore, according

to Definition 2.2 in [31], v is sub-exponential with parameters (

√

2 ∥A∥
2
F +

∥b∥2
2/4,4 ∥A∥2). The

concentration bound is derived as in the proof of Proposition 2.3 in [31].

A.3 Proof of Theorem 1

Theorem 1. (Sufficient sample size) For an observation x, suppose that the second moment of f(z)
under the posterior is bounded by κ. If the number of importance sampling particles n satisfies
n = β exp{∆KL(pθ ∥ qφ)} for some β > log t∗(x), then

P(∣Q̂
n
IS(f, x) −Q(f, x)∣ ≥

2
√

3κ

β1/8γ −
√

3
) ≤

√
3

β1/8γ
, (8)

with γ = max (1,4 ∥A(x)∥2).

Proof. Let t = lnβ. By Theorem 1.2 from [16], Lemma 1 for t > t∗(x), and

ε = (e−
t
4 + 2e

−
t

16∥A(x)∥2 )
1/2

, (35)

we have that

P(∣Q̂
n
IS(f, x) −Q(f, x)∣ ≥

2 ∥f∥2 ε

1 − ε
) ≤ ε. (36)

Now, let us notice that ε ≤
√

3e
−t
8γ and that x↦ x/1−x is increasing on (0,1). So we have that

P(∣Q̂
n
IS(f, x) −Q(f, x)∣ ≥

2
√

3κ

e
t

8γ −
√

3
) ≤

√
3e

−t
8γ . (37)

The bound in Theorem 1 follows by replacing et by β in the previous equation.

B Chi-VAEs

We propose a novel variant of the WW algorithm based on χ2 divergence minimization, which is
potentially well suited for decision-making. This variant is incremental in the sense that it combines
several existing contributions such as the CHIVI procedure [15], the WW algorithm [22], and use
of a reparameterized Student’s t distributed variational posterior (e.g., the one explored in [10] for
IWVI). However, we did not encounter prior mention of such a variant in the existing literature.

In the χ-VAE, we update the model and the variational parameters as a first-order stochastic block
coordinate descent (as in WW [22]). For a fixed inference model qφ, we take gradients of the
IWELBO with respect to the model parameters. For a fixed generative model pθ, we seek to minimize
the χ2 divergence between the posterior and the inference model. This quantity is intractable, but we
can formulate an equivalent optimization problem using the χ upper bound (CUBO) [15]:

log pθ(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

evidence

=
1

2
logEqφ(z∣x) (

pθ(x, z)

qφ(z ∣ x)
)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
CUBO

−
1

2
log (1 +∆χ2(pθ ∥ qφ))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
χ2 VG

.
(38)

It is known that the properties of the variational distribution (mode-seeking or mass-covering) highly
depend on the geometry of the variational gap [52], which was our initial motivation for using the
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χ-VAE for decision-making. For a fixed model, minimizing the exponentiated CUBO is a valid
approach for minimizing the χ2 divergence.

Finally, in many cases the χ2 divergence may be infinite. This is true even for two Gaussian
distributions provided that the variance of qφ does not cover the posterior sufficiently. In our
pPCA experiments, we found that using a Gaussian distributed posterior may still provide helpful
proposals. However, we expect a Student’s t distributed variational posterior to properly alleviate this
concern. [10] proposed a reparameterization trick for elliptical distributions, including the Student’s t
distribution based on the CDF of the χ distribution. In our experiments, we reparameterized samples
from a Student’s t distribution with location µ, scale Σ = A⊺A and degrees of freedom ν as follows:

δ ∼ Normal(0, I) (39)

ε ∼ χ2
ν (40)

t ∼

√
ν

ε
A⊺δ + µ, (41)

where we used reparameterized samples for the χ2
ν distribution following [53].

C Limitations of standard results for posterior statistics estimators

Neither [16] nor [17] suggest that upper bounds on the error of the IS estimator may be helpful in
comparing algorithmic procedures. Similarly, [22] used the result from [16] as a motivation but did
not use it to support a claim of better performance over other methods. In this section, we outline two
simple reasons why upper bounds on the error of IS are not helpful for comparing algorithms.

