
A Theoretical details
A.1 A note about the assumptions
Note about the assumptions In theorem 1, assumption 1 consists of three parts that can all be
validated on observed data: 1) that the gradient flow converges, 2) that the confounder value of
the surrogate matches the confounder value whose effect is of interest, and 3) that the surrogate
intervention lies in the support of the pre-outcome variables. Assumption 2 is required for expectations
and their gradients to exist and be finite. In theorem 2, assumption 1 requires a consistent estimator
of E[y | t], which can be provided with regression. Assumption 3 lists regularity conditions which
help control how the surrogate estimation error propagates to the effect error.

A.2 Proof of Theorem 1
We restate the theorem for completeness:

Theorem 1. Assume C-REDUNDANCY holds. Assuming the following:

1. Let t′(t∗,h(t∗2)) be the limiting solution to the gradient flow equation dt̃(s)
ds

= −∇t̃(h(t̃(s)) −

h(t∗2))
2, initialized at t̃(0) = t∗; i.e. t′(t∗,h(t∗2)) = lims→∞ t̃(s).

Further, let h(t′(t∗,h(t∗2))) = h(t
∗
2) and t′(t∗,h(t∗2)) ∈ supp(t).

2. f(t̃,h(t̃),η) and h(t̃) as functions of t̃,h(t̃) are continuous and differentiable and the derivatives
exist for all t̃,η. Let ∇t̃f(t̃,h(t̃),η) exist and be bounded and integrable w.r.t. the probability
measure corresponding to p(η), for all values of t̃ and h(t̃).

Then the conditional effect (and therefore the average effect) is identified:

φ(t∗,h(t∗2)) = φ (t′(t∗,h(t∗2)),h(t
′(t∗,h(t∗2)))) = E [y | t = t′(t∗,h(t∗2))] (10)

Proof. Recall definition of conditional effect φ(t̃,h(t̃2)) = Eηf(t̃,h(t̃2),η). Recall ∇t̃ is the
gradient with respect to the first argument of f, that is t̃. First, by assumption 2, E and ∇ commute,
under the dominated convergence theorem. Then, by C-REDUNDANCY

∇t̃φ(t̃,h(t∗))T∇t̃h(t̃) = ∇t̃Eηf(t̃,h(t∗),η)T∇t̃h(t̃) = Eη[∇t̃f(t̃,h(t∗),η)T∇t̃h(t̃)] = 0.

Now consider the gradient flow equation dt̃(s)/ds = −∇t̃(h(t̃) − h(t
∗
2))

2. We refer to the gradient
evaluated at t̃ as ∆t̃ = −∇t̃(h(t̃) − h(t∗2))

2 = −2(h(t̃) − h(t∗2))∇t̃h(t̃). We will express
φ(t′(t∗,h(t∗2)),h(t

∗
2)) as defined by the starting point φ(t∗,h(t∗2)) and the gradient flow equation.

Let the solution path to the gradient flow equation be C with t∗, t′(t∗,h(t∗2)) being the starting
and ending points respectively. By the Gradient Theorem [26], we have that φ(t∗,h(t∗2)) and
φ(t′(t∗,h(t∗2)),h(t

∗
2)) are related via the line integral over C:∫

C

∇t̃φ(t̃,h(t∗2)) · dt̃ = φ(t′(t∗,h(t∗2)),h(t
∗
2)) − φ(t̃,h(t∗2))

Let t̃(s) be a parametrization of solution path C by the scalar time s ∈ [0,∞). Now, to obtain the
value ofφ(t̃,h(t∗2)), we will compute the line integral over the vector field defined by∇t̃φ(t̃,h(t∗2)),
which exists by assumption 2 in theorem 1, evaluated along the path C defined by ∆t̃(s):

φ(t′(t∗,h(t∗2)),h(t
∗
2)) = φ(t

∗,h(t∗2)) +
∫
C

∇t̃φ(t̃,h(t∗2)) · dt̃

= φ(t∗,h(t∗2)) +
∫∞

0
∇t̃φ(t̃(s),h(t∗2))

T dt̃(s)

ds
ds

= φ(t∗,h(t∗2)) +
∫∞

0
∇t̃φ(t̃(s),h(t∗2))

T∆t̃(s) ds

= φ(t∗,h(t∗2))

+

∫∞
0

−2((h(t̃(s)) − h(t∗2)))∇t̃φ(t̃(s),h(t∗2))
T∇t̃h(t̃(s)) ds

= φ(t∗,h(t∗2)) + 0 {by C-REDUNDANCY}
(11)
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Finally, by assumption 1 in theorem 1, h(t′(t∗,h(t∗2))) = h(t
∗
2), and so

