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Abstract

Feature importance ranking has become a powerful tool for explainable AI. How-
ever, its nature of combinatorial optimization poses a great challenge for deep
learning. In this paper, we propose a novel dual-net architecture consisting of
operator and selector for discovery of an optimal feature subset of a fixed size
and ranking the importance of those features in the optimal subset simultaneously.
During learning, the operator is trained for a supervised learning task via optimal
feature subset candidates generated by the selector that learns predicting the learn-
ing performance of the operator working on different optimal subset candidates.
We develop an alternate learning algorithm that trains two nets jointly and incorpo-
rates a stochastic local search procedure into learning to address the combinatorial
optimization challenge. In deployment, the selector generates an optimal feature
subset and ranks feature importance, while the operator makes predictions based
on the optimal subset for test data. A thorough evaluation on synthetic, benchmark
and real data sets suggests that our approach outperforms several state-of-the-art
feature importance ranking and supervised feature selection methods. (Our source
code is available: https://github.com/maksym33/FeatureImportanceDL)

1 Introduction

In machine learning, feature importance ranking (FIR) refers to a task that measures contributions
of individual input features (variables) to the performance of a supervised learning model. FIR
has become one of powerful tools in explainable/interpretable Al [1] to facilitate understanding of
decision-making by a learning system and discovery of key factors in a specific domain, e.g., in
medicine, what genes are likely main causes of a cancer [2].

Due to the existence of correlated/dependent and irrelevant features to targets in high-dimensional
real data, feature selection [3] is often employed to address the well-known curse of dimensionality
challenge and to improve the generalization of a learning system, where a subset of optimal features
is selected in terms of the pre-defined criteria to maximize the performance of a learning system.
Feature selection may be conducted at either population or instance level; the populationwise methods
would find out an optimal feature subset collectively for all the instances in a population, while the
instancewise ones tend to uncover a subset of salient features specific to a single instance. In practice,
FIR is always closely associated with feature selection by ranking the importance of those features in
an optimal subset and can also be used as a proxy for feature selection, e.g., [2, 4, 5].

Deep learning has turned out to be extremely powerful in intelligent system development but its
purported “black box” nature makes it extremely difficult to be applied to tasks demanding explain-
ability/interpretability. Recently, FIR for deep learning has become an active research area where
most works focus on instancewise FIR [6] and only few works exist for populationwise FIR/feature
selection, e.g., [7]. In a populationwise scenario, feature selection needs to find an optimum in
detecting any functional dependence between input data and targets, which is NP-hard in general [8].
High degree of nonlinearity in deep learning execrates this combinatorial optimization problem.
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In this paper, we address a populationwise FIR issue in deep learning: for a feature set, finding
an optimal feature subset of a fixed size that maximizes the performance of a deep neural network
and ranking the importance of all the features in this optimal subset simultaneously. To tackle
this problem, we propose a novel dual-net neural architecture, where an operator net works for a
supervised learning task via optimal subset candidates provided by a selector net that learns finding
the optimal feature subset and ranking feature importance via the learning performance feedback
of the operator. Two nets are jointly trained in an alternate manner. After learning, the selector net
is used to find an optimal feature subset and rank feature importance, while the operator net makes
predictions based on the optimal feature subset for test data. A thorough evaluation on synthetic,
benchmark and real datasets via a comparative study manifests that our approach leveraged by deep
learning outperforms several state-of-the-art FIR and supervised feature selection methods.

