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Abstract

The Empirical Revenue Maximization (ERM) is one of the most important price1

learning algorithms in auction design: as the literature shows it can learn approxi-2

mately optimal reserve prices for revenue-maximizing auctioneers in both repeated3

auctions and uniform-price auctions. However, in these applications the agents4

who provide inputs to ERM have incentives to manipulate the inputs to lower the5

outputted price. We generalize the definition of an incentive-awareness measure6

proposed by Lavi et al (2019), to quantify the reduction of ERM’s outputted price7

due to a change of m ≥ 1 out of N input samples, and provide specific conver-8

gence rates of this measure to zero as N goes to infinity for different types of9

input distributions. By adopting this measure, we construct an efficient, approxi-10

mately incentive-compatible, and revenue-optimal learning algorithm using ERM11

in repeated auctions against non-myopic bidders, and show approximate group12

incentive-compatibility in uniform-price auctions.13

1 Introduction14

In auction theory, it is well-known [30] that, when all buyers have values that are independently and15

identically drawn from a regular distribution F , the revenue-maximizing auction is simply the second16

price auction with anonymous reserve price p∗ = arg max{p(1− F (p)}: if the highest bid is at least17

p∗, then the highest bidder wins the item and pays the maximum between the second highest bid18

and p∗. The computation of p∗ requires the exact knowledge of the underlying value distribution,19

which is unrealistic because the value distribution is often unavailable in practice. Many works (e.g.,20

[11, 15, 23]) on sample complexity in auctions have studied how to obtain a near-optimal reserve21

price based on samples from the distribution F instead of knowing the exact F . One of the most22

important (and most fundamental) price learning algorithms in those works is the Empirical Revenue23

Maximization (ERM) algorithm, which simply outputs the reserve price that is optimal on the uniform24

distribution over samples (plus some regularization to prevent overfitting).25

Definition 1.1 (c-Guarded Empirical Revenue Maximization, ERMc). Draw N samples from a
distribution F and sort them non-increasingly, denoted by v1 ≥ v2 ≥ · · · ≥ vN . Given some
regularization parameter 0 ≤ c < 1, choose:

i∗ = arg max
cN<i≤N

{i · vi}, define ERMc(v1, . . . , vN ) = vi∗ .

Assume that the smaller sample (with the larger index) is chosen in case of ties.26

ERMc was first proposed by Dhangwatnotai et al. [15] and then extensively studied by Huang27

et al. [23]. They show that the reserve price outputted by ERMc is asymptotically optimal on the28

underlying distribution F as the number of samples N increases if F is bounded or has monotone29

hazard rate, with an appropriate choice of c. Other papers [5, 25] have continued to study ERMc.30
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However, when ERM is put into practice, it is unclear how the samples can be obtained since many31

times there is no impartial sampling source. A natural solution is endogenous sampling. For example,32

in repeated second price auctions, the auctioneer can use the bids in previous auctions as samples33

and run ERM to set a reserve price at each round. But this solution has a challenge of strategic issue:34

since bidders can affect the determination of future reserve prices, they might have an incentive to35

underbid in order to increase utility in future auctions.36

Another example of endogenous sampling is the uniform-price auction. In a uniform-price auction37

the auctioneer sells N copies of a good at some price p to N bidders with i.i.d. values v from F who38

submit bids b. Bidders who bid at least p obtain one copy and pay p. The auctioneer can set the39

price to be p = ERM0(v) to maximize revenue if bids are equal to values. But Goldberg et al. [17]40

show that this auction is not incentive-compatible as bidders can lower the price by strategic bidding.41

Therefore, the main question we consider in this paper is: To what extent the presence of strategic42

agents undermines ERM with endogenous sampling?43

To formally answer the question, we adopt a notion called “incentive-awareness measure” originally44

proposed by Lavi et al. [26] under bitcoin’s fee market context, which measures the reduction of a45

price learning function P due to a change of at most m samples out of the N input samples.46