φ(t∗,h(t∗2)) = φ(t
′(t∗,h(t∗2)),h(t

∗
2)) = φ(t

′(t∗,h(t∗2)),h(t
′(t∗,h(t∗2)))) (12)

For clarity, the same equation, but using t′ and suppressing dependence on t∗,h(t∗2)):

φ(t∗,h(t∗2)) = φ(t
′,h(t∗2)) = φ(t

′,h(t′)) (13)

Under the causal model for EFC, the outcome y = f(t,h(t),η). Then, ∀t̃ ∈ supp(p(t)),
E[y | t = t̃] = Eη[f(t̃,h(t̃),η)] = φ(t̃,h(t̃)). (14)

Using that t′(t∗, t∗2) ∈ supp(p(t)) and eqs. (13) and (14), the conditional effect is identified
φ(t∗,h(t∗2)) = φ(t

′(t∗,h(t∗2)),h(t
′(t∗,h(t∗2))))

= E[y | t = t′(t∗,h(t∗2))]
(15)

Thus, the conditional effect, and consequently the average effect, are identified as E[y | t′(t∗,h(t∗2))]
and τ(t∗) = Eh(t)E[y | t′(t∗,h(t))] respectively.

Note about convergence of gradient flow Any ODE’s solution, if it exists and converges, con-
verges to an ω-limit set [27]. An ω-limit set is nonempty when the solution path lies entirely in a
closed and bounded set and can consist of limit cycles, equilibrium points, or neither [13, 27]. A
gradient flow equation dt̃(s)/ds = −∇h(t̃) (also called a gradient system) has the special property
that itsω-limit set only consists of critical points of h(t̃); critical points of h(t̃) are also equilibrium
points of the gradient flow equation [13]. Further, if ∇h(t̃) exists and is bounded and h(t̃) has
bounded sublevel sets ({t̃ : h(t̃) 6 c}), then the solution to the gradient flow equation will entirely
lie within a bounded set. This is because along the solution path, h(t̃(s)) always decreases meaning
that the solution will remain in any sublevel set it started in. Thus, if h(t̃) has bounded sublevel sets,
the solution of the gradient flow equation will converge only to critical points of h(t̃).

A.3 Estimation error in LODE

Theorem 2. Consider the conditional effect φ(t∗,h(t∗2)). Let t̂(t∗,h(t∗2)) be the estimate of the
surrogate intervention computed by LODE, computed via Euler integration of the gradient flow
dt̃(s)
ds

= −∇t̃(h(t̃(s)) − h(t
∗
2))

2, initialized at t̃(0) = t∗. Assume the true surrogate t′(t∗,h(t∗2))
exists and is the limiting solution to the gradient flow equation.

1. Let the finite sample estimator of E[y | t = t̃] be f̂(t̃). Let the error for all t̃ be bounded,
|f̂(t̃) − E[y | t = t̃]| 6 c(N), where N is the sample size and limN→∞ c(N) = 0.

2. Assume K Euler integrator steps were taken to find the surrogate estimate t̂(t∗,h(t∗2)),
each of size `. Let the maximum confounder mismatch be maxi6K(h(t̃i) − h(t∗2))

2 =M.

3. Let Lz,t̃ be the Lipschitz-constant of φ(t̃,h(t̃2)) as a function of h(t̃2), for fixed t̃.
Let Le be the Lipschitz-constant of E[y | t = t̃] = φ(t̃,h(t̃)) as a function of t̃.
Assume h has a gradient with bounded norm, ‖∇h(t̃)‖2 < Lh.
Assume f’s Hessian has bounded eigenvalues: ∀t̃, t̃2, ‖∇2

t̃φ(t̃,h(t̃2))‖2 6 σHφ.

The conditional effect estimate error, ξ(t∗,h(t∗2)) = |f̂(t̂) − φ(t∗,h(t∗2))|, is upper bounded by:

c(N) + min
(
Le‖t′ − t̂‖2, 2K`2

(
O(`) +MσHφL

2
h

)
+ Lz,t̂‖h(t̂) − h(t∗2)‖2

)
(16)

Proof. (of Theorem 2) Recall the definition of conditional effect : φ(t̃,h(t̃2)) = Eηf(t̃,h(t̃2),η).