2 Related Work

In the context of deep learning, there exist three methods for FIR; i.e., regularization, greedy search
and averaged input gradient. The deep feature selection (DFS) [7] was proposed for FIR with the same
idea behind the regularized linear models [9, 10]. The DFS suffers from several issues, e.g. a high
computational burden in finding an optimal regularization hyper-parameters and vanishing gradient.
Moreover, the weight-shrinkage idea [9, 10] may not always work for complex dependence between
input features and targets since the use of shrunk weights as feature importance is theoretically
justifiable to linear models only. It seems straightforward to apply a greedy search method, e.g.,
forward subset selection (FS) [11], to deep learning for FIR. Obviously, this method inevitably incurs
extremely high computational cost and may end up with only a sub-optimal result. Finally, some
instancewise FIR methods have been converted into populationwise ones, e.g., the averaged input
gradient (AvGrad) [12] that uses the average of all the saliency maps extracted from individual
instances for FIR and global aggregation [13, 14, 15] that uses different aggregation mechanisms
to achieve the populationwise feature importance ranking. As local explanations are specific at the
instance level and often inconsistent with global explanations at the population level, the simple
accumulation of instancewise FIR results may not work on populationwise FIR. In contrast, our
method would overcome all the limitations stated above.

In machine learning, regularized linear models, e.g., LASSO [9], and random forest (RF) [16] are
two off-the-shelf FIR methods. Other strong FIR methods include the SVM-based RFE [2] and the
dependence-maximization based BAHSIC [4, 5]. In general, such methods may have the limited
learning capacity for complex tasks in comparison to deep learning, and may not always work
for complex dependence between input features and targets. On the other hand, according to the
definition in [4, 17], our FIR problem formulation can be treated a sub-problem of supervised feature
selection when the size of an optimal feature subset is pre-specified. To this end, our method is closely
related to several strong feature selection methods with the same setting, including those working
on mutual information criteria, e.g2., mRMR [18] and the kernel-based CCM [17] although such
methods do not consider FIR. Leveraged with deep learning, our approach is more effective than those
aforementioned FIR and supervised feature selection methods, as manifested in our experiments.

3 Method

3.1 Problem Formulation

Suppose D = {X, Y} is a dataset used for supervised learning. In this data set, (z,y) is a training
example, where x € X is a vector of d features and y € ) is its corresponding target. Letm € M
denote a d-dimensional binary mask vector of 0/1 elements, where ||m||g = s, s < d and |[M| = (i)
Thus, we can use such a mask vector to indicate a feature subset: {& ® m}zcx, where ® denotes
Hadamard product that yield a subset of s features for any instance £ € X. Assume that Q(z, m)
quantifies the instance-level performance of a learning system trained on D via a feature subset,
{Z ® m}4cx, the feature importance ranking (FIR) can then be formulated as follows:

(m*, Score(m*)) = argmax Z Q(z,m), (D
me reX

where m* is the indicator of an optimal feature subset discovered by an FIR algorithm and Score(m*)
quantifies the importance of all the selected features in this optimal subset.
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Figure 1: Our feature importance ranking model. (a) Dual-net architecture. (b) Parameter update.

Ideally, an FIR approach should be able to: 1) detect any functional dependence between input
features and targets; 2) rank the importance of all the selected features to reflect their contributions
to the learning performance; and 3) preserve the detected functional dependence and the feature
importance ranking in test data.

3.2 Model Description

To tackle the FIR problem stated in Eq.(1) effectively with three criteria described in Sect. 3.1, we
propose a deep learning model of dual nets, operator and selector, as shown in Fig. 1(a). The operator
net is employed to accomplish a supervised learning task, e.g., classification or regression, on a given
feature subset provided by the selector net, while the selector net is designated to learn finding out an
optimal feature subset based on the performance feedback of the operator net working on optimal
feature subset candidates during learning. Both the operator and the selector nets are trained jointly
in an alternate manner (c.f. Sect. 3.3) to reach a synergy for the FIR.

Technically, the operator is carried out with a deep neural network parameterized with 6, fo (6;z,m),
for a given task, e.g., multi-layer perceptron (MLP) or convolution neural network (CNN). This net is
trained on D based on different feature subsets to learn fo: X' x M — ). After learning (c.f. Sect.
3.3), the trained operator net, fo(6*;2,m*), is applied to the test data for prediction, where 6* is the
optimal parameters of the operator net and m* is generated by the trained selector net (c.f. Sect. 3.4).