We start by stating simple results of upper bounding the mean square error of the SNIS estimator.
Proposition 1. (Deviation for posterior expectation estimates) Let f be a bounded test function. For
the plugin estimator, we have

sup
∥f∥

∞
≤1

E [(Q̂
n
P(f, x) −Q(f, x))

2
] ≤4∆2

TV(pθ, qφ) +
1

2n
, (42)

where ∆TV denotes the total variation distance. For the SNIS estimator, if we further assume that
w(x, z) has a finite second-order moment under qφ(z ∣ x), then we have

sup
∥f∥

∞
≤1

E [(Q̂
n
IS(f, x) −Q(f, x))

2
] ≤

4∆χ2(pθ ∥ qφ)

n
, (43)

where ∆χ2 denotes the chi-square divergence.

We derive the first bound in a later section; the second is from [17]. We now derive two points to
argue that such bounds are uninformative for selecting the best algorithm.

First, these bounds suggest the plugin estimator is suboptimal because, in contrast to the SNIS
estimator, its bias does not vanish with infinite samples. However, the upper bound in [17] may be
uninformative when the χ2 divergence is infinite (as it may be for a VAE). Consequently, it is not
immediately apparent which estimator will perform better.

A second issue we wish to underline pertains to the general fact that upper bounds may be loose.
For example, with Pinsker’s inequality we may further upper bound the bias of the plugin estimator
by the square root of either ∆KL(pθ ∥ qφ) or ∆KL(qφ ∥ pθ). In this case, the VAE and the WW
algorithm [22] both minimize an upper bound on the mean-square error of the plugin estimator; the
one we should choose is again unclear.

C.1 Proof of Proposition 1

Proposition 1. (Deviation for posterior expectation estimates) Let f be a bounded test function. For
the plugin estimator, we have

sup
∥f∥

∞
≤1

E [(Q̂
n
P(f, x) −Q(f, x))

2
] ≤4∆2

TV(pθ, qφ) +
1

2n
, (42)
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where ∆TV denotes the total variation distance. For the SNIS estimator, if we further assume that
w(x, z) has a finite second-order moment under qφ(z ∣ x), then we have

sup
∥f∥

∞
≤1

E [(Q̂
n
IS(f, x) −Q(f, x))

2
] ≤

4∆χ2(pθ ∥ qφ)

n
, (43)

where ∆χ2 denotes the chi-square divergence.

Proof. For the plugin estimator

Q̂
n
P (f, x) =

1

n

n

∑
i=1

f(zi), (44)

we can directly calculate and upper bound the mean-square error. First, for notational convenience,
we will use

I∗ = Ep(z∣x)f(z) (45)

Ī = Eq(z∣x)f(z). (46)

Observe that

∣I∗ − Ī ∣ ≤ sup
∥g∥

∞
≤1

∣Eq(z∣x)g(z) −Ep(z∣x)g(z)∣ (47)

≤ 2∆TV(p(z ∣ x), q(z ∣ x)), (48)

by definition of the total variation distance. Now we can proceed to the calculations

(
1

n

n

∑
i=1

f(zi) − I
∗
)

2

= (
1

n

n

∑
i=1

f(zi) − Ī)

2

+ (I∗ − Ī)2
+ 2(

1

n

n

∑
i=1

f(zi) − Ī)(I∗ − Ī), (49)

and take expectations on both sides with respect to the variational distribution:

E(
1

n

n

∑
i=1

f(zi) − I
∗
)

2

= E(
1

n

n

∑
i=1

f(zi) − Ī)

2

+ (I∗ − Ī)2 (50)

=
1

n
E (f(z1) − Ī)

2
+ (I∗ − Ī)2 (51)

≤
1

2n
+ 4∆2

TV(p(z ∣ x), q(z ∣ x)). (52)

For the self-normalized importance sampling estimator

Q̂
n
IS(f, x) =

1

n

n

∑
i=1

w(x, zi)f(zi), (53)

we instead rely on Theorem 2.1 of [17].

