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Abstract

The Empirical Revenue Maximization (ERM) is one of the most important price
learning algorithms in auction design: as the literature shows it can learn approxi-
mately optimal reserve prices for revenue-maximizing auctioneers in both repeated
auctions and uniform-price auctions. However, in these applications the agents
who provide inputs to ERM have incentives to manipulate the inputs to lower the
outputted price. We generalize the definition of an incentive-awareness measure
proposed by Lavi et al (2019), to quantify the reduction of ERM’s outputted price
due to a change of m ≥ 1 out of N input samples, and provide specific conver-
gence rates of this measure to zero as N goes to infinity for different types of
input distributions. By adopting this measure, we construct an efficient, approxi-
mately incentive-compatible, and revenue-optimal learning algorithm using ERM
in repeated auctions against non-myopic bidders, and show approximate group
incentive-compatibility in uniform-price auctions.

1 Introduction

In auction theory, it is well-known [32] that, when all buyers have values that are independently and
identically drawn from a regular distribution F , the revenue-maximizing auction is simply the second
price auction with anonymous reserve price p∗ = arg max{p(1− F (p)}: if the highest bid is at least
p∗, then the highest bidder wins the item and pays the maximum between the second highest bid
and p∗. The computation of p∗ requires the exact knowledge of the underlying value distribution,
which is unrealistic because the value distribution is often unavailable in practice. Many works (e.g.,
[13, 18, 25]) on sample complexity in auctions have studied how to obtain a near-optimal reserve
price based on samples from the distribution F instead of knowing the exact F . One of the most
important (and most fundamental) price learning algorithms in those works is the Empirical Revenue
Maximization (ERM) algorithm, which simply outputs the reserve price that is optimal on the uniform
distribution over samples (plus some regularization to prevent overfitting).
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Definition 1.1 (c-Guarded Empirical Revenue Maximization, ERMc). Draw N samples from a
distribution F and sort them non-increasingly, denoted by v1 ≥ v2 ≥ · · · ≥ vN . Given some
regularization parameter 0 ≤ c < 1, choose:

i∗ = arg max
cN<i≤N

{i · vi}, define ERMc(v1, . . . , vN ) = vi∗ .

Assume that the smaller sample (with the larger index) is chosen in case of ties.

ERMc was first proposed by Dhangwatnotai et al. [18] and then extensively studied by Huang
et al. [25]. They show that the reserve price outputted by ERMc is asymptotically optimal on the
underlying distribution F as the number of samples N increases if F is bounded or has monotone
hazard rate, with an appropriate choice of c. Other papers [5, 27] have continued to study ERMc.

However, when ERM is put into practice, it is unclear how the samples can be obtained since many
times there is no impartial sampling source. A natural solution is endogenous sampling. For example,
in repeated second price auctions, the auctioneer can use the bids in previous auctions as samples
and run ERM to set a reserve price at each round. But this solution has a challenge of strategic issue:
since bidders can affect the determination of future reserve prices, they might have an incentive to
underbid in order to increase utility in future auctions.

Another example of endogenous sampling is the uniform-price auction. In a uniform-price auction
the auctioneer sells N copies of a good at some price p to N bidders with i.i.d. values v from F who
submit bids b. Bidders who bid at least p obtain one copy and pay p. The auctioneer can set the
price to be p = ERM0(v) to maximize revenue if bids are equal to values. But Goldberg et al. [20]
show that this auction is not incentive-compatible as bidders can lower the price by strategic bidding.
Therefore, the main question we consider in this paper is: To what extent the strategic behavior of
agents will affect ERM with endogenous sampling?

To formally answer the question, we adopt a notion called “incentive-awareness measure” originally
proposed by Lavi et al. [28] under bitcoin’s fee market context, which measures the reduction of a
price learning function P due to a change of at most m samples out of the N input samples.
Definition 1.2 (Incentive-awareness measures). Let P : RN+ → R+ be a function (e.g., ERMc) that
maps N samples to a reserve price. Draw N i.i.d. values v1, . . . , vN from a distribution F . Let
I ⊆ {1, . . . , N} be an index set of size |I| = m, and vI = {vi | i ∈ I}, v−I = {vj | j /∈ I}. A
bidder can change vI to any m non-negative bids bI , hence change the price from P (vI , v−I) to
P (bI , v−I). Define the incentive-awareness measure:

δI(vI , v−I) = 1−
infbI∈Rm+ P (bI , v−I)

P (vI , v−I)
,

and worst-case incentive-awareness measures:

δworst
m (v−I) = sup

vI∈Rm+
[δI(vI , v−I)], ∆worst

N,m = Ev−I∼F [δworst
m (v−I)].

