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S1 Additional Experimental Results and Implementation Details

S1.1 Comparison with Other Generalization Metrics for Deep Networks

In this section, we empirically analyze the proposed metric with respect to existing generalization
metrics, developed for neural networks. Specifically, we consider the ‘flat minima’ argument of
Jastrzevski et al. [JKA+17] and plot the generalization error vs η/B which is the ratio of step size
to the batch size. As a second comparison, we use heavy-tailed random matrix theory based metric
of Martin and Mahoney [MM19]. We plot the generalization error with respect to each metric in
Figure S1. As the results suggest, our metric is the one which correlates best with the empirically

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



observed generalization error. The metric proposed by Martin and Mahoney [MM19] fails for the
low number of layers and the resulting behavior is not monotonic. Similarly, η/B captures the
relationship for very deep networks (for D = 16&19), however, it fails for other settings.

We also note that the norm-based capacity metrics [NTS15] typically increase with the increasing
dimension d, we refer to [NBMS17] for details.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Blumenthal-Getoor Index ( S)

20

25

30

35

Tr
ai

nA
cc

 - 
Te

st
Ac

c 
(%

)

D=4
D=6
D=7
D=8

D=11
D=16
D=19

0 2 4 6 8 10
0

5

10

15

20

25

30

Tr
ai

nA
cc

 - 
Te

st
Ac

c 
(%

)

D=4
D=6
D=7
D=8

D=11
D=16
D=19

10 7 10 6 10 5 10 4

/B

20

25

30

35

Tr
ai

nA
cc

 - 
Te

st
Ac

c 
(%

)

D=4
D=6
D=7
D=8

D=11
D=16
D=19

(a) Hausdorff Dimension [Ours] (c) α [MM19] (b) η/B [JKA+17]

Figure S1: Empirical comparison to other capacity metrics.

S1.2 Synthetic Experiments

We consider a simple synthetic logistic regression problem, where the data distribution is a Gaussian
mixture model with two components. Each data point zi ≡ (xi, yi) ∈ Z = Rd × {−1, 1} is
generated by simulating the model: yi ∼ Bernoulli(1/2) and xi|yi ∼ N (myi , 100Id), where the
means are drawn from a Gaussian: m−1,m1 ∼ N (0, 25Id). The loss function ` is the logistic loss as
`(w, z) = log(1 + exp(−yx>w)).
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Figure S2: Results on synthetic data.

As for the algorithm, we consider a data-independent multivariate stable process: [A(S)]t = Lαt
for any S ∈ Zn, where Lα1 is distributed with an elliptically contoured α-stable distribution with
α ∈ (0, 2] (see Section 2): when α = 2, Lαt is just a Brownian motion, as α gets smaller, the process
becomes heavier-tailed. By Theorem 4.2 of [BG60],A has the uniform Hausdorff dimension property
with dH = α independently from d when d ≥ 2.

We set d = 10 and generate points to represent the whole population, i.e., {zi}ntot
i=1 with ntot = 100K.

Then, for different values of α, we simulate A for t ∈ [0, 1], by using a small step-size η = 0.001
(the total number of iterations is hence 1/η). We finally draw 20 random sets S with n elements from
this population, and we monitor the maximum difference supw∈WS

|R̂(w, S)−R(w)| for different
values of n. We repeat the whole procedure 20 times and report the average values in Figure S2. We
observe that the results support Theorems 1 and 2: for every n, the generalization error decreases
with decreasing α, hence illustrates the role of the Hausdorff dimension.

S1.3 Implementation Details for the Deep Neural Network Experiments

In this section, we provide the additional details which are skipped in the main text for the sake of
space. We use the following VGG-style neural networks with various number of layers as

• VGG4: Conv(512) - ReLU - MaxPool - Linear
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• VGG6: Conv(256) - ReLU - MaxPool - Conv(512) - ReLU - MaxPool - Conv(512) - ReLU
- MaxPool - Linear
• VGG7: Conv(128) - ReLU - MaxPool - Conv(256) - ReLU - MaxPool - Conv(512) - ReLU