In our method, the selector is implemented with an MLP parameterized with ¢, fs(p;m). As
defined in Eq.(1), a selected optimal feature subset should maximize the averaging performance of
the operator quantified by Q(z, m) for all z € X'. Thus, we want the selector net to learn predicting
the averaging performance of the operator net on different feature subsets; i.e., fg: M — R. After
being trained properly (c.f. Sect. 3.3), we can use an algorithm working on the trained selector net of
the optimal parameters ¢*, fs(¢*;m), to generate an optimal feature subset indicated by m* and
rank feature importance to achieve Score(m*) (c.f. Sect. 3.4).

3.3 Learning Algorithm

In essence, the FIR defined in Eq.(1) is a combinatorial optimization problem. According to the
no free lunch theory for optimization [19], no algorithm can perform better than a random strategy
in expectation in the setting of combinatorial optimization. Therefore, our learning algorithm is
developed by leveraging learning with a stochastic local search procedure enhanced by injecting
noise [20] on a small number of candidate feature subsets, M’ C M, to avoid the exhaustive search.

For a training data set, D = {X, )} = {(m,y)}zex vy’

example (z,y) € D into |M'| examples: {(z ® m,y)}meM,. Thus, the loss functions on M’
(changing during learning) for the operator and the selector nets are defined respectively as follows:

a mask subset, M’, converts each training

1
Lo(DMi0) = ——— > > lz@m,y9), (2a)
|M HD| meM’ (z,y)eD
Ls(M';¢) = ! Z (fs(so'm)—L Z l(x@m y-@))Q. (2b)
R ™) v
meM’ (z,y)eD




Here, [(z ® m,y; 0) is an instance-level cross-entropy/categorical cross-entropy loss for binary/mutli-
class classification or the mean square error (MSE) loss for regression. In Eq.(2b), we utilize the
loss of the operator net, I(xz ® m,y;#), to characterize its learning performance, Q(z,m), since
maximizing Q(x, m) is equivalent to minimizing I(z ® m,y; #). As described in Sect. 3.2, during
learning, the operator net relies on the selector net to provide an optimal subset of marks, M/,
indicating different optimal feature subset candidates, while the selector net requires the performance
feedback from the operator net, [(z @ m,y; 0) for all m € M’. Two nets in our learning model hence
have to be trained alternately. Below, we present the main learning steps in our learning algorithm of
two phases, while the pseudo code can be found from Sect. D in supplementary materials.

Phase I: Initial Operator Learning via Exploration. From the scratch, we start training the
operator net by using a small number of random feature subsets for several epochs until it can yield
the different performance on different feature subsets stably. Technically, in each epoch, we randomly

draw a subset of different masks, M/, from M; ie., M} = {m;lm; = Random(M, s)}‘li/l1 ‘,
where Random (M, s) is a function that randomly draws a d-dimensional mask of s one-elements
and d — s zero-elements from M. If § is trained by stochastic gradient decent (SGD), then it is
updated by 6" 2 0/ — VLo (D, M/;0)|g—e' where 7 is a learning rate. After F; epochs, we set
01 =0"(E1) andm ,,, = argming, ¢ v D=, 4y ep L& ® M, y;01) to be used at the beginning of

Phase II-A; i.e., t = 1 as shown in Fig. 1(b).

Phase II-A: Selector Learning via Operator’s Feedback. As illustrated in Fig. 1(b), the operator
provides training examples for the selector at step t: { (m, I%\ Y (zy)ep (@ @m,y; 6:)) }meM;.
By using the SGD with initializing ¢; randomly, the parameters in the selector net, ¢, are updated
by vii1 2 o — NV oLs(My;¢)|p=4p,. Then, we adopt an exploration-exploitation strategy to
generate a new mask subset, M}, for the operator learning at step ¢+ 1. Thus, M}, is di-
vided into two mutually exclusive subsets: Mj ; = Mj ;; U Mj,,,. Motivated by the role
of noise in stochastic local search [20], M, 41,1 1s generated via exploration to avoid overfitting:

t+1.1 = {milm; = Random(M, s)}if"“’l‘. Motivated by the input gradient idea [12], M}, ; »
is generated by exploitation of the selector net, fs(¢¢+1;m), as follows: a) Generation of an
optimal subset. Starting with d-dimensional my = (%, cee %), meaning that every feature has the
equal chance to be selected, we have 0,,, = W lm=m- As input features of the larger
gradients contribute more to the learning performance of the operator, we can find top s features
based on their gradients by (Mopt, Mopt) = argsort(dm,, s) where mgy, is the mask to indicate
top s features and M, is the mask for the remaining d — s features. To ensure the optimality of
My, We come up with a three-step validation procedure: i) Re-evaluate the contributions of top

s features by (mop, Mop) = argsort(dm,,,,s) where 6y, , = W%:mm; ii) Replace

a feature of negative gradient in m,,,; with the one of the largest gradient in m,,, if there exists;
iii) Further check the optimality via a function (my,,,, m},,;) = swap(mp¢, Mop:) that yields m;, ,,
by swapping between the feature of least gradient in m,,; and the one of the largest gradient in
Mpe. Repeat ()-(iii) until fs(pry1;Mopt) < fs(pey1;my,,). After going through the validation
procedure, m;1,op¢ is obtained for step ¢+ 1. b) Generation of optimal subset candidates via
perturbation. As the optimal subset m; 1 o,¢ might be a local optimum, we would further inject
noise to generate more optimal subset candidates by a perturbation function Perturb(m, sp). For
sp < s, Perturb(mope, sp) randomly flips s, different elements in m,p:/Mmqp: from 1/0 to 0/1 and
swaps between changed elements in m,,,; and m,p;. Applying Perturb(m,,,, s,) repeatedly leads

to multiple optimal subset candidates; ¢) Formation of optimal subset candidates. Assembling a)

My al-2
and b) leads to M}, | 5 = {Mypest} U {mp1 ope } U {milm; = Perturb(m i1 opt, sp)}Lzl”m‘ .

Here, we always include m j.4, the subset that leads to the best learning performance of the operator
net in the last step (step t), as the most important subset candidate in the current step (step t+1) in
order to make the operator learning progress steadily. Note that m; ;.5 may not be m; ;.

Phase II-B: Operator Learning via Optimal Subset Candidates from Selector. After complet-
ing the training of Phase II-A at step ¢ , the selector net provides the optimal subset candidates,

"Parameters are actually updated on a batch BB randomly drawn from D, hence % times in an epoch.



ty1 = Mj 11 UM;, ,, for the operator net, as illustrated in Fig. 1(b). At step ¢+1, the operator
net is thus trained based on M | with SGD: 0,11 £ 0, — VLo (D, M}, 1;0)|o=s,

As shown in Fig. 1, our alternate algorithm enables the operator and the selector nets to be trained
jointly in Phase II until a pre-specified stopping condition is satisfied.

3.4 Deployment

After the learning described in Sect. 3.3 is accomplished, we obtain the optimal parameters of the
operator and the selector nets, * and p*.

By using the trained selector net, fs(¢*;m), we find out an optimal feature subset with the same
procedure used in Phase II-A as follows: 1) starting withmg = (3, - - - , 3), calculate the gradient
§m9 = W lm=mo; 2) finding top s features by (m*,m*) = a_rgsprt(&no R Where.m*
indicates the optimal subset of top s features; and 3) going through the validation procedure described
in Phase II.A to ensure the optimality of m*. Thus, feature importance ranking on the final m* is

done by setting Score(m*) = W lm=m~ and sorting the input gradients of selected features.

During test, for a test instance, &, the trained operator net, fo(6*;2,m), can be used to make a
prediction, fo (6*; &, m™*), via & ® m*, which allows a supervised learning task to be done based on
only the optimal feature subset, m*, found out with our proposed approach.

4 Experiments

In this section, we evaluate our approach on synthetic, benchmark and real-world datasets where we
always use 5-fold cross-validation for evaluation and report the performance statistics, i.e., mean and
standard deviation estimated on 5 folds. We describe our main settings briefly in the main text, and
the details of all the experimental settings can be found from Sect. A in Supplementary Materials.

