
Notes

1A special event x0 is sometimes given at time 0 to mark the beginning of the sequence; the model then
generates the rest of the sequence conditioned on x0.

2The product p∗(xmt | x0:t)
∏
m′ 6=m q(x

m′
t | x0:t) is the likelihood of xmt being the one drawn from p∗.

The prior is uniform since any m in the unordered bag was a priori equally probable.
3In practice, it is more convenient to maximize the expected sum over t in a sequence drawn uniformly

from the set of sequences in the training dataset. This scales the objective up by the average sequence length,
preserving the property that longer sequences have more weight.

4Our model does not need any normalization: p(xt = ∅) +
∑K
k=1 p(xt = k) = 1 +

(infinitesimal quantities) = 1.
5 While this paper’s speedup over the MLE objective (2) comes from avoiding the integral, an alternative

would be to estimate the integral more efficiently. One might try randomized adaptive quadrature (Baran et al.,
2008) modified for our discontinuous intensity functions and GPU hardware; or importance sampling of (t, k)
pairs where the proposal distribution is roughly proportional to λk(t)—much like the noise distribution we will
develop for NCE.

6We remark that JNC(θ) is the expected log-probability of a discrete choice, whereas JLL(θ) was the
expected log-density of an observation that includes continuous times. A density must be integrated to yield a
probability.

7This is not essential to the NCE approach, since in principle the M + 1 elements of the bag could all be
drawn from different distributions. However, the homogeneity simplifies equations (5)–(6), and not having to
keep track of previous noise samples simplifies bookkeeping. Furthermore, much as in a GAN, we expect the
discrimination task to be most challenging and informative when the noise intensity λq

k at time t is close to the
true intensity λ∗k(t | x0[0,t)). Therefore we give the function λq

k access to the true history x0[0,t), and will train
it to predict something like the true intensity.

8This trick does carry computational cost: we need to train (via backpropagation) on proposals that might
not have been accepted otherwise. This cost is perhaps not worth it when µ(t) is too low: it might be better
spent on increasing M or running more training epochs for a fixed M . As a compromise, if µ is small (≤ 0.05
in our current experiments), we revert to the original approach of accepting the time with probability µ and not
scaling it.

9In between the events, even if the neural state remains constant, the intensity functions need not be constant.
10Jozefowicz et al. (2016) considered it a competitor to NCE; Ma & Collins (2018) argued for regarding it

as a variant.
11Our code is written in PyTorch (Paszke et al., 2017) and will be released upon paper acceptance. Our

experiments were run on NVIDIA Tesla K80.
12We use the public PyTorch implementation. NHP is a thoughtfully designed framework that has been

demonstrated effective on temporal data, but our method can also be used for other models with parametric
intensity functions.

13We train q by MLE: summing C intensities is not expensive when C is small. In Appendix C.2, we
document an alternative strategy that uses q as the noise distribution to train itself by NCE.

14For the experiments in section 5.3, training the neural q takes only < 1/100 of what needed to train pθ .
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Appendices

A Proof Details for MLE

In this section, we prove the claim in section 2.2 that argmaxθ JLL(θ) = Θ∗
def
= {θ∗ : pθ∗ = p∗}.

For this purpose, we first rearrange JLL(θ) = Ep∗(x[0,T ))

[
log pθ(x[0,T ))

]
as below:∑

x[0,T )

p∗(x[0,T )) log pθ(x[0,T )) (8a)

=

∫ T

t=0

∑
x[0,t)

p∗(x[0,t))
∑

x[t,t+dt)

p∗(x[t,t+dt) | x[0,t)) log pθ(x[t,t+dt) | x[0,t))︸ ︷︷ ︸
call itHθ(t,x[0,t))

(8b)

The intuition for equation (8b) is that due to the form of the autoregressive model, log pθ(x[0,T ))
in equation (8a) can be broken up into a sum of log (infinitesimal) probabilities of x[t,t+dt) on the
infinitesimal intervals [t, t+dt), each probability being conditioned on the past history x[0,t). When
we take the expectation under p∗, each summand gets weighted by the probability that x[0,t) and
x[t,t+dt) would take on the values in that summand. This gives a form (8b) that aggregates the
infinitesimal quantities Hθ(t, x[0,t)) over possible times t ∈ [0, T ) and possible histories x[0,t).

Proof. We first observe thatHθ(t, x[0,t))is the negative cross-entropy between the conditional distri-
butions of p∗ and pθ at time t (both conditioned on history x[0,t)). Technically, x[t,t+dt) will have an
event of type k with probability λ∗k(t)dt under p∗ (λk(t)dt under pθ) or has no event at all with prob-
ability 1−

∑K
k=1 λ

∗
k(t)dt under p∗ (1−

∑K
k=1 λk(t)dt under pθ). So the termHθ(t, x[0,t)) is actually

the negative cross entropy between the following two discrete distributions over {∅, 1, . . . ,K}:[(
1−

K∑
k=1

λ∗k(t | x[0,t))dt

)
, λ∗1(t | x[0,t))dt, . . . , λ

∗
K(t | x[0,t))dt

]
(9a)[(

1−
K∑
k=1

λk(t | x[0,t))dt

)
, λ1(t | x[0,t))dt, . . . , λK(t | x[0,t))dt

]
(9b)

The (infinitesimal) negative cross-entropy between them is always smaller than or equal to the neg-
ative entropy of the distribution in equation (9a): it will be strictly smaller if these two distributions
are distinct, and equal when they are identical.

It is then obvious that any θ∗ ∈ Θ∗ maximizes JLL(θ) because it maximizes the negative cross-
entropy for any history x[0,t) at any time t.

To check if any other θ̄ /∈ Θ∗ maximizes JLL(θ) as well, we analyze

JLL(θ̄)− JLL(θ∗) =

∫ T

t=0

∑
x[0,t)

p∗(x[0,t))(Hθ̄(t, x[0,t))−Hθ∗(t, x[0,t)))︸ ︷︷ ︸
denote it asGθ̄(t,x[0,t))dt

(10)

where θ∗ can be any member in Θ∗. Note that we can denote Hθ̄ − Hθ∗ as Gθ̄dt because the
probabilities in H and thus the entropy changes (if any) are all infinitesimal.