LODE’s estimate of the conditional effect is f̂(t̂(t∗,h(t∗2))). We will suppress notation for dependence
on t∗,h(t∗2), and use t′ and t̂ to refer to the true surrogate intervention and the estimated surrogate
interventions respectively. Note f̂ is the estimate of the conditional expectation E[y | t = t̃], learned
from N samples. We first bound the error by splitting into two parts and bounding each separately:

|ξ(t∗,h(t∗2))| = |f̂(t̂) − φ(t∗,h(t∗2))|

6 |f̂(t̂) − φ(t̂,h(t̂))|+ |φ(t̂,h(t̂)) − φ(t∗,h(t∗2))|
6 c(N) + |φ(t̂,h(t̂)) − φ(t∗,h(t∗2))|
6 |φ(t̂,h(t̂)) − φ(t̂,h(t∗2))|+ |φ(t̂,h(t∗2)) − φ(t

∗,h(t∗2))|+ c(N)
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The first term is bounded via the Lipschitz-ness of φ as a function of h(t̃) with fixed first argument
t̃ = t̂.

|φ(t̂,h(t̂)) − φ(t̂,h(t∗2))| 6 Lz,t̂|h(t̂) − h(t
∗
2)|

We now bound the remaining term. Recall that LODE’s computation of the surrogate intervention
involved K gradient steps, each of size `. We work with a constant step-size but the analysis can
be generalized to a non-uniform step size. Indexing steps with i, let di = h(t̃i) − h(t

∗
2) be the

confounder mismatch error at the ith iterate. Then note that t̂ = t∗ − `
∑K−1
i=0 2di∇t̃h(t̃i). We can

use this to bound the error φ(t̂,h(t∗2)) − φ(t
∗,h(t∗2)). With t̃K = t̂ and t̃0 = t∗, we proceed by

expressing the error as a telescoping sum and using the Taylor expansion for φ(t̃,h(t∗2)) in terms of
the the first argument t̃.

φ(t̂,h(t∗2)) − φ(t
∗,h(t∗2)) =

K−1∑
i=0

φ(t̃i+1,h(t∗2)) − φ(t̃i,h(t
∗
2)) (17)

=

K−1∑
i=0

∇t̃φ(t̃i,h(t∗2))
>(t̃i+1 − t̃i) (18)

+
1
2
(t̃i+1 − t̃i)

>∇2
t̃φ(t̃i,h(t

∗
2))(t̃i+1 − t̃i) + O(‖t̃i+1 − t̃i‖3

2) (19)

=

K−1∑
i=0

2`di∇t̃φ(t̃i,h(t∗2))
>∇t̃h(t̃i) + 2(`di)2∇t̃h(t̃i)

>∇2
t̃φ(t̃i,h(t

∗
2))∇t̃h(t̃i) + O(`3)

(20)

=

K−1∑
i=0

0 + 2(`di)2∇t̃h(t̃i)
>∇2

t̃φ(t̃i,h(t
∗
2))∇t̃h(t̃i) + O(`3) (21)

= O(K`3) +

K−1∑
i=0

2(`di)2∇t̃h(t̃i)
>∇2

t̃φ(t̃i,h(t
∗
2))∇t̃h(t̃i) (22)

6 O(K`3) +

K−1∑
i=0

2(`(h(t̃i) − h(t∗2)))
2
∣∣∇t̃h(t̃i)

>∇2
t̃φ(t̃i,h(t

∗
2))∇t̃h(t̃i)

∣∣ (23)

6 O(K`3) +

K−1∑
i=0

2`2M
∣∣∇t̃h(t̃i)

>∇2
t̃φ(t̃i,h(t

∗
2))∇t̃h(t̃i)

∣∣ (24)

6 O(K`3) +

K−1∑
i=0

2`2MσHφ‖∇t̃h(t̃i)‖2
2 (25)

6 O(K`3) +

K−1∑
i=0

2`2MσHφL2
h (26)

= 2K`2
(
O(`) +MσHφL

2
h

)
, (27)

where the inequalities follow by the maximum value of (h(t̃i) − h(t∗2))
2, bounded eigenvalues of

the Hessian of φ and the Lipschitz-ness of h(t̃).