If the reserve price P (bI , v−I) can be reduced by a lot due to some choices of bI , then the incentive-
awareness measure is large. Since the reduction of reserve price usually increases bidders’ utility, a
smaller incentive-awareness measure implies that a bidder benefits less from strategic bidding, hence
the name “incentive-awareness measure”.1

In this paper, we focus on the measure ∆worst
N,m . Lavi et al. [28] defined incentive-awareness measures

only for m = 1 and showed that for any distribution F with a finite support size, ∆worst
N,1 → 0 as

N → ∞. Later, Yao [33] showed that ∆worst
N,1 → 0 for any continuous distribution with support

included in [1, D]. They did not provide specific convergent rates of ∆worst
N,1 . We generalize their

definition to allow m ≥ 1, which is crucial in our two applications to be discussed. Our main
theoretical contribution is to provide upper bounds on ∆worst

N,m for two types of value distributions F :

the class of Monotone Hazard Rate (MHR) distributions where f(v)
1−F (v) is non-decreasing over the

support of the distribution (we use F to denote the CDF and f for PDF) and the class of bounded

1Lavi et al. [28] use the name “discount ratio” which we feel can be confused with the standard meaning of a
discount ratio in repeated games.
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distributions which consists of all (continuous and discontinuous) distributions with support included
in [1, D]. MHR distribution can be unbounded so we are the first to consider incentive-awareness
measures for unbounded distributions.
Theorem 1.3 (Main). Let P = ERMc. The worst-case incentive-awareness measure is bounded by

• for MHR F , ∆worst
N,m = O

(
m log3N√

N

)
, if m = o(

√
N) and m

N ≤ c ≤
1
4e .2

• for bounded F , ∆worst
N,m = O

(
D8/3m2/3 log2N

N1/3

)
, if m = o(

√
N) and m

N ≤ c ≤
1
2D .

The constants in the two big O’s are independent of F and c.

This theorem implies that as long as the fraction of samples controlled by a bidder is relatively small,
the strategic behavior of each bidder has little impact on ERM provided that other bidders are truthful.
Meanwhile, if more than one bidder bid non-truthfully, no bidder can benefit a lot from lying as long
as the total number of bids from all non-truthful bidders does not exceedm. We will discuss intuitions
and difficulties of the proof later in this section and give an overview of the proof in Section 4.

Repeated auctions against non-myopic bidders. Besides theoretical analysis, we apply the
incentive-awareness measure to real-world scenarios to demonstrate the effect of strategic bid-
ding on ERM. The main application we consider is repeated auctions where bidders participate in
multiple auctions and have incentives to bid strategically to affect the auctions the seller will use in
the future (Section 2). We consider a two-phase learning algorithm: the seller first runs second price
auctions with no reserve for some time to collect samples, and then use these samples to set reserve
prices by ERM in the second phase. The upper bound on the incentive-awareness measure of ERM
implies that this algorithm is approximately incentive-compatible.

Kanoria and Nazerzadeh [27], Liu et al. [29], and Abernethy et al. [1] consider repeated auctions
scenarios similar to ours. Kanoria and Nazerzadeh [27] set personalized reserve prices by ERM in
repeated second price auctions, so at least two bidders are needed in each auction and they will face
different reserve prices. We use anonymous reserve price so we allow only one bidder to participate
in the auctions and when there are more than one bidder they face the same price, thus preventing
discrimination. Liu et al. [29] and Abernethy et al. [1] design approximately incentive-compatible
algorithms using differential privacy techniques rather than pure ERM. Comparing with them, our
two-phase ERM algorithm is more practical as it is much simpler, and their algorithms rely on the
boundedness of value distributions while we allow unbounded distributions. Moreover, their results
require a large number of auctions while ours need a large number of samples in the first phase which
can be obtained by either few bids in many auctions, many bids in few auctions, or combined.

Uniform-price auctions and incentive-compatibility in the large. Another scenario to which we
apply the incentive-awareness measure of ERM is uniform-price auctions (Section 3). Azevedo and
Budish [4] show that, uniform-price auctions are incentive-compatible in the large in the sense that
truthful bidding is an approximate equilibrium when there are many bidders in the auction. In fact,
incentive-compatibility in the large is the intuition of Theorem 1.3: when N is large, no bidders can
influence the learned price by much. The proof in [4] directly makes use of this intuition, showing
that the bid of one bidder can affect the empirical distribution consisting of the N bids only by a little.
However, their argument, which crucially relies on the assumption that bidders’ value distribution
has a finite support and bids must be chosen from this finite support as well, fails when the value
distribution is continuous or bids can be any real numbers, as what we allow. We instead, appeal to
some specific properties of ERM to show that it is incentive-compatible in the large.