According to the definition of θ̄ and θ∗, there must exist a stream x̄[0,T ), a time t̄ ∈ (0, T ) and a type
k̄ ∈ {1, . . . ,K} such that λk̄(t̄ | x̄[0,t̄)) 6= λ∗

k̄
(t̄ | x̄[0,t̄)). Therefore, we have Gθ̄(t̄, x̄[0,t̄)) < 0 since

the distributions in equation (9) are distinct for the given history x̄[0,t̄). Does this difference lead to
any overall change of the entire objective?

Actually, according to Lemma 1 (that we will prove shortly), the existence of such x̄[0,T ), t̄ and k̄
implies that there exists an interval (t′, t′′) ⊂ [0, T ) such that, for any t ∈ (t′, t′′), there exists a set
X (t) of histories with non-zero measure such that any x[0,t) ∈ X (t) satisfies λk̄(t | x[0,t)) 6= λ∗

k̄
(t |
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x[0,t)). That is to say, the fraction of the integral over (t′, t′′) is a non-infinitesimal negative number:

∫ t′′

t=t′

∑
x[0,t)

p∗(x[0,t))Gθ̄(t, x[0,t))dt (11a)

=

∫ t′′

t=t′

∑
x[0,t)∈X (t)

p∗(x[0,t))Gθ̄(t, x[0,t))dt︸ ︷︷ ︸
<0

+

∫ t′′

t=t′

∑
x[0,t) /∈X (t)

p∗(x[0,t))Gθ̄(t, x[0,t))dt︸ ︷︷ ︸
≤0

(11b)

where the second integral ≤ 0 because Gθ always ≤ 0. For the same reason, we also have∫ t′
t=0

∑
x[0,t)

p∗(x[0,t))Gθ̄(t, x[0,t))dt ≤ 0 and
∫ T
t=t′′

∑
x[0,t)

p∗(x[0,t))Gθ̄(t, x[0,t))dt ≤ 0. Then
the overall difference must be strictly negative, i.e.,

JLL(θ̄)− JLL(θ∗) < 0 (12)

Note that this inequality holds for any θ̄ /∈ Θ∗ and any θ∗ ∈ Θ∗, meaning that θ∗ ∈ Θ∗ is necessary
to maximize the objective.

Now the proof of argmaxθ JLL(θ) = Θ∗ is complete.

Lemma 1. Suppose that we have two intensity functions that meet assumption 1: they have different
parameters θ and θ∗ and are denoted as λk(t | x[0,t)) and λ∗k(t | x[0,t)) respectively. If there exists a
stream x̄[0,T ), a time t̄ ∈ (0, T ) and a type k̄ ∈ {1, . . . ,K} such that λk̄(t̄ | x̄[0,t̄)) 6= λ∗

k̄
(t̄ | x̄[0,t̄)),

then there exists an open interval (t′, t′′) ⊂ [0, T ) such that, for any t ∈ (t′, t′′), there exists a set X
of histories with non-zero measure such that any x[0,t) ∈ X satisfies λk̄(t | x[0,t)) 6= λ∗

k̄
(t | x[0,t)).

This lemma says: if θ and θ∗ are meaningfully different in that they predict different intensities at
time t for some history, then they actually do so for a set of histories of non-zero measure, mak-
ing this difference visible in the objective functions like JLL(θ) (see above) and JNC(θ) (see Ap-
pendix B). Note that previous work did not encounter this since they only worked on either non-
sequential data (e.g., Gutmann & Hyvärinen (2010, 2012)) or discrete-time sequential data (e.g., Ma
& Collins (2018)).

Proof. We first prove the existence of an interval (t′, t′′) such that λk̄(t | x̄[0,t)) 6= λ∗
k̄
(t | x̄[0,t))

for the given stream x̄[0,T ) and any time t ∈ (t′, t′′). It turns out to be straightforward under
assumption 1: since the intensity functions are continuous between events, we can construct this
interval by expanding from the given time t̄ until λk̄(t | x̄[0,t)) = λ∗

k̄
(t | x̄[0,t)).

We use d to denote the maximal difference between the intensities over (t′, t′′), i.e., d def
=

maxt∈(t′,t′′) |λk̄(t | x̄[0,t)) − λ∗
k̄
(t | x̄[0,t))|. Then, to facilitate the rest of the proof, we shrink

the interval (t′, t′′) such that |λk̄(t | x̄[0,t))− λ∗k̄(t | x̄[0,t))| > d/2 for any time t ∈ (t′, t′′).

Now, for any time t ∈ (t′, t′′), we prove the existence of the set described in Lemma 1 by construct-
ing it.

We initialize this set as {x̄[0,t)}. If x̄[0,t) doesn’t have any event, then its probability p(x̄[0,t)) =

exp(−
∫ t
s=0

∑K
k=1 λk(s | x̄[0,s))ds) is not infinitesimal and this set already has non-zero measure.

What if x̄[0,t) has I ≥ 1 events at times 0 < t1 < . . . < tI < t? Intuitively, we can construct
many other histories satisfying the intensity inequality by slightly shifting the time of each event: as
long as they aren’t shifted by too far, the d/2 difference between intensities won’t vanish (even if it
decreases). See the formal proof as below.

In the case of I ≥ 1, the probability p(x̄[0,t)) is infinitesimal in the order of (dt)I : p(x̄[0,t)) =∏I
i=1(λx̄ti (ti | x̄[0,ti))dt) exp(−

∫ t
s=0

∑K
k=1 λk(s | x̄[0,s))ds). Therefore, to construct a set with

non-zero measure, the number of histories satisfying the inequality has to be in the order of ( 1
dt )

I .
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We define an open interval (t′1, t
′′
1) that covers t1 but not any other event time. Now we can construct

uncountably many—in the order of 1
dt—histories x[0,t) by freely shifting the event time t1 inside

(t′1, t
′′
1). Suppose that t1 has been shifted by ∆ ∈ R. Under assumption 1, there is a continuous

function c(∆) such that c(0) = 0 and

λk̄(t | x[0,t))− λ∗k̄(t | x[0,t)) = λk̄(t | x̄[0,t))− λ∗k̄(t | x̄[0,t)) + c(∆) (13)

meaning that the intensity difference will change by c(∆). By triangle inequality, we have∣∣λk̄(t | x[0,t))− λ∗k̄(t | x[0,t))
∣∣ ≥ ∣∣∣∣λk̄(t | x̄[0,t))− λ∗k̄(t | x̄[0,t))

∣∣− |c(∆)|
∣∣ (14)

Since c(∆) is continuous, as long as we make |∆| small enough, we’ll have |c(∆)| ≤ d/2 and then
the following inequality holds:∣∣λk̄(t | x[0,t))− λ∗k̄(t | x[0,t))

∣∣ ≥ ∣∣λk̄(t | x̄[0,t))− λ∗k̄(t | x̄[0,t))
∣∣− |c(∆)| > d/2− d/2 = 0 (15)

meaning that the intensities given the new history are still different. Therefore, as long as we keep the
interval (t′1, t

′′
1) small enough, we’ll have order- 1

dt many histories and the inequality in equation (15)
holds given any of them.