- MaxPool - Conv(512) - ReLU - MaxPool - Linear
• VGG8: Conv(64) - ReLU - MaxPool - Conv(128) - ReLU - MaxPool - Conv(256) - ReLU -

MaxPool - Conv(512) - ReLU - MaxPool - Conv(512) - ReLU - MaxPool - Linear
• VGG11: Conv(64) - ReLU - MaxPool - Conv(128) - ReLU - MaxPool - Conv(256) - ReLU

- Conv(256) - ReLU - MaxPool - Conv(512) - ReLU - Conv(512) - ReLU - MaxPool -
Conv(512) - ReLU - Conv(512) - ReLU - MaxPool - Linear

• VGG16: Conv(64) - ReLU - Conv(64) - ReLU - MaxPool - Conv(128) - ReLU - Conv(128)
- ReLU - MaxPool - Conv(256) - ReLU - Conv(256) - ReLU - Conv(256) - ReLU - MaxPool
- Conv(512) - ReLU - Conv(512) - ReLU - Conv(512) - ReLU - MaxPool - Conv(512) -
ReLU - Conv(512) - ReLU - Conv(512) - ReLU - MaxPool - Linear

• VGG19: Conv(64) - ReLU - Conv(64) - ReLU - MaxPool - Conv(128) - ReLU - Conv(128) -
ReLU - MaxPool - Conv(256) - ReLU - Conv(256) - ReLU - Conv(256) - ReLU - Conv(256)
- ReLU - MaxPool - Conv(512) - ReLU - Conv(512) - ReLU - Conv(512) - ReLU - Conv(512)
- ReLU - MaxPool - Conv(512) - ReLU - Conv(512) - ReLU - Conv(512) - ReLU - Conv(512)
- ReLU - MaxPool - Linear

where all convolutions are noted with the number of filters in the paranthesis. Moreover, we use the fol-
lowing hyperparameter ranges for step size of SGD: {1e−2, 1e−3, 3e−3, 1e−4, 3e−4, 1e−5, 3e−5}
with the batch sizes {32, 64, 128, 256}. All networks are learned with cross entropy loss and ReLU
activations, and no additional technique like batch normalization or dropout is used. We will also
release the full source code of the experiments.

S2 Representing Optimization Algorithms as Feller Processes

Thanks to the generality of the Feller processes, we can represent multiple popular stochastic
optimization algorithms as a Feller process, in addition to SGD. For instance, let us consider the
following SDE:

dWt = −Σ0(Wt)∇f(Wt)dt+ Σ1(Wt)dBt + Σ2(Wt)dL
α(Wt)
t , (S1)

where Σ0, Σ1, Σ2 are d× d matrix-valued functions and the tail-index α(·) of Lα
t (·) is also allowed

to change depending on value of the state Wt. We can verify that this SDE corresponds to a Feller
process with b(w) = −Σ0(w)∇f(w), Σ(w) = 2Σ1(w), and an appropriate choice of ν [HDS18]. As
we discussed in the main document, we the choice Σ0 = Id can represent SGD with state-dependent
Gaussian and/or heavy-tailed noise. Besides, we can choose an appropriate Σ0 in order to be able
to represent optimization algorithms that use second-order geometric information, such as natural
gradient [Ama98] or stochastic Newton [EM15] algorithms. On the other hand, by using the SDEs
proposed in [GGZ18, ŞZTG20, LPH+17, OKL19, BB18], we can further represent momentum-based
algorithms such as SGD with momentum [Pol64] as a Feller process.

S3 Decomposable Feller Processes and their Hausdorff Dimension

In our study, we focus on decomposable Feller processes, introduced in [Sch98]. Let us consider a
Feller process expressed by its symbol Ψ. We call the process defined by Ψ decomposable at w0, if
there exists a point w0 ∈ Rd such that the symbol can be decomposed as

Ψ(w, ξ) = ψ(ξ) + Ψ̃(w, ξ), (S2)

where ψ(ξ) := Ψ(w0, ξ) is the sub-symbol and Ψ̃(w, ξ) = Ψ(w, ξ)−Ψ(w0, ξ) is the reminder term.
Let j ∈ Nd0 denote a multi-index1. We assume that there exist functions a,Φj : Rd 7→ R such that the
following holds:

1We use the multi-index convention j = (j1, . . . , jd) with each ji ∈ N0, and we use the notation
∂j
wΨ̃(w, ξ) = ∂j1 Ψ̃(w,ξ)

∂w
j1
1

· · · ∂
jd Ψ̃(w,ξ)

∂w
jd
d

, and |j| =
∑d
i=1 ji.
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• Ψ(x, 0) ≡ 0

• ‖Φ0‖∞ <∞, and Φj ∈ L1
(
Rd
)

for all |j| ≤ d+ 1.