Additional related works. Previous works on ERM mainly focus on its sample complexity, started
by Cole and Roughgarden [13]. While ERM is suitable for the case of i.i.d. values [25], the literature
on sample complexity has expanded to more general cases of non-i.i.d. values and multi-dimensional
values, e.g. [31, 17, 22, 23], or considering non-truthful auctions, e.g. [24]. Babaioff et al. [5] study
the performance of ERM with just two samples. While this literature assumes that samples are
exogenous, our main contribution is to consider endogenous samples that are collected from bidders
who are affected by the outcome of the learning algorithm and hence have incentive to manipulate
the samples.

2We use a(n) = o(b(n)) to denote limn→+∞
a(n)
b(n)

= 0.
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Some works study repeated auctions but with myopic (non-strategic) bidders [7, 30, 12, 10]. Existing
works about non-myopic (strategic) bidders make different assumptions on bidders’ behavior: bidders
can play best responses [2, 3, 15, 21], use no-regret learning algorithms [8], or are assumed to bid
truthfully if the mechanism is ε-approximately incentive-compatible [1]. Our work makes the last
assumption. This assumption is reasonable because in our models, there is a large pool of bidders,
making it difficult for bidders to find best responses. To find a best response, bidders have to collect
a lot of information about other bidders and do a large amount of computation; when the cost of
searching for a better response exceeds ε, the bidder is better-off bidding truthfully.

Existing works on repeated auctions against strategic bidders have proposed various types of algo-
rithms to maximize revenue (e.g., [2, 3, 15, 21, 29, 1]). We complement that line of works by showing
that ERM, the most fundamental algorithm we believe, has good performance as well.

Other works about incentive-aware learning (e.g., [16, 26, 6, 19]) consider settings different from
ours. For example, [16] and [26] study repeated auctions where buyers’ values are drawn from some
distribution at first and then fixed throughout. The seller knows the distribution and tries to learn the
exact values, which is different from our assumption that the distribution is unknown to the seller.

2 Main Application: A Two-Phase Model

Here we consider a two-phase model as a real-world scenario where strategic bidding affects ERM:
the seller first runs second price auctions with no reserve for some time to collect samples, and then
use these samples to set reserve prices by ERM in the second phase. This model can be regarded as
an “exploration and exploitation” learning algorithm in repeated auctions, and we will show that this
algorithm can be approximately incentive-compatible and revenue-optimal.

2.1 The Model

A two-phase model is denoted by TP(M, P ;F,T ,m,K, S), where M is a truthful, prior-
independent mechanism, P is a price learning function, and T = (T1, T2) are the numbers of
auctions in the two phases. We do not assume that every bidder participates in all auctions. Instead,
we assume that each bidder participates in no more than m1,m2 auctions in the two phases, respec-
tively; m = (m1,m2). We use K = (K1,K2) to denote the numbers of bidders in the auctions of
the two phases.3 S = S1 × · · · × Sn is the strategy space, where si ∈ Si : Rmi,1+mi,2+ → Rmi,1+ is a
strategy of bidder i = 1, . . . , n. The procedure is:

• At the beginning, each bidder realizes vi = (vi,1, . . . , vi,mi,1+mi,2) i.i.d. drawn from F .
Let v−i denote the values of bidders other than i. Bidder i knows vi but does not know v−i.

• In the exploration phase, T1 auctions are run usingM and bidders bid according to some
strategy s ∈ S. Each auction has K1 bidders and each bidder i participants in mi,1 ≤ m1

auctions. The auctioneer observes a random vector of bids b = (b1, . . . , bT1K1
) with the

following distribution: let I be an index set corresponding to bidder i, with size |I| = mi,1;
then b = (bI , b−I), where bI ∼ si(vi), and b−I ∼ s−i(v−i).

• In the exploitation phase, T2 second price auctions (K2 ≥ 2) or posted price auctions
(K2 = 1) are run, with reserve price p = P (b). Each auction has K2 bidders and each
bidder i participants in mi,2 ≤ m2 auctions. The auctions in this phase are truthful because
p has been fixed.