Recall that we need order-( 1
dt )

I many such histories. We can obtain them by simply defining I
disjoint open intervals (t′1, t

′′
1), . . . , (t′I , t

′′
I ) such that ti ∈ (t′i, t

′′
i ) and freely shifting each event

time ti inside (t′i, t
′′
i ). Suppose that ti has been shifted by ∆i ∈ R, Under assumption 1, there is a

continuous function c(∆1, . . . ,∆I) such that c(0, . . . , 0) = 0 and

λk̄(t | x[0,t))− λ∗k̄(t | x[0,t)) = λk̄(t | x̄[0,t))− λ∗k̄(t | x̄[0,t)) + c(∆1, . . . ,∆I) (16)

Since c is a continuous function, there exist I positive real numbers ∆̄1, . . . , ∆̄I such that
|c(∆1, . . . ,∆I)| ≤ d/2 as long as |∆i| ≤ ∆̄i holds for all i = 1, . . . , I . In this case, by trian-
gle inequality, we still have∣∣λk̄(t | x[0,t))− λ∗k̄(t | x[0,t))

∣∣ ≥ ∣∣λk̄(t | x̄[0,t))− λ∗k̄(t | x̄[0,t))
∣∣− |∆i| > 0 (17)

Now we have order-( 1
dt )

I many histories: each of them has order-(dt)I probability and the inequal-
ity in equation (17) holds given any of them. That is to say, the set of these histories has non-zero
measure and we have λk̄(t | x[0,t)) 6= λ∗

k̄
(t | x[0,t)) given any x[0,t) in this set.

This completes the proof.

B NCE Details

In this section, we will discuss the theoretical guarantees of our NCE method in detail.

B.1 Derivation Details

In this section, we show how to get the rearranged NCE objective in section 3.3 from equation (6).

First of all, we observe that:

Ex0
[0,T )

∼p∗,x1:M
[0,T )

∼q

 ∑
t:x0

t 6=∅

log
λ
x0
t
(t|x0

[0,t))

λ
x0
t
(t|x0

[0,t)
)

+

M∑
m=1

∑
t:xmt 6=∅

log
λq
xmt

(t|x0
[0,t))

λxmt
(t|x0

[0,t)
)

 (18a)

=

∫ T

t=0

Ex0
[0,t)
∼p∗

[
K∑
k=1

λ∗k(t | x0
[0,t))dt log

λ
x0
t
(t|x0

[0,t))

λ
x0
t
(t|x0

[0,t)
)

+

M∑
m=1

K∑
k=1

λq
k(t | x0

[0,t))dt log
λq
xmt

(t|x0
[0,t))

λxmt
(t|x0

[0,t)
)

]
(18b)

This rearrangement is similar to that of equations (8a)–(8b). The intuition of equation (18a) is that
we sample M i.i.d. noise streams x1

[0,T ), . . . , x
M
[0,T ) for each possible real data x0

[0,T ), sum up the
log-ratio whenever x0:M

t has an event, and then take the expectation over all the possible real data
x0

[0,T ). The intuition of equation (18b) is that we draw noise samples x1
t , . . . , x

M
t for each real
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history x0
[0,t) at each time t, compute the log-ratio if x0:M

t has an event, take the expectation of the
log-ratio over all the possible real histories and then sum over all the possible times. Therefore,
these two expectations are equal.

We further rearrange equation (18) as

=

∫ T

t=0

Ex0
[0,t)
∼p∗

[
K∑
k=1

(
λ∗k(t | x0

[0,t))dt log
λk(t|x0

[0,t))

λk(t|x0
[0,t)

)
+

M∑
m=1

λq
k(t | x0

[0,t))dt log
λq
k(t|x0

[0,t))

λk(t|x0
[0,t)

)

)]
(19a)

=

∫ T

t=0

Ex0
[0,t)
∼p∗

[
K∑
k=1

(
λ∗k(t | x0

[0,t))dt log
λk(t|x0

[0,t))

λk(t|x0
[0,t)

)
+Mλq

k(t | x0
[0,t))dt log

λq
k(t|x0

[0,t))

λk(t|x0
[0,t)

)

)]
(19b)

=

∫ T

t=0

Ex0
[0,t)
∼p∗

[
K∑
k=1

λ∗k(t | x0
[0,t))dt

(
λ∗k(t|x0

[0,t))

λ∗k(t|x0
[0,t)

)
log

λk(t|x0
[0,t))

λk(t|x0
[0,t)

)
+M

λq
k(t|x0

[0,t))

λ∗k(t|x0
[0,t)

)
log

λq
k(t|x0

[0,t))

λk(t|x0
[0,t)

)

)]
(19c)

where λ∗k(t | x0
[0,t))

def
= λ∗k(t | x0

[0,t)) + Mλq
k(t | x0

[0,t)) can be thought of as the intensity of type k
under the superposition of p∗ and M copies of q.

Now we obtain the final rearranged objective:∫ T

t=0

∑
x0

[0,t)

p∗(x0
[0,t))

K∑
k=1

λ∗k(t | x0
[0,t))

(
λ∗k(t|x0

[0,t))

λ∗k(t|x0
[0,t)

)
log

λk(t|x0
[0,t))

λk(t|x0
[0,t)

)
+M

λqk(t|x0
[0,t))

λ∗k(t|x0
[0,t)

)
log

λqk(t|x0
[0,t))

λk(t|x0
[0,t)

)

)
︸ ︷︷ ︸

call itHθ(k,t,x0
[0,t)

)

dt

(20)

B.2 Optimality Proof Details

In this section, we prove Theorem 1 that we stated in section 3.3. Recall the theorem:
Theorem 1 (Optimality). Under assumptions 1 and 2, θ ∈ argmaxθ JNC(θ) if and only if pθ = p∗.