•
∣∣∣∂jwΨ̃(w, ξ)

∣∣∣ ≤ Φj(w)
(
1 + a2(ξ)

)
, for all w, ξ ∈ Rd and |j| ≤ d+ 1.

• a2(ξ) ≥ κ0‖ξ‖r0 , for ‖ξ‖ large, r0 ∈ (0, 2], and κ0 > 0.

The Hausdorff dimension of the image of a decomposable Feller process is bounded, due to the
following result.
Theorem S1 ([Sch98] Theorem 4). Let Ψ(x, ξ) generate a Feller process, denoted by {Wt}t≥0.
Assume that Ψ is decomposable at w0 with the sub-symbol ψ. Then, for any given T ∈ R+, we have

dimH W([0, T ]) ≤ β, Px-almost surely, (S3)

where W([0, T ]) := {w : w = Wt, for some t ∈ [0, T ]} is the image of the process, Px denotes the
law of the process {Wt}t≥0 with initial value x, and β is the upper Blumenthal-Getoor index of the
Lévy process with the characteristic exponent ψ(ξ), given as follows:

β := inf

{
λ ≥ 0 : lim‖ξ‖→∞

|ψ(ξ)|
‖ξ‖λ

= 0

}
. (S4)

S4 Improving the Convergence Rate via Chaining

In this section, we present additional theoretical results. We improve the bound in Theorem 1, in the
sense that we replace the log n factor any increasing function.
Theorem S2. Assume that H1 to 4 hold, and Z is countable. Then, for any function ξ : R → R
satisfying limx→∞ ρ(x) =∞, and for a sufficiently large n, we have

sup
w∈WS

(
R̂(w, S)−R(w)

)
≤ cLBdiam(W)

√
dHρ(n)

n
+

log(1/γ)

n
,

with probability at least 1− γ over S ∼ µ⊗nz and U ∼ µu, where c is an absolute constant.

This result implies that the log n dependency of Theorem 1 can be replaced with any increasing
function ρ, at the expense of having the constant diam(W) and having L instead of logL in the
bound.

S5 Additional Technical Background

In this section, we will define the notions that will be used in our proofs. For the sake of completeness
we also provide the main theoretical results that will be used in our proofs.

S5.1 The Minkowski Dimension

In our proofs, in addition to the Hausdorff dimension, we also make use of another notion of
dimension, referred to as the Minkowski dimension (also known as the box-counting dimension
[Fal04]), which is defined as follows.
Definition S1. Let G ⊂ Rd be a set and let Nδ(G) be a collection of sets that contains either one of
the following:

• The smallest number of sets of diameter at most δ which cover G

• The smallest number of closed balls of diameter at most δ which cover G

• The smallest number of cubes of side at most δ which cover G

• The number of δ-mesh cubes that intersect G

• The largest number of disjoint balls of radius δ, whose centers are in G.
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Then the lower- and upper-Minkowski dimensions of G are respectively defined as follows:

dimMG := lim infδ→0
log |Nδ(G)|
− log δ

, dimMG := lim supδ→0

log |Nδ(G)|
− log δ

. (S5)

In case the dimMG = dimMG, the Minkowski dimension dimM(G) is their common value.

We always have 0 ≤ dimHG ≤ dimMG ≤ dimMG ≤ d where the inequalities can be strict [Fal04].