D Analytical derivations in the bivariate Gaussian setting

For a fixed x, we adopt the condensed notation pθ(z ∣ x) = p. According to the Gaussian conditioning
formula, there exists µ and Λ such that

p ∼ Normal (µ,Λ−1) .

We consider variational approximations of the form

q ∼ Normal (ν,diag(λ)−1) .

We wish to characterize the solution q to the following optimization problems:

qRKL = arg minq ∆KL(q ∥ p), qFKL = arg minq ∆KL(p ∥ q), qχ = arg minq ∆χ2(p ∥ q). (54)

We focus on the setting in which the mean of the variational distribution is correct. This is true
for variational Bayes or the general Renyi divergence, as underlined in [54]. Therefore, we further
assume ν can be chosen equal to µ for simplicity.
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Conveniently, in the bivariate setting we have an analytically tractable inverse formula

Λ = [
Λ11 Λ12

Λ21 Λ22
] , Λ−1 = 1

∣Λ∣
[

Λ22 −Λ12

−Λ21 Λ11
] . (55)

We also rely on the expression of the Kullback-Leibler divergence between two multivariate Gaussian
distributions of Rd:

∆KL(Normal (µ,Σ1) ∥ Normal (µ,Σ2)) =
1

2
[log

∣Σ2∣

∣Σ1∣
− d + Tr(Σ−1

2 Σ1)] . (56)

D.1 Reverse KL

Using the expression of the KL and the matrix inverse formula, we have that

arg min
q

∆KL(q ∥ p) = arg min
λ1,λ2

logλ1λ2 +
Λ11

λ1
+

Λ22

λ2
. (57)

The solution to this optimization problem is

{
λ1 = Λ11

λ2 = Λ22
. (58)

D.2 Forward KL

From similar calculations,

arg min
q

∆KL(p ∥ q) = arg min
λ1,λ2

− logλ1λ2 +
1

∣Λ∣
[λ1Λ22 + λ2Λ11] . (59)

The solution to this optimization problem is

{
λ1 = Λ11 −

Λ12Λ21

Λ22

λ2 = Λ22 −
Λ12Λ21

Λ11

. (60)

D.3 Chi-square divergence

A closed-form expression of the Renyi divergence for exponential families (and in particular, for
multivariate Gaussian distributions) is derived in [55]. We could in principle follow the same approach.
However, [56] derived a similar result, which is exactly the desired quantity for α = −1 in Appendix B
of their manuscript. Therefore, we simply report this result:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

λ1 = Λ11 [ 3
2
− 1

2

√
1 + 8Λ12Λ21

Λ11Λ22
]

λ2 = Λ22 [ 3
2
− 1

2

√
1 + 8Λ12Λ21

Λ11Λ22
] .

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(61)

D.4 Importance-weighted variational inference

For IWVI, most quantities are not available in closed form. However, the problem is simple and
low-dimensional. We use naive Monte Carlo with 10,000 samples to estimate the IWELBO. The
parameters λ1 and λ2 are the solution to the numerical optimization of the IWELBO (Nelder–Mead
method).

E Supplemental information for the pPCA experiment

In this appendix, we give more details about the simulation, the construction of the dataset, the model,
and the neural network architecture. We also give additional results for a larger number of particles
and for benchmarking posterior collapse.
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E.1 Simulation

let p, d ∈ N2,B = [b1, ..., bp],C = [c1, ..., cp], ν ∈ R+. We choose our linear system with random
matrices

∀j ≤ p, bj ∼ Normal(0,
Id
p
)

∀j ≤ q, cj ∼ Normal (1,2) ,
(62)

and define the conditional covariance

Σx∣z = ν × diag([c21, . . . , c
2
p]). (63)

Having drawn these parameters, the generative model is as follows:

z ∼ Normal (0, Ip)

x ∣ z ∼ Normal (Bz,Σx∣z) .
(64)

The marginal log-likelihood p(x) is tractable:

x ∼ Normal (0,Σx∣z +BB
⊺) . (65)

The posterior p(z ∣ x) is also tractable:

Σ−1
z∣x = Ip +A

⊺Σ−1
x∣zA

Mz∣x = Σz∣xA
⊺Σ−1

x∣z

z ∣ x ∼ Normal (Mz∣xx,Σz∣x) .