Definition 1.2 (Incentive-awareness measures). Let P : RN+ → R+ be a function (e.g., ERMc) that
maps N samples to a reserve price. Draw N i.i.d. values v1, . . . , vN from a distribution F . Let
I ⊆ {1, . . . , N} be an index set of size |I| = m, and vI = {vi | i ∈ I}, v−I = {vj | j /∈ I}. A
bidder can change vI to any m non-negative bids bI , hence change the price from P (vI , v−I) to
P (bI , v−I). Define the incentive-awareness measure:

δI(vI , v−I) = 1−
infbI∈Rm+ P (bI , v−I)

P (vI , v−I)
,

and worst-case incentive-awareness measures:47

δworst
m (v−I) = sup

vI∈Rm+
[δI(vI , v−I)], ∆worst

N,m = Ev−I∼F [δworst
m (v−I)].

A smaller incentive-awareness measure means that the reserve price is decreased by a less amount48

when a bidder bids strategically. Since the reduction of reserve price usually increases bidders’49

utility, a smaller incentive-awareness measure implies that a bidder cannot benefit a lot from strategic50

bidding, hence the name “incentive-awareness measure”.151

Lavi et al. [26] defined incentive-awareness measures only for m = 1 and showed that for any52

distribution F with a finite support size, ∆worst
N,1 → 0 as N → ∞. Later, Yao [31] showed that53

∆worst
N,1 → 0 for any continuous distribution with support included in [1, D]. They did not provide54

specific convergent rates of ∆worst
N,1 . We generalize their definition to allow m ≥ 1, which is crucial in55

our two applications to be discussed. Our main theoretical contribution is to provide upper bounds on56

∆worst
N,m for two types of value distributions F : the class of Monotone Hazard Rate (MHR) distributions57

where f(v)
1−F (v) is non-decreasing over the support of the distribution (we use F to denote the CDF and58

f for PDF) and the class of bounded distributions which consists of all (continuous and discontinuous)59

distributions with support included in [1, D]. MHR distribution can be unbounded so we are the first60

to consider incentive-awareness measures for unbounded distributions.61

Theorem 1.3 (Main). Let P = ERMc. The worst-case incentive-awareness measure is bounded by62

• for MHR F , ∆worst
N,m = O

(
m log3N√

N

)
, if m = o(

√
N) and m

N ≤ c ≤
1
4e .263

• for bounded F , ∆worst
N,m = O

(
D8/3m2/3 log2N

N1/3

)
, if m = o(

√
N) and m

N ≤ c ≤
1
2D .64

The constants in the two big O’s are independent of F and c.65

This theorem implies that as long as the fraction of samples controlled by a bidder is relatively small,66

the strategic behavior of each bidder has little impact on ERM provided that other bidders are truthful.67

We will discuss intuitions and difficulties of the proof later and give an overview in Section 4.68

1Lavi et al. [26] use the name “discount ratio” which we feel can be confused with the standard meaning of a
discount ratio in repeated games.

2We use a(n) = o(b(n)) to denote limn→+∞
a(n)
b(n)

= 0.
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Repeated auctions against non-myopic bidders. Besides theoretical analysis, we apply the69

incentive-awareness measure to real-world scenarios to demonstrate the effect of strategic bid-70

ding on ERM. The main application we consider is repeated auctions where bidders participate in71

multiple auctions and have incentives to bid strategically to affect the auctions the seller will use in72

the future (Section 2). We consider a two-phase learning algorithm: the seller first runs second price73

auctions with no reserve for some time to collect samples, and then use these samples to set reserve74

prices by ERM in the second phase. The upper bound on the incentive-awareness measure of ERM75

implies that this algorithm is approximately incentive-compatible.76

Kanoria and Nazerzadeh [25], Liu et al. [27], and Abernethy et al. [1] consider repeated auctions77

scenarios similar to ours. Kanoria and Nazerzadeh [25] set personalized reserve prices by ERM in78

repeated second-price auctions, so at least two bidders are needed in each auction and they will face79

different reserve prices. We use anonymous reserve price so we allow only one bidder to participate80

in the auctions and when there are more than one bidder they face the same price, thus preventing81

discrimination. Liu et al. [27] and Abernethy et al. [1] design approximately incentive-compatible82

algorithms using differential privacy techniques rather than pure ERM. Comparing with them, our83

two-phase ERM algorithm is more practical as it is much simpler, and their algorithms rely on the84

boundedness of value distributions while we allow unbounded distributions. Moreover, their results85

require a large number of auctions while ours need a large number of samples in the first phase which86

can be obtained by either few bids in many auctions, many bids in few auctions, or combined.87