4.1 Synthetic Data

Our first evaluation employs 3 synthetic datasets in literature [17, 11] for feature selection regarding
regression and binary/multiclass classification as follows:

XOR as 4-way classification [17]. Group 8 corners of the cube, (vg,v1,v2) € {—1,+1}3, by the
tuples (vova, v1v2), leading to 4 sets of vectors paired with their negations {v(®), —v(¢)}. For a class c,
a point is generated from the mixture distribution: 2 [N (v(®),0.513) + N (—v(°), 0.513)]. Then, form a

10-D feature vector for each example by adding 7 standard noise features, (X3, --- , Xg) ~ N(0, I7).

Nonlinear regression [17]. Y = —2sin(2Xy) + max(X;,0) + X3 + exp(—X3) + ¢, where
(Xo,-+-,X9) ~ N(0,I1p) and € ~ N(0, 1), leading to a 10-D feature vector for each example.

Binary classification [11]. To generate examples, set Y = —1 when (Xy, -+, Xg) ~ N(0, I1o)

and Y = +1 when X through X3 are standard normal conditioned on 9 < Z?:o Xf < 16 and
(X4, ,X9) ~ N(0, I), resulting in a 10-D feature vector for each example.

For each dataset, we randomly generate 512 and 1024 examples, respectively, for training and test.
With our problem formulation described in Sect. 3.1, our experiment on synthetic data simulates
an application scenario that selects s out of d features where s is larger than the number of features
relevant to the target in a dataset. As there are up to 4 relevant features in the above 3 datasets, we
choose s = 5 in our experiment and compare with all the methods reviewed in Sect. 2, including DFS
[7], AvGrad [12], FS [11] based on MLP, LASSO [9], RF [16], RFE [2], BAHSIC [4, 5], mRMR [18]
and CCM [17]. According to a taxonomy [3], DFS, AvGrad, RF and ours are embedding methods,
FS is a wrapper method and all the others are filtering methods. For those filtering methods, we use
the exactly same kernel SVM/SVR described in those papers [2, 4, 18, 5, 17] and an MLP on LASSO
for classification/regression. While DFS, AvGrad, LASSO and RF work on FIR for all 10 features,
all other methods work with the same setting as ours by finding out top 5 features and FIR.

Fig. 2 shows the feature selection and FIR results yielded by different methods regarding top 5
features on 3 synthetic datasets where the FIR scores are normalized in each method and the equal
FIR score is set to all the features selected by those methods without considering FIR. It is observed
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Figure 2: 5-fold cross-validation results (mean=str) on synthetic datasets (s = 5,d = 10). (a) XOR
4-way classification. (b) Nonlinear regression. (c) Binary classification. * refers to a filtering method,
and blue/red colors indicate a feature selected in all 5 folds/fewer folds, respectively.

from Fig. 2 that our approach always finds out those relevant features in all 5 folds and does FIR
properly by assigning negative scores (gradients), meaning unimportant, to irrelevant features. For
the 4-way classification, DFS, RF, RFE, BAHSIC and CCM also find 3 relevant features in all 5 folds
but others fail as shown in Fig. 2(a) although mRMR and CCM cannot yield FIR scores. In terms
of accuracy, ours outperforms all other 9 methods despite the fact that DFS, AvGrad and RF work
directly on the full feature set. For the nonlinear regression, FS, RF, RFE and CCM also select 4
relevant features in all 5 folds but ours yields the least MSE as shown in Fig. 2(b). For the binary
classification, all the methods apart from LASSO find 4 relevant features in all 5 folds, as shown in
Fig. 2(c). For this dataset, those state-of-the-art filtering methods yield better accuracy than others
and the accuracy resulting from ours is slightly worse but comparable to those. In terms of FIR on all
relevant features, ours is entirely consistent with those yielded by RF but performs significantly better
than RF on 3 datasets. In comparison to the existing FIR methods for deep learning, ours always
outperforms DFS, AvGrad and FS on 3 datasets in terms of both FIR and learning performance.

4.2 Benchmark Data

We further evaluate our approach on several well-known benchmark datasets from two different
perspectives; i.e., explainability of FIR and learning performance on supervised feature selection.
Evaluation on more benchmark datasets can be seen from Sect. B in Supplementary Materials.