(66)

The posterior expectation for a toy hypothesis testing p(z1 ≥ ν ∣ x) (with f ∶ z ↦ 1{z1≥ν}) is also
tractable because this distribution is Gaussian and has a tractable cumulative distribution function.

E.2 Dataset

We sample 1000 datapoints from the generative model (Equation 64) with p = 10, q = 6, and ν = 1.
We split the data with a ratio of 80% training to 20% testing.

E.3 Model details and neural networks architecture

For every baseline, we partially learned the generative model of Eq. (64). The matrix B was fixed,
but the conditional diagonal covariance Σx∣z weights were set as free parameters during inference.
Neural networks with one hidden layer (size 128), using ReLu activations, parameterized the encoded
variational distributions.

Each model was trained for 100 epochs, and optimization was performed using the Adam optimizer
(learning rate of 0.01, batch size 128).

E.4 Additional results

We compare PSIS levels for the pPCA dataset for each model (figure 5). For most models (IWAE,
WW, and χ), the VAE variational distribution provides poor importance-weighted estimates. The
PSIS exceeds 0.7 for those combinations, hinting that associated samples may be unreliable. Most
other combinations show acceptable PSIS levels, with the proposals from χ and MIS performing
best.

VAE IWAE WW  (St) MIS

Variational

VAE
IWAE
WWM

od
el

0.57 0.35 0.48 0.17 0.22 0.31

0.76 0.54 0.63 0.48 0.43 0.49

0.75 0.53 0.65 0.45 0.41 0.51

0.76 0.51 0.66 0.48 0.43 0.48

Figure 5: PSIS for pPCA. Each row corresponds to an objective function for fitting the model
parameters and each column corresponds to an objective function for fitting the variational parameters.
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Table 4: Results on the pPCA simulated data. MAE
refers to the mean absolute error in posterior expectation
estimation.

VAE IWAE WW χ-VAE

log pθ(X) -17.22 -16.93 -16.92 -17.28
IWELBO -17.22 -16.93 -16.92 -17.29

∣∣A∣∣2 1.62 0.96 1.16 1.00
PSIS 0.56 0.07 0.49 0.98

MAE 0.062 0.028 0.021 0.073

VAE IWAE WW  (St) MIS

Variational

VAE
IWAE
WWM

od
el

6.44 6.16 6.21 7.30 7.53 6.02

4.42 3.18 3.22 5.19 4.66 2.49

4.41 2.43 2.72 4.66 4.54 1.79

6.62 6.47 6.25 7.18 7.58 6.27

Figure 6: MAE (×100) for pPCA. Each
row corresponds to an objective function
for fitting the model parameters and each
column corresponds to an objective func-
tion for fitting the variational parameters.

E.5 Results with an increased number of particles

We also benchmark the different algorithms for an increased number of particles (Table 4). In this
setup, we can observe that the IWAE model performance worsens in terms of held-out likelihood
with a high number of particles, underlining a well-known behavior of this model [19]. Conversely,
increasing the number of particles is more beneficial to WW than to IWAE. WW learns the best
generative model (in terms of held-out likelihood) and reaches lower mean absolute errors than
IWAE. Intriguingly, the performance of the χ-VAE drops significantly on all metrics in this setup.
As in the other experiments, our three-step approach minimizes the MAE, among all generative
model/variational distribution pairings (Figure 6).

E.6 Benchmarking for posterior collapse methods

Posterior collapse is an established issue of VAE training in which the variational network does not
depend on the data instance. Currently, there are two different explanations for this behavior. In some
research lines, it is assumed to be a specificity of the inference procedure[46, 47]. In others, it is
thought to be caused by a deficient model [45]. The second interpretation is beyond the scope of our
manuscript. To measure the impact of posterior collapse, we included cyclic KL annealing [46] and
lagging inference network [47] baselines to the pPCA experiment. We also considered constant KL
annealing, which did not improve performance over cyclical annealing.