Another way we bound the error is via the Lipschitz constant of the conditional expectation as a
function of t̃. Recall this is Le. An alternate bound on the error is as follows:

|φ(t̂,h(t̂)) − φ(t∗,h(t∗2))| = |φ(t̂,h(t̂)) − φ(t′,h(t′))| 6Le‖t′ − t̂‖2

The bound follows:

|ξ(t̃,h(t∗2))| 6 c(N) + min
(
Le‖t′ − t̂‖2, 2K`2

(
O(`) +MσHφL

2
h

)
+ Lz,t̂‖h(t̂) − h(t∗2)‖2

)
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A.3.1 A note on linear confounder functions and LODE

In the proof above, the error in Euler integration accumulates due to terms like this one:
∇>t̃ h(t̃)∇2

t̃f(t̃,h(t∗),η)∇t̃h(t̃). For a linear confounder function that satisfies∇t̃h(t̃) = β, such
terms can be expressed as β>∇t̃(∇t̃f(t̃,h(t∗),η)>β) = β>∇t̃(0) = 0 under C-REDUNDANCY.
Thus, such error does not accumulate even with large step sizes.

Further, note that the gradient flow equation in LODE for the causal model A in section 4 is a
linear ODE whose solution has a closed form expression and one can estimate the surrogate without
numerical integration [27].

A.4 Proof of sufficiency of Effect Connectivity
Theorem 3. Under Effect Connectivity, eq. (9), any surrogate intervention t′(t∗,h(t∗2)) ∈ supp(t).

Proof. Recall φ(t̃,h(t̃)) = Eηf(t̃,h(t̃),η). We have ∀t∗ ∈ supp(p(t)):

p(h(t) = h(t∗2)) > 0 =⇒ p(φ(t,h(t)) = φ(t∗,h(t∗2)) |h(t) = h(t
∗
2)) > 0.

This implies ∃t′ ∈ supp(t),φ(t′,h(t∗2)) = φ(t
∗,h(t∗2)), s.t. h(t′) = h(t∗2).

Then, φ(t∗,h(t∗2)) = φ(t
′,h(t∗2)) = φ(t

′,h(t′)) = E[y | t = t′].

A.5 Necessity of Effect Connectivity for Nonparametric effect estimation in EFC

Theorem 4. Effect Connectivity is necessary for nonparametric effect estimation in EFC.

Proof. (Proof of Theorem 4) Let the outcome be y = f(t,h(t)). Recall the joint distribution
p(t,y) and let h(t) be the confounder. Let Effect Connectivity be violated, i.e. there exists a
non-measure-zero subset B ∈ supp(t)× supp(h(t)) such that 6:

∀ t̃,h(t̃2) ∈ B, p(f(t,h(t)) = f(t̃,h(t̃2)) |h(t) = h(t̃2)) = 0.

Now, we construct a new outcome y2 = f2(t,h(t)) and show the conditional effects for this new
outcome are different from the one defined by f on ∀(t̃,h(t̃2)) ∈ B. Let

f2(t̃,h(t̃2)) = f(t̃,h(t̃2)) + 10 ∗ 1((t̃,h(t̃2)) ∈ B)|.

We have f2(t̃,h(t̃)) = f(t̃,h(t̃)) ∀t̃ ∈ supp(t) , as the additional term in f2 is only present for
(t̃,h(t̃2)) ∈ B; this follows from the fact that ∀t̃ ∈ supp(t), (t̃,h(t̃)) 6∈ B as

p[f(t,h(t)) = f(t̃,h(t̃)) |h(t) = h(t̃)] = p[f(t,h(t)) = f(t̃,h(t̃))] > 0.

Thus, p(y, t) =d p(y2, t) are equal in distribution since B ∩ supp(t,h(t)) = ∅. This means that the
conditional effects are different for the outcomes y,y2 for all (t̃,h(t̃2)) ∈ B:

E[y |do(t = t̃),h(t) = h(t̃2)] 6= E[y2 |do(t = t̃),h(t) = h(t̃2)]

Therefore, for causal models that violates Effect Connectivity, there exist observationally equivalent
causal models with different causal effects. Thus, nonparametric effect estimation is impossible.
Thus, Effect Connectivity is required for EFC.

A.6 Algorithmic details
We give in algorithm 1 pseudocode for LODE.

Extensions of LODE Consider that we have access to m(h(t)) for some bijective dif-
ferentiable function m(·), instead of h(t). The orthogonality in C-REDUNDANCY holds
∇t̃f(t̃,h(t̃2),η)T∇t̃m(h(t̃)) = m ′(h(t̃))∇t̃f(t̃,h(t̃2),η)T∇t̃h(t̃) = 0. Then, using m(h(t̃)) to
compute the surrogate t′(t∗,h(t∗2)), LODE would estimate valid effects. Similarly, LODE can estimate
the effect on any differentiable transformation of the outcomem(y), because ∇t̃m(yt̃)

T∇t̃h(t̃) =
m ′(yt̃)∇t̃f(t̃,h(t̃2),η)T∇t̃h(t̃) = 0 holds.