Utilities. Denote the utility of bidder i as:

UTP
i (vi, bI , b−I) = UMi (vi, bI , b−I) +

mi,1+mi,2∑
t=mi,1+1

uK2(vi,t, P (bI , b−I)), (1)

3It is well-known that when there are n bidders with i.i.d. regular value distributions in one auction, a second
price auction as a prior-independent mechanism is (1− 1/n)-revenue optimal. But in our two-phase model, the
numbers of bidders in each auction, K1 and K2, can be small, e.g., 1 or 2. With few bidders, prior-independent
mechanisms do not have good revenue.

4



where UMi (vI , bI , b−I) is the utility of bidder i in the first phase, and uK2(v, p) is the interim utility
of a bidder with value v in a second price auction with reserve price p among K2 ≥ 1 bidders:

uK2(v, p) = EX2,...,XK2
∼F

[(
v −max{p,X2, . . . , XK2

}
)
· I
[
v > max{p,X2, . . . , XK2

}
]]
. (2)

The interim utility of bidder i in the two-phase model is Ev−i∼F
[
UTP
i (vi, bI , b−I)

]
.

Approximate Bayesian incentive-compatibility. We use the additive version of the solution concept
of an ε-Bayesian-Nash equilibrium (ε-BNE), i.e., in such a solution concept, no player can improve
her utility by more than ε by deviating from the equilibrium strategy. We say a mechanism is
ε-approximately Bayesian incentive-compatible (ε-BIC) if truthful bidding is an ε-BNE, i.e., if for
any vi ∈ Rmi,1+mi,2+ , any bI ∈ Rmi,1+ ,

Ev−i∼F
[
UTP
i (vi, bI , v−I)− UTP

i (vi, vI , v−I)
]
≤ ε,

If a mechanism is ε-BIC and limn→∞ ε = 0, then each bidder knows that if all other bidders are
bidding truthfully then the gain from any deviation from truthful bidding is negligible for her. To
realize that strategic bidding cannot benefit them much, bidders do not need to know the underlying
distribution, but only the fact that the mechanism is ε-BIC. We are therefore going to assume in this
paper that, in such a case, all bidders will bid truthfully.4

Approximate revenue optimality. We say that a mechanism is (1− ε) revenue optimal, for some
0 < ε < 1, if its expected revenue is at least (1 − ε) times the expected revenue of Myerson
auction.5 Huang et al. [25] show that a one-bidder auction with posted price set by ERMc (for an
appropriate c) and with N samples from the value distribution is (1− ε) revenue optimal with ε =

O((N−1 logN)2/3) for MHR distributions and ε = O(
√
DN−1 logN) for bounded distributions.

The i.i.d. assumption. Our assumption of i.i.d. values is reasonable because in our scenario there is
a large population of bidders, and we can regard this population as a distribution and each bidder as a
sample from it. So from each bidder’s perspective, the values of other bidders are i.i.d. samples from
this distribution. Then the ε-BIC notion implies that when others bid truthfully, it is approximately
optimal for bidder i to bid truthfully no matter what her value is.

2.2 Incentive-Compatibility and Revenue Optimality

Now we show that, as the incentive-awareness measure of P becomes lower, the price learning
function becomes more incentive-aware in the sense that bidders gain less from non-truthful bidding:
Theorem 2.1. In TP(M, P ;F,T ,m,K, S), truthful bidding is an ε-BNE, where,

• for any P and any bounded F , ε = m2D∆worst
T1K1,m1

, and

• for any MHR F , if we fix P = ERMc with m1

T1K1
≤ c ≤ 1

4e and m1 = o(
√
T1K1), then

ε = O
(
m2v

∗∆worst
T1K1,m1

)
+O

(
m2v

∗
√
T1K1

)
, where v∗ = arg maxv{v[1− F (v)]}.

The constants in big O’s are independent of F and c.

Combined with Theorem 1.3 which upper bounds the incentive-awareness measure, we can obtain
explicit bounds on truthfulness of the two-phase model by plugging in N = T1K1 and m = m1.
Precisely, for any bounded F , ε = O

(
D11/3m2m

2/3
1

log2(T1K1)
(T1K1)1/3

)
if m1 = o(

√
T1K1) and m1

T1K1
≤

c ≤ 1
2D . For any MHR F , ε = O

(
v∗m2m1

log3(T1K1)√
T1K1

)
if m1 = o(

√
T1K1) and m1

T1K1
≤ c ≤ 1

4e .