We first need to highlight the key insight that Hθ(k, t, x
0
[0,t)) in equation (20) is the negative cross-

entropy between the following two discrete distributions over {∅, 1, . . . ,K}:

[
λ∗k(t|x0

[0,t))

λ∗k(t|x0
[0,t)

)
,
λqk(t|x0

[0,t))

λ∗k(t|x0
[0,t)

)
, . . . ,

λqk(t|x0
[0,t))

λ∗k(t|x0
[0,t)

)
] (21a)

[
λk(t|x0

[0,t))

λk(t|x0
[0,t)

)
,
λqk(t|x0

[0,t))

λk(t|x0
[0,t)

)
, . . . ,

λqk(t|x0
[0,t))

λk(t|x0
[0,t)

)︸ ︷︷ ︸
length isM

] (21b)

This negative cross-entropy is always smaller than or equal to the negative entropy of the distribution
in equation (21a): it will be strictly smaller if these two distributions are distinct and equal when
they are identical. Notice that in contrast to the negative cross-entropy at equation (9), this negative
cross-entropy here is not infinitesimal.

Proof. The “if” part is straightforward to prove. Any θ for which pθ = p∗ would make λk(t |
x0

[0,t)) = λ∗k(t | x0
[0,t)), thus maximizing the negative cross-entropy between the two distributions

in equation (21), for any type k and any real history x0
[0,t) at any time t. Then the NCE objective in

equation (20) is obviously maximized.

To check if any other θ̄ /∈ Θ∗
def
= {θ∗ : pθ∗ = p∗} maximizes JNC(θ) as well, we analyze

JNC(θ̄)− JNC(θ∗) =

∫ T

t=0

∑
x0

[0,t)

p∗(x0
[0,t))

K∑
k=1

λ∗k(t | x0
[0,t))

(
Hθ̄(k, t, x

0
[0,t))−Hθ∗(k, t, x

0
[0,t))

)
︸ ︷︷ ︸

denote it asGθ̄(k,t,x0
[0,t)

)

dt
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where θ∗ can be any member in Θ∗. Note that Gθ̄ is not infinitesimal because the probabilities in H
and thus the entropy changes (if any) are not infinitesimal.

According to the definition of θ̄ and θ∗, there must exist a stream x̄[0,T ), a time t̄ ∈ (0, T ) and a type
k̄ ∈ {1, . . . ,K} such that λk̄(t̄ | x̄[0,t̄)) 6= λ∗

k̄
(t̄ | x̄[0,t̄)). Therefore, we have Gθ̄(k̄, t̄, x̄[0,t̄)) < 0

since the distributions in equation (21) are distinct for the given history x̄[0,t̄). Does this difference
lead to any overall change of the entire objective?

Actually, according to Lemma 1 in Appendix A, the existence of such x̄[0,T ), t̄ and k̄ implies that
there exists an interval (t′, t′′) ⊂ [0, T ) such that, for any t ∈ (t′, t′′), there exists a set X (t) of
histories with non-zero measure such that any x[0,t) ∈ X (t) satisfies λk̄(t | x[0,t)) 6= λ∗

k̄
(t | x[0,t)).

Then, given any of these histories, the entropy difference Gθ̄ would be < 0. That is to say, the
following integral must be a non-infinitesimal negative number:∫ T

t=0

∑
x0

[0,t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (22a)

=

∫ t′′

t=t′

∑
x0

[0,t)
∈X (t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (< 0 ) (22b)

+

∫ t′′

t=t′

∑
x0

[0,t)
/∈X (t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (≤ 0 ) (22c)

+

∫ t′

t=0

∑
x0

[0,t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (≤ 0 ) (22d)

+

∫ T

t=t′′

∑
x0

[0,t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (≤ 0 ) (22e)

Therefore, the overall difference must be < 0 as well:

JLL(θ̄)− JLL(θ∗) =

∫ T

t=0

∑
x0

[0,t)

p∗(x0
[0,t))

K∑
k=1

λ∗k(t | x0
[0,t))Gθ̄(k, t, x

0
[0,t))dt (23a)

=

∫ T

t=0

∑
x0

[0,t)

p∗(x0
[0,t))λ

∗
k̄(t | x0

[0,t))Gθ̄(k̄, t, x
0
[0,t))dt (< 0 ) (23b)

+

∫ T

t=0

∑
x0

[0,t)

p∗(x0
[0,t))

∑
k 6=k̄

λ∗k(t | x0
[0,t))Gθ̄(k, t, x

0
[0,t))dt (≤ 0 ) (23c)

Note that JLL(θ̄) − JLL(θ∗) < 0 holds any θ̄ /∈ Θ∗ and any θ∗ ∈ Θ∗, meaning that θ∗ ∈ Θ∗ is
necessary to maximize the objective. Then the proof of the “only if” part is complete.

Now we have proved both the “if” and “only if” parts so the proof is complete.

B.3 Consistency Proof Details

To discuss the statistical consistency (in this section) and efficiency (in Appendix B.4), we first need
to spell out the empirical version of the objective

JNNC(θ) = 1
N

N∑
n=1

 ∑
t:x0

t,n 6=∅

log
λ
x0
t,n

(t|x0
[0,t),n)

λ
x0
t,n

(t|x0
[0,t),n

)
+

M∑
m=1

∑
t:xmt,n 6=∅

log
λq
xmt,n

(t|x0
[0,t),n)

λxmt,n
(t|x0

[0,t),n
)

 (24)

where the subscript n denotes the nth i.i.d. draw of the observed sequence and the M noise samples
for this sequence. It is obvious that limN→∞ JNNC(θ)→ JNC(θ).

To analyze the consistency, we make the following assumptions:
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Assumption 3 (Continuity wrt. θ). For any history x[0,t) and event type k ∈ {1, . . . ,K}, λk(t |
x[0,t)) is continuous with respect to θ.
Assumption 4 (Compactness). The set of optimal parameters Θ∗ is contained in the interior of a
compact set Θ ⊂ R|θ|.