6Non-zero w.r.t. the product measure over supp(t)× supp(h(t)) due to p.
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Algorithm 1: LODE for do(t = t∗)

Input: Functional confounder h(t); tolerance ε
Output: Conditional effects of t∗,h(t∗2)

1 Regress y on t and compute f̂() := arg minu∈F Ey,t(y− u(t))2.
2 To estimate effects of t∗,h(t∗2), compute the surrogate intervention t′(t∗,h(t∗2)) by Euler

integrating the gradient flow equation, initialized at t̃ = t∗, until (h(t̃s) − h(t∗2))
2 < ε.

dt̃(s)

ds
= ∇t̃(h(t̃s) − h(t

∗
2))

2,

3 Return f̂(t′(t∗,h(t∗2)));

B Experimental Details
B.1 Functional confounders in GWAS

Here, we show how h(t) = At and A reflect the traditional PCA based adjustment in GWAS. Recall
population structure acts as a confounder in GWAS. Price et al. [19] demonstrated that using the
principal components of the normalized genetic relationships matrix adjusts for confounding due to
population structure in GWAS. Let the genotype matrix beGwith people as rows and SNPs as columns,
such that each element is one of 0, 1/2, 1, where 1/2 and 1 refer to one and two copies of the allele
respectively at the position of the SNP. With ps as the allele frequency at SNP s [28],Φ is the genetic
relationship matrix whose elements are defined as Φi,j = 1

S

∑S
s=1

(Gi,s−ps)(Gj,s−ps)/ps(1−ps).
Then, Price et al. [19] compute the top K (10 suggested) principal components ofΦ to use as the axes
of variation due to the population structure. The eigenvectors ofΦ are the left eigenvectors of Ĝ such
thatΦ = ĜĜT which capture independent axes of variation of individuals.

Price et al. [19] exploit the idea that if a SNP aligns with some of the axes of variation, this is due to the
population structure. These axes of variation are the top K eigenvectors U of φ = ĜĜT ≈ UΛU>,
where U ∈ RN×K, Φ ∈ RN×N and Λ ∈ RK×K. Here, U are also the left singular vectors
of Ĝ ≈ UΣVT where Σ ∈ RK×K is diagonal, and V ∈ RS×K. We use ≈ to denote that the
chosen K eigenvectors explain the variation due to population structure; what remains are random
mutations.

Let the sth SNP be Ĝ·,s ∈ RN, which is a column in Ĝ. In Price et al. [19], population structure
in the sth SNP is captured in Ĝ>·,sU. In words, projecting the SNP Ĝ·,s onto the axes of variation in
individuals gives the population structure between sth SNP and the outcome. This projection Ĝ>·,sU is
a row of Ĝ>U ∈ RS×K. In turn, Ĝ>U ∈ RS×K is the population structure in all SNPs. Projecting
this population structure onto the genotype of an individual gives the confounding due to population
structure amongst the SNPs present in the genotype. With Gj,· ∈ {0, 1/2, 1}S as the genotype for
an individual j, this projection is

(
(Ĝ>U)>Gj,·

)
. However, Ĝ ≈ UΣVT implies that Ĝ>U ≈ VΣ.

Reflecting this, h(t) = ΣVT t is the functional confounder for an individual t.
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B.2 Expanded results
In table 2, we list the 13 SNPs recovered by LODE, that have been previously reported as relevant
to Celiac disease. In fig. 7, we plot the true positive and false negative rate amongst SNPs deemed
relevant by LODE. The ground truth here are the SNPs reported associated with celiac disease in prior
literature.

SNP EFFECT LASSO COEF.

rs3748816 0.12 0.20
rs10903122 0.10 0.17
rs2816316 0.11 0.20
rs13151961 0.17 0.32
rs2237236 0.17 0.00
rs12928822 0.14 0.29
rs2187668 −0.70 −2.37
rs2327832 −0.12 −0.20
rs1738074 −0.16 −0.23
rs11221332 −0.15 −0.24

rs653178 −0.13 −0.21
rs4899260 −0.12 −0.19
rs17810546 −0.12 −0.20

Table 2: Full list of SNPs previously reported
as relevant that were recovered by LODE, and
their estimated effects and Lasso coefficients
for SNPs. The effect threshold here is 0.1.

Figure 7: True positive vs. False nega-
tive rate as we vary the threshold on average
effects, that determines which SNPs LODE
deems relevant to the outcome.
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