These methods improve the held-out log-likelihood and MAE of the VAE baseline (Table 5), hinting
that posterior collapse alleviation can improve decision-making. However, even the best performing
method (lagging inference networks) shows slight improvement over the VAE baseline (2% in terms
of held-out likelihood) and does not reach the other baseline performances. We leave extended studies
of posterior collapse effects to future work.

Table 5: Extended results on the pPCA simulated data.

VAE AGG CYCLIC IWAE WW χ-VAE
log pθ(X) -17.65 -17.13 -17.20 -16.91 -16.93 -16.92
IWELBO -17.66 -17.14 -17.20 -16.92 -16.96 -16.92

∥A∥2 1.69 1.47 1.68 1.30 2.32 1.13
PSIS 0.54 0.55 0.58 0.53 0.66 0.47

MAE 1.03 0.057 0.050 0.032 0.043 0.030

F Supplemental information for the MNIST experiment

F.1 Dataset

We used the MNIST dataset [57], and split the data using a 50% training to 50% test ratio.
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F.2 Model details and neural networks architecture

For efficiency considerations, the variational distribution parameters of qφ(z ∣ x) were parameterized
using a small convolutional neural network (3 layers of size-3 kernels), followed by two fully-
connected layers. The parameters of the distributions qφ(c ∣ z), qφ(u ∣ z, c), pθ(x ∣ z), pθ(z ∣ c, u),
and pθ(c)pθ(u) were all encoded by fully-connected neural networks (one hidden layer of size 128).
We used SELU non-linearities [58] and a dropout (rate 0.1) between all hidden layers.

All models were trained for 100 epochs using the Adam optimizer (with a learning rate of 0.001 and
a batch size of 512).

F.3 Additional results

All models show relatively similar accuracy levels (Figure 7). The three-step procedure applied to the
best generative model (IWAE) provides the best levels of accuracy.

VAE IWAE WW Mixt.

Variational

VAE
IWAE
WWM

od
el

0.95 0.95 0.95 0.94 0.95

0.96 0.95 0.95 0.95 0.96

0.96 0.96 0.96 0.95 0.96

0.96 0.96 0.96 0.94 0.97

Figure 7: Accuracy for MNIST. Each row corresponds to an objective function for fitting the model
parameters and each column corresponds to an objective function for fitting the variational parameters.

F.4 Estimation of posterior expectations for the M1+M2 model

Here we derive the two estimators for estimating pθ(c ∣ x) in the M1+M2 model. First, we remind
the reader that the generative model is

pθ(x, z, c, u) = pθ(x ∣ z)pθ(z ∣ c, u)pθ(c)pθ(u) (67)

and that the variational distribution factorizes as

qφ(z, c, u ∣ x) = qφ(z ∣ x)qφ(c ∣ z)qφ(u ∣ z, c). (68)

Plugin approach For the plugin approach, we compute qφ(c ∣ x) as

qφ(c ∣ x) = ∬
z,u

qφ(c, u, z ∣ x)dudz (69)

=∬
z,u

qφ(u ∣ c, z)qφ(c, z ∣ x)dudz (70)

=∬
z
qφ(c ∣ z)qφ(z ∣ x)dz, (71)

where the last integral is estimated with naive Monte Carlo.

SNIS approach We obtain pθ(c, x) via marginalization of the latent variables z, u:

pθ(c, x) = ∬ pθ(x,u, c, z)dz du. (72)

We may estimate this probability, for a fixed c, using qφ(z, u ∣ x, c) as a proposal for importance
sampling:

pθ(c, x) = Eqφ(z,u∣x,c) [
pθ(x,u, c, z)

qφ(z, u ∣ x, c)
] . (73)

Then, the estimates for pθ(c, x) may be normalized by their sum for all labels (equal to pθ(x)) to
recover pθ(c ∣ x).