They are analogous to assumptions 4.2 and 4.3 of Ma & Collins (2018) respectively.

Our NCE method turns out to be strongly consistent in the sense that:

Theorem 2 (Consistency). Under assumptions 2, 3 and 4, for any θ ∈ ΘN
NC

def
= argmaxθ J

N
NC(θ)

and M ≥ 1, with probability 1, we have limN→∞minθ∗∈Θ∗ ‖θ − θ∗‖ = 0 where ‖ · ‖ is the L2

norm.

The intuition of this theorem is that: since the two functions JNNC(θ) and JNC(θ) will become the
same as N →∞ and they are continuous with respect to θ, then any θ ∈ argmaxθ J

N
NC(θ) has to be

close to some member of the set argmaxθ JNC(θ). The full proof is almost identical to the proof of
Theorem 4.2 in Ma & Collins (2018). But we will still spell it out in our notation for completeness.

Proof. Under the assumption in Theorem 2, by classical large sample theory (Ferguson, 1996), we
have

P
[

lim
N→∞

sup
θ∈Θ′
|JNNC(θ)− JNC(θ)| = 0

]
= 1 for any compact set Θ′ ⊂ Θ (25)

where P stands for “probability”. Since |JNNC(θ)− JNC(θ)| ≥ JNNC(θ)− JNC(θ), we have

P
[
lim sup
N→∞

sup
θ∈Θ′

(JNNC(θ)− JNC(θ)) ≤ 0

]
= 1 (26)

Moreover, for any θ′N ∈ argmaxθ∈Θ′ J
N
NC(θ), we have

sup
θ∈Θ′

(JNNC(θ)− JNC(θ)) ≥ JNNC(θ′N )− JNC(θ′N ) ≥ sup
θ∈Θ′

JNNC(θ)− sup
θ∈Θ′

JNC(θ) (27)

Plugging equation (27) into equation (26) gives

P
[
lim sup
N→∞

sup
θ∈Θ′

JNNC(θ)− sup
θ∈Θ′

JNC(θ) ≤ 0

]
= P

[
lim sup
N→∞

sup
θ∈Θ′

JNNC(θ) ≤ sup
θ∈Θ′

JNC(θ)

]
= 1

(28)

For any δ > 0, we define Θδ
def
= {θ : minθ∗∈Θ∗ ‖θ − θ∗‖ > δ} and have

P
[
lim sup
N→∞

sup
θ∈Θδ

JNNC(θ) ≤ sup
θ∈Θδ

JNC(θ) < sup
θ∈Θ

JNC(θ)

]
= 1 (29)

On the other hand, we also have |JNNC(θ)− JNC(θ)| ≥ JNC(θ)− JNNC(θ), which gives

P
[
lim sup
N→∞

sup
θ∈Θ′

(JNC(θ)− JNNC(θ)) ≤ 0

]
= 1 (30)

For any θ′ ∈ argmaxθ∈Θ′ JNC(θ), we have
sup
θ∈Θ′

(JNC(θ)− JNNC(θ)) ≥ JNC(θ′)− JNNC(θ′) ≥ sup
θ∈Θ′

JNC(θ)− sup
θ∈Θ′

JNNC(θ) (31)

Plugging equation (31) into equation (30) gives

P
[

sup
θ∈Θ′

JNC(θ) + lim sup
N→∞

(− sup
θ∈Θ′

JNNC(θ)) ≤ 0

]
= P

[
lim inf
N→∞

sup
θ∈Θ′

JNNC(θ) ≥ sup
θ∈Θ′

JNC(θ)

]
= 1

(32)
which, when we let Θ′ = Θ, gives

P
[
lim inf
N→∞

sup
θ∈Θ

JNNC(θ) ≥ sup
θ∈Θ

JNC(θ)

]
= 1 (33)

Combining equation (29) and equation (33), we have that, for any θN ∈ ΘN def
= argmaxθ J

N
NC(θ)

(defined in Theorem 2), there exists an integer N ′ such that for any N ≥ N ′
P
[
θN /∈ Θδ

]
= 1 (34)

which holds for any δ > 0 and thus gives

P
[

lim
N→∞

min
θ∗∈Θ∗

‖θN − θ∗‖ = 0

]
= 1 (35)

which completes the proof of Theorem 2.
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B.4 Efficiency Proof Details

To quantify the statistical efficiency of our method, we make the following assumptions:
Assumption 5 (Identifiability). There is only one parameter vector θ∗ such that pθ∗ = p∗.
Assumption 6 (Differentiability). For any history x[0,t) and event type k ∈ {1, . . . ,K}, λk(t |
x[0,t)) is twice continuously differentiable with respect to θ.
Assumption 7 (Singularity). The Fisher information matrix I∗ under the model pθ is non-singular.

They are analogous to assumptions 4.4, 4.6 and 4.7 of Ma & Collins (2018) respectively.

Before we show the efficiency of our method, we first spell out the definition of I∗:

I∗
def
= Ex[0,T )∼p∗

[
∇θ log pθ∗(x[0,T ))∇θ log pθ∗(x[0,T ))

>] (36)

where ∇θ log pθ∗ stands for “the gradient of log pθ with respect to θ at θ = θ∗.” This formula can
be rearranged as∫ T

t=0

Ex[0,t)∼p∗
[
Ex[t,t+dt)∼p∗

[
∇θ log pθ∗(x[t,t+dt) | x[0,t))∇θ log pθ∗(x[t,t+dt) | x[0,t))

>]]
(37a)

=

∫ T

t=0

Ex[0,t)∼p∗

[
Ex[t,t+dt)∼p∗

[
∇θpθ∗ (x[t,t+dt)|x[0,t))

pθ∗ (x[t,t+dt)|x[0,t))

∇θpθ∗ (x[t,t+dt)|x[0,t))

pθ∗ (x[t,t+dt)|x[0,t))

>
]]

(37b)

=

∫ T

t=0

Ex[0,t)∼p∗

 ∑
x[t,t+dt)

∇θpθ∗ (x[t,t+dt)|x[0,t))∇θpθ∗ (x[t,t+dt)|x[0,t))
>

pθ∗ (x[t,t+dt)|x[0,t))

 (37c)

Technically, x[t,t+dt) will have an event of type k with probability λ∗k(t)dt under p∗ (λk(t)dt under
pθ) or has no event at all with probability 1−

∑K
k=1 λ

∗
k(t)dt under p∗ (1−

∑K
k=1 λk(t)dt under pθ).