4One may consider transforming an ε-BIC mechanism to an exact BIC mechanism using some current
techniques (e.g., Cai et al. [11], Conitzer et al. [14]) in our model. However, current techniques need to
know the value distribution, which is unavailable here. Even if we assume the distribution is available, those
transformations result in an O(n

√
ε) revenue loss; since ε is at least Ω(1/

√
n) in our setting, the revenue loss

does not converge to 0 as n→∞.
5One may take the optimal ε-BIC auction rather than the exact BIC Myerson auction as the revenue

benchmark. However, as shown by e.g., Lemma 1 of Brustle et al. [9], the revenue of the optimal ε-BIC auction
is at most O(ε) greater than that of Myerson auction; so all our revenue approximation results hold for this
stronger benchmark except for an additive O(ε) term.
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Thus, for both cases, keeping all the parameters except T1 constant (in particular m1 and m2 are
constants) implies that ε→ 0 at a rate which is not slower than O((T1)−1/3 log3 T1) as T1 → +∞.

To simultaneously obtain both approximate BIC and approximate revenue optimality, a certain
balance between the number of auctions in the two phases must be maintained. Few auctions in the
first phase and many auctions in the second phase hurt truthfulness as the loss from non-truthful
bidding (i.e., losing in the first phase) is small compared to the gain from manipulating the reserve
price in the second phase. Many auctions in the first phase are problematic as we do not have any
good revenue guarantees in the first phase (since we allow any truthfulM). Thus, a certain balance
must be maintained, as expressed formally in the following theorem:
Theorem 2.2. Assume that K2 ≥ K1 ≥ 1. Let m = m1 +m2. In TP(M,ERMc;F,T ,m,K, S),
to simultaneously obtain ε1-BIC and (1 − ε2) revenue optimality (assuming truthful bidding), it
suffices to set the parameters as follows:

• If F is an MHR distribution, m
T1K1

≤ c ≤ 1
4e , m = o(

√
T1K1), then

ε1 = O
(
v∗m2 log3(T1K1)√

T1K1

)
, and ε2 = O

(
T1

T +
[
log(T1K1)
T1K1

] 2
3

)
.

• If F is bounded and regular, m
T1K1

≤ c ≤ 1
2D , m = o(

√
T1K), then

ε1 = O
(
D11/3m5/3 log2(T1K1)

(T1K1)1/3

)
, and ε2 = O

(
T1

T +
√

D·log(T1K1)
T1K1

)
.6

The proof is given in Appendix C. This theorem makes explicit the fact that in order to simultaneously
obtain approximate BIC and approximate revenue optimality, T1 cannot be too small nor too large:
for approximate revenue optimality we need T1 � T and for approximate BIC we need, e.g., T1 �
(v∗)2m4 log6(v∗m)/K1 for MHR distributions, and T1 � D11m5 log6(Dm)/K1 for bounded
distributions. When setting the parameters in this way, both ε1 and ε2 go to 0 as T →∞.

2.3 Multi-Unit Extension

The auction in the exploitation phase can be generalized to a multi-unit Vickrey auction with
anonymous reserve, where k ≥ 1 identical units of an item are sold to K2 unit-demand bidders and
among those bidders whose bids are greater than the reserve price p, at most k bidders with largest
bids win the units and pay the maximum between p and the (k + 1)-th largest bid. The multi-unit
Vickrey auction with an anonymous reserve price is revenue-optimal when the value distribution is
regular, and the optimal reserve price does not depend on k or K2 according to Myerson [32]. Thus
the optimal reserve price can also be found by ERMc. All our results concerning truthfulness, e.g.,
Theorem 2.1, still hold for the multi-unit extension with any k ≥ 1. Moreover, Theorem 2.2 also
holds because we have already considered the multi-unit extension in its proof in Appendix C.

2.4 Two-Phase ERM Algorithm in Repeated Auctions

The two-phase model with ERM as the price learning function can be seen as a learning algorithm in
the following setting of repeated auctions against strategic bidders: there are T rounds of auctions,
there are K ≥ 1 bidders in each auction, and each bidder participates in at most m auctions. The
algorithm, which we call “two-phase ERM”, works as follows: in the first T1 rounds, run any truthful,
prior-independent auctionM (e.g., the second price auction with no reserve); in the later T2 = T −T1
rounds, run second price auction with reserve p = ERMc(b1, . . . , bT1K) where b1, . . . , bT1K are the
bids from the first T1 auctions. T1 and c are adjustable parameters.