It is possible to construct examples where the Hausdorff and Minkowski dimensions are different from
each other. However, in many interesting cases, these two dimensions often match each other [Fal04].
In this paper, we are interested in such a case, i.e. the case when the Hausdorff and Minkowski
dimensions match. The following result identifies the conditions for which the two dimensions match
each other, which form the basis of H4:
Theorem S3 ([Mat99] Theorem 5.7). Let A be a non-empty bounded subset of Rd. Suppose there
is a Borel measure µ on Rd and there are positive numbers a, b, r0 and s such that 0 < µ(A) ≤
µ
(
Rd
)
<∞ and

0 < ars ≤ µ(Bd(x, r)) ≤ brs <∞ for x ∈ A, 0 < r ≤ r0 (S6)

Then dimHA = dimMA = dimMA = s.

S5.2 Egoroff’s Theorem

Egoroff’s theorem is an important result in measure theory and establishes a condition for measurable
functions to be uniformly continuous in an almost full-measure set.
Theorem S4 (Egoroff’s Theorem [Bog07] Theorem 2.2.1). Let (X,A, µ) be a space with a finite
nonnegative measure µ and let µ-measurable functions fn be such that µ-almost everywhere there
is a finite limit f(x) := limn→∞ fn(x). Then, for every ε > 0, there exists a set Xε ∈ A such that
µ (X\Xε) < ε and the functions fn converge to f uniformly on Xε.

S6 Postponed Proofs

S6.1 Proof of Proposition 1

Proof. Let ΨS denote the symbol of the process W(S). Then, the desired result can obtained by
directly applying Theorem S1 on each ΨS .

S6.2 Proof of Theorem 1

We first prove the following more general result which relies on dimMW .
Lemma S1. Assume that ` is bounded by B and L-Lipschitz continuous in w. LetW ⊂ Rd be a set
with finite diameter. Then, for n sufficiently large, we have

sup
w∈W

|R̂(w, S)−R(w)| ≤ B

√
2dimMW log(nL2)

n
+

log(1/γ)

n
, (S7)

with probability at least 1− γ over S ∼ µ⊗nz .

Proof. As ` is L-Lipschitz, so areR and R̂. By using the notation R̂n(w) := R̂(w, S), and by the
triangle inequality, for any w′ ∈ W we have:

|R̂n(w)−R(w)| =
∣∣∣R̂n (w′)−R (w′) + R̂n(w)− R̂n (w′)−R(w) +R (w′)

∣∣∣ (S8)

≤
∣∣∣R̂n (w′)−R (w′)

∣∣∣+ 2L ‖w − w′‖ . (S9)

Now sinceW has finite diameter, let us consider a finite δ-cover ofW by balls and collect the center
of each ball in the set Nδ := Nδ(W). Then, for each w ∈ W , there exists a w′ ∈ Nδ, such that
‖w − w′‖ ≤ δ. By choosing this w′ in the above inequality, we obtain:

|R̂n(w)−R(w)| ≤
∣∣∣R̂n (w′)−R (w′)

∣∣∣+ 2Lδ. (S10)

5



Taking the supremum of both sides of the above equation yields:

sup
w∈W

|R̂n(w)−R(w)| ≤ max
w∈Nδ

∣∣∣R̂n(w)−R(w)
∣∣∣+ 2Lδ. (S11)

Using the union bound over Nδ , we obtain

PS

(
max
w∈Nδ

|R̂n(w)−R(w)| ≥ ε

)
=PS

( ⋃
w∈Nδ

{
|R̂n(w)−R(w)| ≥ ε

})
(S12)

≤
∑
w∈Nδ

PS

(
|R̂n(w)−R(w)| ≥ ε

)
. (S13)

Further, for δ > 0, since |Nδ| has finitely many elements, we can invoke Hoeffding’s inequality for
each of the summands on the right hand side and obtain

PS

(
max
w∈Nδ

|R̂n(w)−R(w)| ≥ ε

)
≤ 2|Nδ| exp

{
−2nε2

B2

}
=: γ. (S14)

Notice that Nδ is a random set, and choosing ε based on |Nδ|, one can obtain a deterministic γ.
Therefore, we can plug this back in (S11) and obtain that, with probability at least 1− γ

sup
w∈W

|R̂n(w)−R(w)| ≤ B
√

log(2|Nδ|)
2n

+
log(1/γ)

2n
+ 2Lδ. (S15)