MNIST Dataset [21]. To demonstrate the explainability of FIR via visual inspection, we employ an
MNIST subset of hard-to-distinguish digits “3”” and “8” for binary classification. The information on
this subset is summarized in Table 1. For comparison, we also apply 3 embedding methods, DFS,



Table 1: Information on benchmark and real-world datasets used in our experiments.

| DataSet | MNIST [ glass | vowel [ TOX-171 | yale | Enhancer—Promoter
#Features 784 10 10 5784 1024 (32 x 32) 102
#Classes 2 6 11 4 15 3
#Training | 11,982 150 742 137 132 5,756
#Testing 1,984 64 248 34 33 2,878
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Figure 3: Feature importance maps yielded by different FIR methods. (a) DFS. (b) AvGrad. (c) RF.
(d-f) Ours and our map superimposed on the mean images of “3” and “8”, respectively, for clarity.

AvGrad and RF to this subset. To see the explainablity of FIR, we adopt the same full-connected
MLP instead of CNN in DFS, AvGrad and the operator net in ours (s = 85,d = 784). The setting
ensures that no other mechanisms like convolution/pooling layers can help a model automatically
extract salient features for FIR. As a result, the accuracies yielded by DFS, AvGrad, RF and ours on
the test data are 97.42 + 0.30%, 99.27 £ 0.04%, 98.84 + 0.03% and 99.31 + 0.08%, respectively,
where ours and DFS use 85 and 212 features, respectively, but AvGrad and RF need all 784 features.
For visual inspection, we normalize the FIR scores achieved by different methods to the same range
and illustrate typical feature importance maps produced by 4 methods in a fold in Fig. 3. It is
observed from Fig. 3(a),(b) that DFS and AvGrad, two FIR methods for deep learning, do not produce
explainable maps. In contrast, it is evident from Fig. 3(d-f) that ours yields a meaningful map where
those features (pixels) that distinguish between “3” and “8” images are vividly highlighted in terms
of their importance. Again, ours yields a map similar to that of RF (c.f. Fig. 3(c)) but outperforms
this off-the-shelf FIR method.

10 glass Lo vowel TOX-171 yale
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Figure 4: Classification accuracies (vertical axis) yielded by the supervised feature selection methods
and ours for different numbers of selected features (horizontal axis) on 4 benchmark datasets.

Feature Selection Benchmark. We further conduct the evaluation in feature selection. As our
approach has the same setting as used in the supervised feature selection methods, we compare ours
to those strong supervised feature selection methods, RFE, BAHSIC, mRMR and CCM, on four
benchmark datasets: glass [22], vowel [22], TOX-171 [23] and yale [24], as summarized in Table
1. For our model, we employ MLPs to implement the operator for glass, vowel and TOX-171 but a
CNN to carry out the operator for yale to demonstrate the flexibility of our dual-net architecture. By
following the setting used in [17], we employ kernel SVMs for classification on features selected
by 4 filtering methods. It is evident from Fig. 4 that ours substantially outperforms all others on
glass, vowel and yale with a large margin. Overall, ours yields results comparable to the strongest
performer, CCM, on T0X-171 where there are 5,700+ features but only 109 training examples for
parameter estimate in each of 5 folds, which is very challenging for deep learning.
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Figure 5: Accuracy and FIR scores yielded by different methods on GM 12878 Cell line (200 bp).