Uniform-price auctions and incentive-compatibility in the large. Another scenario to which we88

apply the incentive-awareness measure of ERM is uniform-price auctions (Section 3). Azevedo and89

Budish [4] show that, uniform-price auctions are incentive-compatible in the large in the sense that90

truthful bidding is an approximate equilibrium when there are many bidders in the auction. In fact,91

incentive-compatibility in the large is the intuition of Theorem 1.3: when N is large, no bidders can92

influence the learned price by much. The proof in [4] directly makes use of this intuition, showing93

that the bid of one bidder can affect the empirical distribution consisting of the N bids only by a little.94

However, their argument, which crucially relies on the assumption that bidders’ value distribution95

has a finite support and bids must be chosen from this finite support as well, fails when the value96

distribution is continuous or bids can be any real numbers, as what we allow. We instead, appeal to97

some specific properties of ERM to show that it is incentive-compatible in the large.98

Additional related works. Previous works on ERM mainly focus on its sample complexity, started99

by Cole and Roughgarden [11]. While ERM is suitable for the case of i.i.d. values (e.g., [23]), the100

literature on sample complexity has expanded to more general cases of non-i.i.d. values and multi-101

dimensional values, e.g. [29, 14, 19, 20], or considering non-truthful auctions, e.g. [21]. Babaioff102

et al. [5] study the performance of ERM with just two samples. While this literature assumes that103

samples are exogenous, our main contribution is to consider endogenous samples that are collected104

from bidders who are affected by the outcome of the learning algorithm.105

Some works study repeated auctions but with myopic bidders [7, 28, 10, 9]. Existing works about106

non-myopic bidders focus on designing various learning algorithms to maximize revenue assuming107

bidders playing best responds [2, 3, 12, 18] or using no-regret learning algorithm [8]. We complement108

that line of works by showing that ERM, the most fundamental algorithm we believe, also has good109

performance in repeated auctions against strategic bidders.110

Other works about incentive-aware learning (e.g., [13, 24, 6, 16]) consider settings different from111

ours. For example, [13] and [24] study repeated auctions where buyers’ values are drawn from some112

distribution at first and then fixed throughout. The seller knows the distribution and tries to learn the113

exact values, which is different from our assumption that the distribution is unknown to the seller.114

2 Main Application: A Two-Phase Model115

Here we consider a two-phase model as a real-world scenario where strategic bidding affects ERM:116

the seller first runs second price auctions with no reserve for some time to collect samples, and then117

use these samples to set reserve prices by ERM in the second phase. This model can be regarded as118

an “exploration and exploitation” learning algorithm in repeated auctions, and we will show that this119

algorithm can be approximately incentive-compatible and revenue-optimal.120
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2.1 The Model121

A two-phase model is denoted by TP(M, P ;F,T ,m,K, S), where M is a truthful, prior-122

independent mechanism, P is a price learning function, T = (T1, T2) are the numbers of auctions in123

the two phases, m = (m1,m2) are upper bounds on the number of auctions each bidder participates124

in, K = (K1,K2) are the number of bidders in auctions, S = S1 × · · · × Sn is the strategy space,125

where si ∈ Si : Rmi,1+mi,2+ → Rmi,1+ is a strategy of bidder i = 1, . . . , n. The procedure is:126

• At the beginning, each bidder realizes vi = (vi,1, . . . , vi,mi,1+mi,2) i.i.d. drawn from F .127

Let v−i denote the values of bidders other than i. Bidder i knows vi but does not know v−i.128