Interestingly, this estimator does not make use of the classifier qφ(c ∣ z), so we expect it to possibly
have lower performance than the plugin estimator. Indeed, the qφ(c ∣ z) is fit with a classification
loss based on the labeled data points.
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G Analysis of alternate divergences for the M1+M2 model

We have the following pathological behavior, similar to that presented in the factor analysis instance.
This pathological behavior is exacerbated when the M1+M2 model is fitted with a composite loss as
in Equation 9 of [34]. Indeed, neural networks are known to have poorly calibrated uncertainties [59].

Proposition 2. Consider the model defined in Eq. (10). Assume that posterior inference is exact for
latent variables u and z, such that qφ(z ∣ x)qφ(u ∣ c, z) = pθ(z, u ∣ c, x). Further, assume that for a
fixed z ∈ Z , pθ(c ∣ z) has complete support. Then, as Eqφ(c∣z) log qφ(c ∣ z) → 0, it follows that

1. ∆KL(qφ(c, z, u ∣ x) ∥ pθ(c, z, u ∣ x)) is bounded;

2. ∆KL(pθ(c, z, u ∣ x) ∥ qφ(c, z, u ∣ x)) diverges; and

3. ∆χ2(pθ(c, z, u ∣ x) ∥ qφ(c, z, u ∣ x)) diverges.

Proof. The proof mainly consists of decomposing the divergences. The posterior for unlabeled
samples factorizes as

pθ(c, u, z ∣ x) = pθ(c ∣ z)pθ(z, u ∣ x, c). (74)

From this, expressions of the other divergences follow from the semi-exact inference hypothesis.
Remarkably, all three divergences can be decomposed into similar forms. Also, the expression of the
divergences can be written in closed form (recall that c is discrete) and as a function of λ.

Reverse-KL. In this case, the Kullback-Leibler divergence can be written as

∆KL(qφ(c, z, u ∣ x) ∥ pθ(c, z, u ∣ x)) = Eqφ(c∣z)∆KL(qφ(z, u ∣ x, c) ∥ pθ(z, u ∣ x, c)) (75)

+Eqφ(z∣x)∆KL(qφ(c ∣ z) ∥ pθ(c ∣ z)), (76)

which further simplifies to

∆KL(qφ(c, z, u ∣ x) ∥ pθ(c, z, u ∣ x)) = Epθ(z∣x)∆KL(qφ(c ∣ z) ∥ pθ(c ∣ z)).

This last equation can be rewritten as a constant plus the differential entropy of qφ(c ∣ z), which is
bounded by logC in absolute value.

Forward-KL. Similarly, we have that

∆KL(pθ(c, z, u ∣ x) ∥ qφ(c, z, u ∣ x)) = Epθ(c∣z)∆KL(pθ(z, u ∣ x, c) ∥ qφ(z, u ∣ x, c))

+Epθ(z∣x)∆KL(pθ(c ∣ z) ∥ qφ(c ∣ z)),

which also further simplifies to

∆KL(pθ(c, z, u ∣ x) ∥ qφ(c, z, u ∣ x)) = Epθ(z∣x)∆KL(pθ(c ∣ z) ∥ qφ(c ∣ z))

= Epθ(z∣x)
C

∑
c=1

pθ(c ∣ z) log
pθ(c ∣ z)

qφ(c ∣ z)
.

This last equation includes terms in pθ(c ∣ z) log qφ(c ∣ z), which are unbounded whenever qφ(c ∣ z)
is zero but pθ(c ∣ z) is not.

Chi-square. Finally, for this divergence, we have the decomposition

∆χ2(pθ(c, z, u ∣ x) ∥ qφ(c, z, u ∣ x)) = Eqφ(z,c,u∣x)
p2
θ(z, u ∣ x, c)p2

θ(c ∣ z)

q2
φ(z, u ∣ x, c)q2

φ(c ∣ z)
,

which in this case simplifies to

∆χ2(pθ(c, z, u ∣ x) ∥ qφ(c, z, u ∣ x)) = Epθ(z∣x)∆χ2(pθ(c ∣ z) ∥ qφ(c ∣ z)).