In repeated games, one may also consider ε-perfect Bayesian equilibrium (ε-PBE) as the solution
concept besides ε-BNE. A formal definition is given in Appendix C.4 but roughly speaking, ε-

6The requirement that F is regular in addition to being bounded comes from the fact that ERMc approximates
the optimal revenue in an auction with many bidders only for regular distributions. In fact, the sample complexity
literature on ERMc only studies the case of one bidder (which is, in our notation, K2 = 1). In this case, i.e., if
the second phase uses posted price auctions, we do not need the regularity assumption. To capture the case of
general K2, we make a technical observation that for regular distributions (1− ε) revenue optimality for a single
buyer implies (1− ε) revenue optimality for many buyers (Lemma C.1). We do not know if this is true without
the regularity assumption or if this observation – which may be of independent interest – was previously known.
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PBE requires that the bidding of each bidder at each round of auction ε-approximately maximizes
the total expected utility in all future rounds, conditioning on any observed history of allocations
and payments. Note that the history may leak some information about the historical bids of other
buyers and these bids will affect the seller’s choice of mechanisms in future rounds. Similar to
the ε-BNE notion, we can show that the two-phase ERM algorithm satisfies: (1) truthful bidding

is an O
(

log2(T1K) 3

√
D11Km
T1

)
-PBE; (2)

(
1−O

(
T1

T +
√

D log(T1K)
T1K

))
revenue optimality, for

bounded distributions; and similar results for MHR distributions. Choosing T1 = Õ(T
2
3 ), which

maximizes the revenue, we obtain Õ(T−
2
9 )-truthfulness and (1 − Õ(T−

1
3 )) revenue optimality,

where we assume D, m, and K to be constant.7

Under the same setting, Liu et al. [29] and Abernethy et al. [1] design approximately truthful and
revenue optimal learning algorithms using differential privacy techniques. We can compare two-phase
ERM and their algorithms. Firstly, they make a similar assumption as ours that m = o(

√
T/K),

in order to obtain approximate truthfulness and revenue optimality at the same time. In terms of
truthfulness notion, Liu et al. [29] assume that bidders play an exact PBE instead of ε-PBE, so their
quantitative result is incomparable with ours. Their notion of exact PBE is too strong to be practical
because bidders need to collect a lot of information about other bidders and do a large amount of
computation to find the exact equilibrium, while our notion guarantees bidders of approximately
optimal utility as long as they bid truthfully. Although our truthfulness bound is worse than the bound
of [1], which is Õ( 1√

T
), we emphasize that their ε-truthfulness notion is weaker than ours: in their

definition, each bidder cannot gain more than ε in current and future rounds if she deviates from
truthful bidding only in the current round, given any fixed future strategy. But in our definition, each
bidder cannot gain more than ε if she deviates in current and all future rounds. Our algorithm is
easier to implement and more time-efficient than theirs, and works for unbounded distribution while
theirs only support bounded distributions because they need to discretize the value space.

One may wonder whether we can do exploration and exploitation at the same time to improve the
performance of ERM, compared to doing them in a two-phase manner. We argue that this is suitable
for the BIC truthfulness notion but not for the PBE notion. For the BIC notion, we can change the
two-phase algorithm which fixes the price in the second phase to continuously update the reserve
price in the second phase; this improves revenue without affecting BIC truthfulness. But for the PBE
notion, we cannot do exploration and exploitation at the same time. Consider this example: Suppose
every auction has only one bidder. In the first round bidder A submits bid 1 and 1 is set to be the
reserve price for the second round. In the second round, bidder B submits 0.9 and loses, so she knows
that the first round bid is greater than 0.9. Suppose bidder B will join the next round, then she can
strategize her bid based on the information “the first round bid is greater than 0.9”. So the belief
of bidder B on bidder A’s value distribution is no longer F , and our argument, which relies on the
assumption of i.i.d. value distribution, fails. Instead, doing exploration and exploitation separately
preserves approximate incentive-compatibity for the PBE notion (see Appendix C.4).

3 A Second Application: Uniform-Price Auctions

The notion of an incentive-awareness measure (recall Definition 1.2) has implications regarding
the classic uniform-price auction model, which we believe are of independent interest. In a static
uniform-price auction we have N copies of a good and N unit-demand bidders with i.i.d. values v
from F that submit bids b. The auctioneer then sets a price p = P (b). Each bidder i whose value vi
is above or equal to p receives a copy of the good and pays p, obtaining a utility of vi − p; otherwise
the utility is zero. Azevedo and Budish [4] show that this auction is “incentive-compatible in the
large” which means that truthfulness is an ε-BNE and ε goes to zero as N goes to infinity. They
assume bidders’ value distribution has a finite support and their bids must be chosen from this finite
support as well. They mention that allowing continuous supports and arbitrary bids is challenging.