Now sinceW ⊂ Rd, dimMW is finite. Then, for any sequence {δn}n∈N such that limn→∞ δn = 0,
we have, ∀ε > 0, ∃nε > 0 such that n ≥ nε implies

log(|Nδ|) ≤ (dimMW + ε) log(δ−1n ). (S16)

Choosing δn = 1/
√
nL2 and ε = dimMW , we have for ∀n ≥ ndimMW ,

log(2|Nδ|) ≤ log(2) + dimMW log(nL2) and 2Lδn =
2√
n
. (S17)

Therefore, we obtain with probability at least 1− γ

sup
w∈W

|R̂n(w)−R(w)| ≤B

√
log(2) + dimMW log(nL2)

2n
+

log(1/γ)

2n
+

2√
n
, (S18)

≤B

√
2dimMW log(nL2)

n
+

log(1/γ)

n
, (S19)

for sufficiently large n. This concludes the proof.

We now proceed to the proof of Theorem 1.

Proof of Theorem 1. By noticing Zn is countable (since Z is countable) and using the property that
dimH ∪i∈NAi = supi∈N dimHAi (cf. [Fal04], Section 3.2), we observe that

dimHW = dimH

⋃
S∈Zn

WS = sup
S∈Zn

dimHWS ≤ dH, (S20)

µu-almost surely. Define the event QR = {diam(W) ≤ R}. On the event QR, by Theorem S3, we
have that dimMW = dimMW = dimHW ≤ dH, µu-almost surely.

Now, we observe that

sup
w∈WS

|R̂(w, S)−R(w)| ≤ sup
w∈W

|R̂(w, S)−R(w)|. (S21)
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Hence, by defining ε = B

√
2(dimMW) log(nL2)

n + log(1/γ)
n , and using the independence of S and U ,

Lemma S1, and (S20), we write

PS,U

(
sup
w∈WS

|R̂(w, S)−R(w)| > B

√
2dH log(nL2)

n
+

log(1/γ)

n
;QR

)

≤ PS,U

(
sup
w∈W

|R̂(w, S)−R(w)| > B

√
2dH log(nL2)

n
+

log(1/γ)

n
;QR

)

= PS,U

(
sup
w∈W

|R̂(w, S)−R(w)| > B

√
2dH log(nL2)

n
+

log(1/γ)

n
; dimMW ≤ dH;QR

)

≤ PS,U

(
sup
w∈W

|R̂(w, S)−R(w)| > ε ;QR

)
.

Finally, we let R→∞ and use dominated convergence theorem to obtain

PS,U

(
sup
w∈WS

|R̂(w, S)−R(w)| > B

√
2dH log(nL2)

n
+

log(1/γ)

n

)

≤ PS,U

(
sup
w∈W

|R̂(w, S)−R(w)| > ε

)
≤ γ,

which concludes the proof.

S6.3 Proof of Theorem 2

Proof. Due to the hypotheses and Theorem S3, we have dimMWS = dimHWS := dH, µu-almost
surely. Note that in this setting, dH denotes the dimension of a specificWS and can depend on S.

It is easy to verify that the particular forms of the δ-covers and Nδ in H5 still yield the same
Minkowski dimension in (S5). Then by definition, we have for all S:

lim sup
δ→0

log |NS
δ |

log(1/δ)
= lim
δ→0

sup
r<δ

log |NS
r |

log(1/r)
= dH, (S22)

µu-almost surely. By applying Theorem S4 to the collection of random variables:

fr(S) := sup
r<δ

log |NS
r |

log(1/r)
, (S23)

for any δ′ > 0 we can find a subset Z ⊂ Zn, with probability at least 1 − δ′, such that on Z the
convergence is uniform. That is for any S ∈ Z and any ε′, there is a δ0 = δ(ε′) such that for all
δ < δ0 we have fδ(S) < dM + ε′.