In the former case, we have ∇θpθ∗∇θp>θ∗/pθ∗ = ∇θλ∗k(t)∇θλ∗k(t)>dt/λ∗k(t); in the latter case,
we have ∇θpθ∗ = −

∑K
k=1∇θλ∗k(t)dt but pθ∗ ≈ 1, so ∇θpθ∗∇θp>θ∗/pθ∗ = o(dt) can be ignored.

Plugging these quantities into equation (37) gives us

I∗ =

∫ T

t=0

Ex[0,t)∼p∗

[
K∑
k=1

∇θλ∗k(t|x[0,t))∇θλ∗k(t|x[0,t))
>

λ∗k(t|x[0,t))
dt

]
(38a)

=

∫ T

t=0

∑
x[0,t)

p∗(x[0,t))

K∑
k=1

∇θλ∗k(t|x[0,t))∇θλ∗k(t|x[0,t))
>

λ∗k(t|x[0,t))
dt (38b)

Note that∇θλ∗k(t) stands for “the gradient of λk(t) with respect to θ at θ = θ∗.”

Now we proceed to our efficiency theorem. We denote the unique optimal parameter vector as θ∗

and use θ̂ for the estimate given by maximizing JNNC(θ). It turns out that our method approaches
Fisher efficiency as M grows.
Theorem 3 (Efficiency). Under assumptions 2 and 4–7, there exists an integer M̄ such that for all
M > M̄

√
N(θ̂ − θ∗)→ Normal(0, I−1M ) as N →∞ (39)

for some non-singular matrix I−1M . Moreover, there exist a constant C > 0 such that for all M > M̄

‖I−1M − I−1∗ ‖ ≤ C/M (40)

where ‖I‖ is the spectral norm of matrix I.

Proof. We first prove that
√
N(θ̂ − θ∗) is asymptotically normal. By the Mean-Value Theorem, we

have

∇θJNNC(θ̂) = ∇θJNNC(θ∗) + (θ̂ − θ∗)
∫ 1

u=0

∇2
θJ

N
NC(θ∗ + u(θ̂ − θ∗))dt (41)
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Since θ̂ maximizes JNNC, we have

θ̂ − θ∗ =

[
−
∫ 1

u=0

∇2
θJ

N
NC(θ∗ + u(θ̂ − θ∗))dt

]−1
∇θJNNC(θ∗) (42)

By Law of Large Numbers and Theorem 2, we have∫ 1

u=0

∇2
θJ

N
NC(θ∗ + u(θ̂ − θ∗))dt→ Ex0

[0,T )
∼p∗,x1:M

[0,T )
∼q
[
∇2
θL(θ∗)

]︸ ︷︷ ︸
short as E[∇2

θL(θ∗)]

as N →∞ (43)

where L(θ) is defined as the objective for a random draw of x0:M
[0,T ) and thus is just the term inside

the expectation of equation (6):

L(θ)
def
=

∑
t:x0

t 6=∅

log
λ
x0
t
(t|x0

[0,t))

λ
x0
t
(t|x0

[0,t)
)

+

M∑
m=1

∑
t:xmt 6=∅

log
λq
xmt

(t|x0
[0,t))

λxmt
(t|x0

[0,t)
)

(44)

The term ∇2
θL(θ∗) stands for “the Hessian matrix of L(θ) with respect to θ at θ = θ∗.” As for

∇θJNNC(θ∗), by Central Limit Theorem, we have
√
N∇θJNNC(θ∗)→ Normal(0,Ex0

[0,T )
∼p∗,x1:M

[0,T )
∼q
[
∇θL(θ∗)∇θL(θ∗)>

]︸ ︷︷ ︸
short as V[∇θL(θ∗)]

) (45)

Combining equations (42), (43) and (45), we obtain the asymptotic normality
√
N(θ̂ − θ∗)→ Normal(0,E

[
∇2
θL(θ∗)

]−1 V[∇θL(θ∗)]E
[
∇2
θL(θ∗)

]−1
) (46)

Now we compute the covariance matrix of the asymptotic normal distribution. Following steps
similar to equations (18) and (19), we rearrange E

[
∇2
θL(θ∗)

]
to be

E
[
∇2
θL(θ∗)

]
=

∫ T

t=0

Ex0
[0,t)
∼p∗

[
K∑
k=1

(
λ∗k(t)dt∇2

θ log
λ∗k(t)
λ∗k(t) +Mλq

k(t)dt∇2
θ log

λq
k(t)

λ∗k(t)

)]
(47a)

=

∫ T

t=0

Ex0
[0,t)
∼p∗

[
K∑
k=1

( 1
λ∗k(t) −

1
λ∗k(t) )∇θλ∗k(t)∇θλ∗k(t)>dt

]
(47b)

=

∫ T

t=0

p∗(x0
[0,t))

K∑
k=1

( 1
λ∗k(t) −

1
λ∗k(t) )∇θλ∗k(t)∇θλ∗k(t)>dt (47c)

where we omit the condition x0
[0,t) in the probabilities and intensities for presentation simplicity. We

also omit the tedious arithmetic manipulation that spells∇2
θ log(λ/λ) out.

Following similar steps, we then rearrange V[∇θL(θ∗)] to be∫ T

t=0

Ex0
[0,t)
∼p∗

[
K∑
k=1

(
λ∗k(t)dt∇θ∇>θ log

λ∗k(t)
λ∗k(t) +Mλq

k(t)dt∇θ∇>θ log
λqk(t)

λ∗k(t) )
)]

(48a)

=

∫ T

t=0

Ex0
[0,t)
∼p∗

[
K∑
k=1

( 1
λ∗k(t) −

1
λ∗k(t) )∇θλ∗k(t)∇θλ∗k(t)>dt

]
(48b)

=E
[
−∇2

θL(θ∗)
]

(48c)

where we use ∇θ∇>θ f(θ) to denote (∇θf(θ))(∇θf(θ))>. For presentation simplicity, we omit the
arithmetic manipulation that spells∇θ∇>θ log(λ/λ) out.