In this context, taking P = ERMc is very natural when the auctioneer aims to maximize revenue.
Indeed, Goldberg et al. [20] suggest to use the uniform-price auction with P = ERMc, where c = 1

N ,
as a revenue benchmark for evaluating other truthful auctions they design.

7The Õ notation omits polylogarithmic terms.
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When the price function is P = ERMc= 1
N , our analysis of the incentive-awareness measure general-

izes the result of [4] to bounded and to MHR distributions. Moreover, we generalize their result to the
case where coalitions of at most m bidders can coordinate bids and jointly deviate from truthfulness.
Theorem 3.1. In the uniform-price auction, suppose that any m bidders can jointly deviate from
truthful bidding, then no bidder can obtain ε more utility (we call this (m, ε)-group BIC), where,

• for any P and any bounded F , ε = D∆worst
N,m , and

• for any MHR distribution F , if we fix P = ERMc with m
N ≤ c ≤

1
4e and m = o(

√
N), then

ε = O
(
v∗∆worst

N,m

)
+O

(
v∗√
N

)
, where v∗ = arg maxv{v[1− F (v)]}.

The constants in big O’s are independent of F and c.

Proof of Theorem 3.1 for bounded distributions. Denote a coalition of m bidders by an index set
I ⊆ {1, . . . , N}, and the true values of all bidders by (vI , v−I). When other bidders bid v−I
truthfully, and the coalition bids bI instead of vI , the reduction of price is at most

P (vI , v−I)− P (bI , v−I) ≤ P (vI , v−I)δI(vI , v−I) ≤ P (vI , v−I)δ
worst
m (v−I) ≤ Dδworst

m (v−I),

by Definition 1.2 and by the fact that all values are upper-bounded by D. Then for each bidder i ∈ I ,
the increase of her utility by such a joint deviation is no larger than the reduction of price, i.e.

Ev−I [ui(vI , P (bI , v−I))− ui(vI , P (vI , v−I))] ≤ Ev−I [P (vI , v−I)− P (bI , v−I)]

≤ DEv−I
[
δworst
m (v−I)

]
= D∆worst

N,m .

The proof of this theorem for MHR distributions is similar to the proof of Theorem 2.1, thus omitted.

Combining with Theorem 1.3, we conclude that the uniform-price auction with P = ERMc (for
the c’s mentioned there) is (m, ε)-group BIC with ε converging to zero at a rate not slower than
O(m2/3 log2N

N1/3 ) for bounded distributions and O(m log3N√
N

) for MHR distributions (constants in these
big O’s depend on distributions).

Theorem 3.1 also generalizes the result in [28] which is only for bounded distributions and m = 1.

4 More Discussions on Incentive-awareness Measures

4.1 Overview of the Proof for Upper Bounds on ∆worst
N,m

Here we provide an overview of the proof of Theorem 1.3. Details are in Appendix B.

Firstly, we show an important property of ERMc: suppose c ≥ m
N , for any m values vI , any N −m

values v−I , and any m values vI that are greater than or equal to the maximum value in v−I , we have
ERMc(vI , v−I) ≥ ERMc(vI , v−I). As a consequence, δworst

m (v−I) = δI(vI , v−I).

Based on this property, we transfer the expectation in the incentive-awareness measure in the following
way:

∆worst
N,m = E[δworst

m (v−I)] = E[δI(vI , v−I)] =

∫ 1

0

Pr[δI(vI , v−I) > η]dη

≤
∫ 1

0

(
Pr[δI(vI , v−I) > η | E] Pr[E] + Pr[E]

)
dη =

∫ 1

0

Pr[δI(vI , v−I) > η ∧ E]dη + Pr[E],

where E denotes the event that the index k∗ = arg maxi>cN{ivi} (which is the index selected by
ERMc) satisfies k∗ ≤ dN , E denotes the complement of E, and the probability in Pr[E] is taken
over the random draw of N −m i.i.d. samples from F , with other m samples fixed to be the upper
bound (can be +∞) of the distribution. For any value distribution, we prove that the first part∫ 1

0

Pr[δI(vI , v−I) > η ∧ E]dη ≤ O

(
3

√
m2

d8
log2N

3
√
N

)
,
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with some constructions of auxiliary events and involved probabilistic argument. And we further
tighten this bound to O

(
m
d7/2

log3N√
N

)
for MHR distribution by leveraging its properties.