As U and S are assumed to be independent, all the following statements hold µu-almost surely, hence
we drop the dependence on U to ease the notation. We proceed as in the proof of Lemma S1:

sup
w∈WS

|R̂n(w)−R(w)| ≤ max
w∈NSδ

∣∣∣R̂n(w)−R(w)
∣∣∣+ 2Lδ. (S24)

Using the union bound over NS
δ , we obtain

PS

(
max
w∈NSδ

|R̂n(w)−R(w)| ≥ ε

)
(S25)

≤
∑
w∈Nδ

PS

({
|R̂n(w)−R(w)| ≥ ε

}
∩ {w ∈ NS

δ }

)
. (S26)
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Continuing from above and applying Assumption 5 we get

PS

(
max
w∈NSδ

|R̂n(w)−R(w)| ≥ ε

)
(S27)

≤M
∑
w∈Nδ

PS
(
w ∈ NS

δ

)
× PS

(
|R̂n(w)−R(w)| ≥ ε

)
(S28)

≤M
∑
w∈Nδ

[
PS
(
Z ∩

{
w ∈ NS

δ

})
+ δ′

]
× PS

(
|R̂n(w)−R(w)| ≥ ε

)
(S29)

and applying Hoeffding’s inequality for each of the summands on the right hand side and obtain

= 2M exp

{
−2nε2

B2

} ∑
w∈Nδ

(
ES
[
1{S ∈ Z}1{w ∈ NS

δ }
]

+ δ′
)

(S30)

= 2M exp

{
−2nε2

B2

}(
ES
[
1{S ∈ Z}|NS

δ |
]

+ |Nδ|δ′
)
, (S31)

where 1 denotes the indicator function.

At this point, using Theorem S4 as explained above, for any ε′ there exists δ0 = δ0(ε′), such that
for any δ < δ0 and S ∈ Z we have |Nδ(S)| ≤ (1/δ)dH+ε′ . In addition we know that |Nδ| ≤
(3diam(W)/δ)d. Therefore we have

PS

(
max
w∈NSδ

|R̂n(w)−R(w)| ≥ ε
)

(S32)

≤ 2M exp

{
−2nε2

B2

}[(
1

δ

)dH+ε′

+ δ′
(

3diam(W)

δ

)d]
. (S33)

At this point set

δ′ :=
(1/δ)dH+ε′

(3diam(W)/δ)d
,

so that

PS

(
max
w∈NSδ

|R̂n(w)−R(w)| ≥ ε
)
≤ 4M exp

{
−2nε2

B2

}(
1

δ

)dH+ε′

=: γ. (S34)

Therefore with probability at least 1− γ we have

sup
w∈WS

|R̂n(w)−R(w)| ≤ B
√

(dH + ε′) log(1/δ) + log 4 + logM + log(1/γ)

2n
+ 2Lδ. (S35)

Choosing δn = 1/
√
nL2 and ε′ = dH, we have for all n ≥ n0,

sup
w∈WS

|R̂n(w)−R(w)| ≤ B
√

2dH log(nL2) + log(4M/γ)

n
, (S36)

for sufficiently large n0. This concludes the proof.

S6.4 Proof of Theorem S2

Similar to the proof of Theorem 1, we first prove a more general result where dimMW is fixed.
Lemma S2. Assume that ` is bounded by B and L-Lipschitz continuous in w. LetW ⊂ Rd be a
bounded set with dimMW ≤ dM. For any function ρ : R → R satisfying limx→∞ ρ(x) = ∞ and
for a sufficiently large n, with probability at least 1− γ, we have

sup
w∈W

(
R̂n(w)−R(w)

)
≤ cLBdiam(W)

√
dMρ(n) + log(1/γ)

n
,

where c is an absolute constant.

8



Proof. We define the empirical process

Gn(w) := R̂n(w)−R(w) =
1

n

n∑
i=1

`(w, zi)− Ez[`(w, z)],

and we notice that
E[Gn(w)] = 0.

Recall that a random process {G(w)}w∈W on a metric space (W, d) is said to have sub-Gaussian
increments if there exists K ≥ 0 such that

‖G(w)−G(w′)‖ψ2
≤ Kd(w,w′), (S37)

where ‖ · ‖ψ2
denotes the sub-Gaussian norm [Ver19].