4.3 Real-world Data

We finally evaluate our approach on a real-world enhancer—promoter data, a challenging task that
classifies the function of DNA sequences into enhancer, promoter and background [25]. As listed
in Table 1, the data used in this experiment are sampled from annotated DNA regions of GM 12878
cell line (200 dp), the same as used in DFS [7], a feature selection method dedicated to this task.
For comparison, we also apply DFS as well as RF and RFE, 2 strongest FIR methods manifested in
our experiments, to this dataset. The same MLP architecture is used in implementing DFS and the
operator net in our model. Fig. 5 shows accuracies and the FIR scores of top s = 35 out of d = 102
features yielded by 4 different methods and those features colored in red correspond to the genes of
which functions are well known in medicine and genetics literature (see Table 2 in [7] for details). In
terms of accuracy, ours is comparable to DFS and slightly better than RF and RFE, where the test
accuracies of RFE and ours are based on 35 features but the accuracies of RF and DFS are achieved
with all 102 and 94 features selected by DFS via weight shrinkage, respectively. As seen in Fig. 5,
those top features ranked by DFS and ours, two deep learning methods, appear quite similar but
significantly different from those top features ranked by RF and RFE. The biological implication
resulting from the results shown in Fig. 5 is worth investigating further from a biological/medical
perspective. More results on this dataset can be found from Sect. C in Supplementary Materials.

Regarding our alternate learning algorithm, our empirical studies suggest that it generally converges
by reaching a local optimum (see Sects. B and C in Supplementary Materials for details).

5 Discussion

In general, our idea is motivated by RF [16] and the dropout regularization [26]; our exploration-
exploitation strategy (c.f. Sect. 3.3) allows for the simultaneous use of different feature subsets and
dropout of input “nodes” randomly during learning. As the joint use of multiple feature subsets in
learning leads to more training examples of fewer features randomly, our approach could provide an
alternative way to improve the generalization in deep learning when the limited training examples are
available even though FIR/feature selection is not of interest in such application scenarios.

Also, we want to make a connection between our proposed approach and evolutionary computation
in terms of feature selection [27]. In our approach, a single deep learning model, operator, works on
different feature masks simultaneously during learning to carry out the functionality of a population
of individual learning models in evolutionary computation. Instead of purely stochastic operations,
mutation and crossover, on individual learners in a population used in evolutionary computation, our
selector carried out by another single deep learning model uses a more efficient gradient-guided local
stochastic search strategy to reduce the search space for combinatorial optimization. In general, our
approach bears the spirit of evolution computation but addresses the combinatorial optimization issue



in an entirely distinct manner, which leads to a more effective yet efficient approach to populationwise
FIR and feature selection.

Our proposed approach is scalable to big data and easily makes use of any state-of-the-art deep
learning techniques to be our component models for populationwise FIR and feature selection.
In terms of computational complexity, however, our approach suffers from a high computational
burden in training due to use of the dual-net architecture involving two deep learning models and
the alternate learning procedure (see Sect. C in Supplementary Materials for details). Nevertheless,
the computational load issue in our approach could be addressed (at least alleviated) by the latest
development in deep learning, e.g., EfficientNet [28].

Our approach can be applied to the generic populationwise feature selection problem that needs to

find out an optimal feature subset from ZZ;} (‘Si) subsets for a feature set of d features. Instead
of a direct search of the entire subset space, we adopt a strategy that makes our model work in
parallel on different subset sizes, the same as used in the state-of-the-art supervised feature selection
methods, e.g., CCM [17]. To this end, however, our approach might have a higher computational
burden than those kernel-based methods in learning. Also, our approach is extensible to group-based
FIR and feature selection by introducing the group feature constraints to our stochastic local search
procedure (c.f. Sect. 3.3), which would overcome the limitation of linear models, e.g., group
LARS/LASSO [29], in capturing the complex functional dependency between group input features
and targets. Furthermore, our proposed dual-net architecture can also be extended to unsupervised
feature selection by carrying out the operator with an autoencoder-like learning model.

In conclusion, we propose a dual-net neural architecture along with an alternate learning algorithm
to enable deep learning to work effectively for FIR and feature selection. A thorough evaluation
manifests that our approach outperforms several state-of-the-art FIR and supervised feature selection
methods. In our ongoing work, we would extend our approach to instancewise FIR, group and
unsupervised feature selection scenarios and explore its potential in challenging real applications.

Broader Impact

This research makes contributions to machine learning models and algorithms in general and does not
involve any issues directly regarding ethical aspects and future societal consequences. In the future,
our approach presented in this paper might be applied in different domains, e.g., medicine and life
science, where ethical aspects and societal consequences might have to be considered.
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