Then we can simplify the asymptotic normality to be
√
N(θ̂ − θ∗)→ Normal(0,E

[
−∇2

θL(θ∗)
]−1

) (49)
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We can think of IM
def
= E

[
−∇2

θL(θ∗)
]

as the “information matrix” of our objective JNC(θ). And
its relation with the Fisher information matrix I∗ is:

IM = I∗ −
∫ T

t=0

∑
x0

[0,t)

p∗(x0
[0,t))

K∑
k=1

1
λ∗k(t)+Mλq

k(t)
∇θλ∗k(t)∇θλ∗k(t)>dt

︸ ︷︷ ︸
call it ∆I

(50)

Apparently, when M is large enough, IM will be non-singular. Precisely, since I∗ is non-singular,
there must exist M̄ > 0 such that, for any M > M̄ , 0 < ‖∆I‖ ≤ σ(I∗)/2 where σ(I) is the
smallest singular value of matrix I and ‖I‖ is the spectral norm, i.e., the largest singular value, of
matrix I. By Weyl’s inequality, we have σ(IM ) ≥ σ(I∗) − ‖∆I‖ ≥ σ(I∗)/2, meaning that IM is
non-singular.

Now we can start analyzing ‖I−1M − I−1∗ ‖. By the definition of the spectral norm, we have:

‖I−1M − I−1∗ ‖ = ‖I−1∗ (I∗ − IM )I−1M‖ ≤ ‖I
−1
∗ ‖‖∆I‖‖I−1M‖ ≤ 1

σ(I∗)
‖∆I‖ 2

σ(I∗)
(51)

Since the intensity functions are all bounded, continuous and twice continuously differentiable,
‖∇θλ∗k(t)∇θλ∗k(t)>‖ will be bounded, meaning that ‖∆I‖ will be bounded as well. Moreover,

the ratio λ∗k(t)/λq
k(t) is also bounded. We define r = supx0

[0,t)
,k

λ∗k(t|x0
[0,t))

λq
k(t|x0

[0,t)
)

and have Mλq
k(t) ≥

Mλ∗k(t)/r. Then there must exist B > 0 such that we have:

‖(1 + M
r )∆I‖ ≤ B‖I∗‖ ⇒ ‖∆I‖ ≤ rB

r+M ‖I∗‖ <
1
M rB‖I∗‖ (52)

Combining equations (51) and (52), we have

‖I−1M − I−1∗ ‖ ≤ 1
M

2
σ(I∗)2 rB‖I∗‖︸ ︷︷ ︸

call it C

(53)

meaning that there exists C > 0 such that, for any M > M̄ , ‖I−1M − I−1∗ ‖ ≤ C/M .

Note that the ratio r reflects the effect of λq
k(t) on the efficiency. In the special case of q = p∗, we

have r = 1 and ∆I = 1
M+1I∗ and the asymptotic covariance matrix becomes (1 + 1

M )I−1∗ .

This completes our proof.

C Algorithm Details

C.1 NCE Objective Computation Details

Our main algorithm is presented as Algorithm 1. It covers the recipe for computing our NCE objec-
tive, as well as the algorithm to sample from q.

C.2 Training the Noise Distribution q by NCE

Before we optimize our JNC(θ), we first fit the noise distribution q to the training data. As discussed
in endnote 7, we expect that fitting the data well will give a good training signal to learn θ.

In the experiments of this paper, we used MLE to estimate the parameters φ of q, which involves
taking approximate integrals as in Mei & Eisner (2017). (After all, we did not yet know whether
NCE would work well.) To avoid the approximate integrals, however, one could instead estimate
φ using NCE. When evaluating this NCE objective during training of φ, one can take the noise
distribution to be qφold

where φold is any snapshot of φ from a recent iteration of training (even
the current iteration). The same φold must be used for both drawing noise events via the thinning
algorithm, and for scoring these noise events and their contrasting observed events.

Regardless of whether we use MLE or NCE, it is faster to train q than to train p because q only has
C event types instead of K.

The idea of using as the noise distribution a model previously trained with NCE was also considered
in the original NCE paper (Gutmann & Hyvärinen, 2010).
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Algorithm 1 Training Objective Computation for Noise-Contrastive Estimation.

Input: observed event stream x[0,T ) with I events at times 0 = t0 < t1 < . . . tI < tI+1 = T ;
model pθ; noise distribution q; number of noise samples M

Output: training objective JNC evaluated on x[0,T ) and the corresponding noise samples
1: procedure COMPUTEOBJECTIVE(x, pθ, q,M )
2: . algorithm input pθ gives info to define intensity function λk(t)
3: JNC ← 0 . initialize the objective
4: initialize the neural states s and sq of pθ and q respectively . i.e., their LSTM states
5: i← 0
6: while i ≤ I :
7: i += 1
8: . use noise samples in the current interval
9: for (t, k, λq, µ) in DRAWNOISESAMPLES(ti−1, ti) :

10: compute the model intensity λk(t | s) under pθ
11: JNC += µ log λq

λk(t|s)+Mλq

12: if i > I : break
13: . use the real event at time ti
14: t← ti, k ← xti
15: compute the model intensity λk(t | s) under pθ
16: compute the noise intensity λq

k(t | sq) under q
17: JNC += log λk(t|s)

λk(t|s)+Mλq
k(t|sq)

18: update the neural states s and sq of pθ and q respectively with this real event
19: return JNC

20: procedure DRAWNOISESAMPLES(tbeg, tend) . draw noise samples over interval (tbeg, tend)
21: . has access to q,M
22: . define the total intensity function λq(t | sq) def

=
∑C
c=1 λ

q
c(t | sq)

23: Q ← empty collection . collection of noise samples
24: t← tbeg; find any λ ≥ sup {λq(t | sq) : t ∈ (tbeg, tend)}
25: repeat
26: draw ∆ ∼ Exp(Mλ); t += ∆ . propose a noise time
27: if t < tend :
28: µ← λq(t | sq)/λ . compute probability to accept the proposed time
29: if µ < 0.05 : . stochastically accept t with prob µ if µ < 0.05
30: u ∼ Unif(0, 1); if u < µ : µ← 1