We verify that {Gn(w)}w has sub-Gaussian increments with K = 2L/
√
n and for the metric being

the standard Euclidean metric, d(w,w′) = ‖w − w′‖. To see why this is the case, notice that

Gn(w)− Gn(w′) =
1

n

n∑
i=1

[`(w, zi)− `(w′, zi)− (Ez`(w, z)− Ez`(w′, z))]

which is a sum of i.i.d. random variables that are uniformly bounded by

|`(w, zi)− `(w′, zi)− (Ez`(w, z)− Ez`(w′, z))| ≤ 2L‖w − w′‖,

by the Lipschitz continuity of the loss. Therefore, Hoeffding’s lemma for bounded and centered
random variables easily imply that

E {exp [λ (Gn(w)− Gn(w′))]} ≤ exp

[
2λ2

n
L2‖w − w′‖2

]
, (S38)

thus, we have ‖Gn(w)− Gn(w′)‖ψ2 ≤ (2L/
√
n)‖w − w′‖.

Next, define the sequence δk = 2−k and notice that we have δk ↓ 0. Dudley’s tail bound (see for
example [Ver19, Thm. 8.1.6]) for this empirical process implies that, with probability at least 1− γ,
we have

sup
w,w′∈W

(Gn(w)− Gn(w′)) ≤ C L√
n

[
SW +

√
log(2/γ)diam(W)

]
(S39)

where C is an absolute constant and

SW =
∑
k∈Z

δk
√

log |Nδk(W)|.

In order to apply Dudley’s lemma, we need to bound the above summation. For that, choose κ0 such
that

2κ0 ≥ diam(W) > 2κ0−1,

and any strictly increasing function ρ : R→ R.

Now since dimMW ≤ dM, for the sequence {δk}k∈N, and for a sufficiently large n, whenever
k ≥ bρ(n)c, we have

log |Nδk(W)| ≤2dM log(δ−1k )

= log(4)dMk.

By splitting the entropy sum in Dudley’s tail inequality in two terms, we obtain

SW =
∑
k∈Z

δk
√

log |Nδk(W)|

=

bρ(n)c∑
k=−κ0

δk
√

log |Nδk(W)|+
∞∑

k=bρ(n)c

δk
√

log |Nδk(W)|.
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For the first term on the right hand side, we use the monotonicity of covering numbers, i.e. |Nδk | ≤
|Nδl | for k ≤ l, and write

bρ(n)c∑
k=−κ0

δk
√

log |Nδk(W)| ≤
√

log |Nδbρ(n)c(W)|
bρ(n)c∑
k=−κ0

δk

≤
√

log(4)dMbρ(n)c
∞∑

k=−κ0

δk

≤
√

log(4)dMρ(n)2κ0+1

≤4diam(W)
√

log(4)dMρ(n).

For the second term on the right hand side, we have
∞∑

k=bρ(n)c

δk
√

log |Nδk(W)| ≤
√

log(4)dM

∞∑
k=bρ(n)c

√
kδk

≤
√

log(4)dM

∞∑
k=0

kδk

=2
√

log(4)dM.

Combining these, we obtain

SW ≤ 2
√

log(4)dM

{
1 + 2diam(W)

√
ρ(n)

}
.

Plugging this bound back in Dudley’s tail bound (S39), we obtain

sup
w,w′∈W

(Gn(w)− Gn(w′)) ≤ CLdiam(W)

√
dMρ(n) +

√
log(2/γ)√

n
.

Now fix w0 ∈ W and write the triangle inequality,

sup
w∈W

Gn(w) ≤ sup
w,w′∈W

(Gn(w)− Gn(w′)) + Gn(w0).

Clearly for a fixed w0 ∈ W , we can apply Hoeffding’s inequality and obtain that, with probability at
least 1− γ,

Gn(w0) ≤ B
√

log(2/γ)

n
.

Combining this with the previous result, we have with probability at least 1− 2γ

sup
w∈W

Gn(w) ≤ CLdiam(W)

√
dM
√
KdM +

√
log(2/γ)

√
n

+B

√
log(2/γ)

n
.

Finally replacing and γ with γ/2 and collecting the absolute constants in c, we conclude the proof.

Proof of Theorem S2. The proof follows the same lines of the proof of Theorem 1, except that we
invoke Lemma S2 instead of Lemma S1.
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