Similarly, the last equation includes terms in p2
θ(c∣z)/qφ(c∣z), which are unbounded whenever qφ(c ∣ z)

is zero but pθ(c ∣ z) is not.
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H Supplemental information for the single-cell experiment

H.1 Dataset

Let N and G denote the number of cells and genes of the dataset, respectively. We simulated scRNA
counts from two cell-states a and b, each following a Poisson-lognormal distribution with respective
means µag and µbg for g ≤ G, and sharing covariance Σ. For each cell n, the cell-state cn is modelled
as a categorical distribution of parameter p. The underlying means follow log-normal distributions

hng ∼ LogNormal(µcn ,Σ).

Counts xng for cell n and gene g are assume to have Poisson noise

xng ∼ Poisson(hng).

We now clarify how the log-normal parameters were constructed. Both populations shared the same
covariance structure

Σ = (0.5 + u)Ig + 2aaT , where {
a ∼ U((−1,1)g)

u ∼ U((−0.25,0.25)g).

The ground-truth LFC values ∆g between the two cell states, a and b, were randomly sampled in
the following fashion. We first randomly assign a differential expression status to each gene. It can
correspond to similar expression, up-regulation, or down-regulation between the two states for the
gene. Conditioned to this status, the LFCs were drawn from Gaussian distributions respectively
centered on 0,−1, and 1 and of standard deviation σ = 0.16.

Finally, gene expression means for population a were sampled uniformly on (10,100) populations b
obtained as

µb = 2∆gµa.

In our experiments, we used N = 1000 and G = 100, and followed a 80% − 20% train-test split ratio.

H.2 Model details and neural networks architecture

Here we introduce a variant of scVI as a generative model of cellular expression counts. For more
information about scVI, please refer to the original publication [7].

Brief background on scVI Latent variable zn ∼ Normal(0, Id) represents the biological state
of cell n. Latent variable ln ∼ LogNormal(µl, σ2

l ) represents the library size (a technical factor
accounting for sampling noise in scRNA-seq experiments). Let fw be a neural network. For each
gene g, expression count xng follows a zero-inflated negative binomial distribution whose negative
binomial mean is the product of the library size ln and normalized mean hng = fw(zn). The
normalized mean hng is therefore deterministic conditional on zn; it will have uncertainty in the
posterior due to zn. The measure pθ(hng ∣ xn) denotes the push-forward of pθ(zn ∣ xn) through the
g-th output neuron of neural net fw. scVI therefore models the distribution pθ(x).

Differences introduced In our experiments, the importance sampling weights for all inference
mechanisms had high values of the PSIS diagnostic for the original scVI model. Although the FDR
control was more efficient with alternative divergences, our proposal distributions were poor. The
posterior variance for latent variable ln could reach high values, leading to numerical instabilities for
the importance sampling weights (at least on this dataset). To work around the problem, we removed
the prior on ln and learned a generative model for the conditional distribution pθ(xn ∣ ln) using the
number of transcripts in cell n as a point estimate of ln.
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H.3 Additional results
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Figure 8: PSIS (left) and PRAUC (right) for scVI. Each row corresponds to an objective function
for fitting the model parameters and each column corresponds to an objective function for fitting the
variational parameters.

We emphasize that the PSIS metric does not provide a complete picture for selecting a decent
model/variational distribution combination. On the differential expression task, most combinations
using VAEs as generative models offer appealing PSIS values (Figure 8). However, these combi-
nations offer deceiving gene rankings, as hinted by their PRAUC (AUC = 0.94). In addition, the
variational distributions trained using the classical ELBO used in combination with IWAE, WW, or χ
are inadequate for decision-making. These blends reach inadmissible levels of PSIS.

To assess the potential of the different models for detecting differential expression, we compare the
FDR evolution with the posterior expected FDR of the gene rankings obtained by each model (Figure
9). The match between these quantities for IWAE and χ hints that they constitute sturdy approaches
for differential expression tasks, while the traditional VAE fails to estimate FDR reliably.
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Figure 9: Posterior expected FDR (blue) and ground-truth FDR (red) for the decision rule that selects
the genes with the highest DE probability.
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