The final part of the proof is to bound Pr[E]. For bounded distribution, we choose d = 1/D.
Since the support of the distribution is bounded by [1, D], N · vN ≥ N , while for any k ≤ dN ,
kvk ≤ ( 1

DN)D = N ≤ NvN . ERMc therefore never chooses an index k ≤ dN (recall that
in case of a tie, ERMc picks the larger index). This implies Pr[E] = Pr[k∗ ≤ dN ] = 0 for
bounded distribution. For MHR distribution, we choose d = 1

2e and show Pr[E] = O
(

1
N

)
. As the

corresponding proof is quite complicated, we omit it here.

4.2 Lower Bounds on ∆worst
N,m and on the Approximate BIC Parameter, ε1

Theorem 1.3 gives an upper bound on ∆worst
N,m for bounded and MHR distributions and for a specific

range of c’s. Here we briefly discuss the lower bound, with details given in Appendix F.

Lavi et al. [28] show that for the two-point distribution v = 1 and v = 2, each w.p. 0.5, ∆worst
N,1 =

Ω(N−1/2), when c = 1/N . We adopt their analysis to provide a similar lower bound for [1, D]-
bounded distributions and the corresponding range of c’s. Let F be a two-point distribution where for
X ∼ F , Pr[X = 1] = 1− 1/D and Pr[X = D] = 1/D.
Theorem 4.1. For the above F , for any c ∈ [mN ,

1
2D ], ERMc gives ∆worst

N,m = Ω( 1√
N

) where the
constant in Ω depends on D.

Note that ∆worst
N,m only upper bounds the ε1-BIC parameter ε1 in the two-phase model: a lower bound

on ∆worst
N,m does not immediately implies a lower bound on ε1. Still, a direct argument will show that

the above distribution F gives the same lower bound on ε1. For simplicity let K1 = K2 = 2 and
suppose bidder i participates in m1 and m2 auctions in the two phases, respectively. Let N = T1K1

and assume m1 = o(
√
N). Suppose the first-phase mechanismM is the second price auction with

no reserve price. Then in the two-phase model with ERMc, ε1 must be Ω( m2√
N

) to guarantee ε1-BIC.

It remains open to prove a lower bound for MHR distributions, and to close the gap between our
O(N−1/3 log2N) upper bound and the Ω(N−1/2) lower bound for bounded distributions.

4.3 Unbounded Regular Distributions

Theorem 2.2 shows that, in the two-phase model, approximate incentive-compatibility and revenue
optimality can be obtained simultaneously for bounded (regular) distributions and for MHR distri-
butions. A natural question would then be: what is the largest class of value distribution we can
consider? Note that for non-regular distributions, Myerson [32] shows that revenue optimality cannot
be guaranteed by anonymous reserve price, so ERM is not a correct choice. Thus we generalize
our results to the class of regular distributions that are unbounded and not MHR. Here we provide a
sketch, with details given in Appendix G.

Our results can be generalized to α-strongly regular distributions with α > 0. As defined in [13], a
distribution F with positive density function f on its support [A,B] where 0 ≤ A ≤ B ≤ +∞ is
α-strongly regular if the virtual value function φ(x) = x− 1−F (x)

f(x) satisfies φ(y)−φ(x) ≥ α(y− x)

whenever y > x (or φ′(x) ≥ α if φ(x) is differentiable). As special cases, regular and MHR
distributions are 0-strongly and 1-strongly regular distributions, respectively. For any α > 0, we
obtain bounds similar to MHR distributions on ∆worst

N,m and on approximate incentive-compatibility
in the two-phase model and the uniform-price auction. Specifically, if F is α-strongly regular then

∆worst
N,m = O

(
m log3N√

N

)
, if m = o(

√
N) and m

N ≤
(

logN
N

)1/3
≤ c ≤ α1/(1−α)

4 .

It remains an open problem for future research whether ERMc is incentive-compatible in the large
for regular but not α-strongly regular distributions for any α > 0. For these distributions the choice
of c must be more sophisticated since it creates a clash between approximate incentive-compatibility
and approximate revenue optimality. Intuitively, a large c (for example, a constant) will hurt revenue
optimality and a too small c will hurt incentive-compatibility. In Appendix G, we provide examples
and proofs to formally illustrate such a fact, and further discuss our conjecture that some intermediate
c can maintain the balance between incentive-compatibility and revenue optimality.
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Broader Impact

This work is mainly theoretical. It provides some intuitions and guidelines for potential practices, but
does not have immediate societal consequences. A possible positive consequence is: the auction we
consider uses an anonymous reserve price, while most of the related works on repeated auctions use
unfair personalized prices. We do not see negative consequences.
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