31: if µ ≥ 0.05 : . otherwise fractionally accept t with weight µ
32: draw c ∈ {1, . . . , C} where probability of c is ∝ λq

c(t | sq) . choose coarse type
33: draw k ∈ {1, . . . ,K} where probability of k is q(k | c) . choose refinement
34: compute the noise intensity λq

k(t | sq) under q
35: add (t, k, λq

k(t | sq), µ) to Q
36: until t ≥ tend
37: return Q
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DATASET K # OF EVENT TOKENS SEQUENCE LENGTH

TRAIN DEV TEST MIN MEAN MAX

SYNTHETIC-1 10000 100000 10000 10000 100 100 100
SYNTHETIC-2 10000 100000 10000 10000 100 100 100
EUROEMAIL 10000 50000 10000 10000 100 100 100
BITCOINOTC 19800 1000 500 500 100 100 100
COLLEGEMSG 9900 8000 1000 1000 100 100 100
WIKITALK 10000 100000 20000 20000 100 100 100
ROBOCUP 528 2195 817 780 780 948 1336
IPTV 49000 27355 4409 4838 36602 36602 36602

Table 1: Statistics of each dataset. For IPTV, we have a single long sequence of 36602 tokens: we use the
first 27355 as training data, the next 4409 as dev data and the remaining 4838 as test data. For other datasets,
training, dev and test sequences are separate sequences.

D Experimental Details and Additional Results

D.1 Dataset Details

Besides the datasets we have introduced in section 5, we also run experiments on the following
real-world social interaction datasets:

CollegeMsg (Panzarasa et al., 2009). This dataset contains anonymized private messages sent on
an online social network at an university. Each record (u, v, t) means that user u sent a private
message to user v at time t and each u, v pair is an event type. We consider the top 100 users sorted
by the number of messages they sent and received: the total number of possible event types is then
K = 9900 since self-messaging is not allowed.

WikiTalk (Leskovec et al., 2010). This dataset contains the records of anonymized Wikipedia
users editing each other’s Talk page. Each record (u, v, t) means that user u edited user v’s talk
page at time t and each u, v pair is an event type. We consider the top 100 users sorted by the
number of edits they made and received and the total number of possible event types is K = 10000.

Table 1 shows statistics about each dataset that we use in this paper.

D.2 Training Details

For each of the chosen models in section 5, the only hyperparameter to tune is the hidden dimension
D of the neural network. On each dataset, we searched for D that achieves the best performance on
the dev set. Our search space is {4, 8, 16, 32, 64, 128}.
For learning, we used the Adam algorithm (Kingma & Ba, 2015) with its default settings. For each
ρ or M , we run training long enough so that the log-likelihood on the held-out data can converge.

D.3 More Results on Real-World Social Interaction Datasets

The learning curves on CollegeMsg and WikiTalk datasets are shown in Figure 4: they look similar
to those in Figure 2 and lead to the same conclusions.

D.4 Ablation Study I: Always or Never Redraw Noise samples

In Figure 5, we show the learning curves for the “always redraw” and “never redraw” strategies on
the first synthetic dataset. As shown in Figure 5a, with the “always redraw” strategy, NCE ( )
needs considerably fewer intensity evaluations to reach the highest log-likelihood ( ) that MLE
( ) can achieve on the held-out data. However, the curve with M = 1000 increases more slowly
than MLE in terms of wall-clock time since it spends too much time on drawing new noise samples.

As shown in Figure 5b, with the “never redraw” strategy, M = 1000 overtakes MLE: a single draw
of M = 1000 noise streams is able to give very good training signals and the saved computation
can be spent on training pθ repeatedly on the same samples. However, the curve of M = 1 only
achieves log-likelihood ≈ −200 and thus falls out of the zoomed-in view.
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(a1) CollegeMsg: neural q
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(a2) CollegeMsg: Poisson q
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(b1) WikiTalk: neural q
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(b2) WikiTalk: Poisson q

Figure 4: Learning curves of MLE and NCE on the other real-world social interaction datasets.
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(a) Always redraw new noise samples
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(b) Never redraw new noise samples

Figure 5: Ablation Study I. Learning curves of MLE and NCE with q = p∗ and different “redraw” strategies.
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(a) EuroEmail

0.0 0.5 1.0 1.5 2.0 2.5
# of intensities computed 1e10

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d

=0.01
B=100

=0.01
B=100

=0.1
B=30

=1
B=5

M=500
B=20

M=5000
B=5

M=500
B=20 M=5000

B=5

LSE
MLE
b-NCE
NCE

0 1000 2000 3000 4000 5000 6000 7000
wall-clock time

400
350
300
250
200
150
100

50
0

lo
g-

lik
el

ih
oo

d

=0.01
B=100

=1
B=5

=0.01
B=100

=0.1
B=30

=1
B=5

M=500
B=20

M=5000
B=5

M=500
B=20

M=5000
B=5

LSE
MLE
b-NCE
NCE

(b) BitcoinOTC
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(c) CollegeMsg
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(d) WikiTalk

Figure 6: Ablation Study II. Learning curves of MLE and NCE with untrained q on social interaction datasets.
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(a) RoboCup
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(b) IPTV

Figure 7: Ablation Study III. Learning curves of MLE and NCE using neural q with C = 1.
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D.5 Ablation Study II: NCE with Untrained Noise Distribution

In Figure 6, we show the learning curves of NCE with untrained noise distributions on the real-
world social interaction datasets. As we can see, NCE in this setting tends to end up with worse
generalization (interestingly except on WikiTalk) and suffers slow convergence (on BitcoinOTC and
CollegeMsg) and large variance (on BitcoinOTC).

D.6 Ablation Study III: Effect of C

In Figure 7, we show learning curves of NCE using the neural q with C = 1. Taking C = 1
means that the same number of noise samples can be drawn faster (with fewer intensity evaluations).
However, more training epochs may be needed because the noise looks less like true observations
and so NCE’s discrimination tasks are less challenging (see endnote 7).

On the RoboCup dataset, C = 1 exhibits similar learning speed to C = 5 but has slightly worse
generalization. On the IPTV dataset, C = 1 gives a considerable speedup over C = 49 without
harming the final generalization. The NCE curves for M = 5 and M = 10 shift substantially to the
left, since C = 1 requires many fewer intensity evaluations.
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