• In the exploration phase, T1 auctions are run usingM and bidders bid according to some129

strategy s ∈ S. Each auction has K1 bidders and each bidder i participants in mi,1 ≤ m1130

auctions. The auctioneer observes a random vector of bids b = (b1, . . . , bT1K1) with the131

following distribution: let I be an index set corresponding to bidder i, with size |I| = mi,1;132

then b = (bI , b−I), where bI ∼ si(vi), and b−I ∼ s−i(v−i).133

• In the exploitation phase, T2 second price auctions (K2 ≥ 2) or posted price auctions134

(K2 = 1) are run, with reserve price p = P (b). Each auction has K2 bidders and each135

bidder i participants in mi,2 ≤ m2 auctions. The auctions in this phase are truthful because136

p has been fixed.137

Utilities. Denote the utility of bidder i as:138

UTP
i (vi, bI , b−I) = UMi (vi, bI , b−I) +

mi,1+mi,2∑
t=mi,1+1

uK2(vi,t, P (bI , b−I)), (1)

where UMi (vI , bI , b−I) is the utility of bidder i in the first phase, and uK2(v, p) is the interim utility139

of a bidder with value v in a second price auction with reserve price p among K2 ≥ 1 bidders:140

uK2(v, p) = EX2,...,XK2
∼F

[(
v −max{p,X2, . . . , XK2

}
)
· I
[
v > max{p,X2, . . . , XK2

}
]]
. (2)

The interim utility of bidder i in the two-phase model is Ev−i∼F
[
UTP
i (vi, bI , b−I)

]
.141

Approximate Bayesian incentive-compatibility. We use the additive version of the solution concept142

of an ε-Bayesian-Nash equilibrium (ε-BNE), i.e., in such a solution concept, no player can improve143

her utility by more than ε by deviating from the equilibrium strategy. We say a mechanism is144

ε-approximately Bayesian incentive-compatible (ε-BIC) if truthful bidding is an ε-BNE, i.e., if for145

any vi ∈ Rmi,1+mi,2+ , any bI ∈ Rmi,1+ ,146

Ev−i∼F
[
UTP
i (vi, bI , v−I)− UTP

i (vi, vI , v−I)
]
≤ ε,

If a mechanism is ε-BIC and limn→∞ ε = 0, then each bidder knows that if all other bidders are147

bidding truthfully then the gain from any deviation from truthful bidding is negligible for her. To148

realize that strategic bidding cannot benefit them much, bidders do not need to know the underlying149

distribution, but only the fact that the mechanism is ε-BIC. We are therefore going to assume in this150

paper that, in such a case, all bidders will bid truthfully.151

Approximate revenue optimality. We say that a mechanism is (1− ε) revenue optimal, for some152

0 < ε < 1, if its expected revenue is at least (1 − ε) times the expected revenue of Myerson153

auction. Huang et al. [23] show that a one-bidder auction with posted price set by ERMc (for an154

appropriate c) and with N samples from the value distribution is (1− ε) revenue optimal with ε =155

O((N−1 logN)2/3) for MHR distributions and ε = O(
√
DN−1 logN) for bounded distributions.156

The i.i.d. assumption. Our assumption of i.i.d. values is reasonable because in our scenario there is157

a large population of bidders, and we can regard this population as a distribution and each bidder158

as a sample from it. So from each bidder’s perspective, the values of other bidders are i.i.d. from159

this distribution. Then the ε-BIC notion implies that when others bid truthfully, it is approximately160

optimal for bidder i to bid truthfully no matter what her value is.161

2.2 Incentive-Compatibility and Revenue Optimality162

Now we show that, as the incentive-awareness measure of P becomes lower, the price learning163

function becomes more incentive-aware in the sense that bidders gain less from non-truthful bidding:164
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Theorem 2.1. In TP(M, P ;F,T ,m,K, S), truthful bidding is an ε-BNE, where,165

• for any P and any bounded F , ε = m2D∆worst
T1K1,m1

, and166

• for any MHR F , if we fix P = ERMc with m1

T1K1
≤ c ≤ 1

4e and m1 = o(
√
T1K1), then167

ε = O
(
m2v

∗∆worst
T1K1,m1

)
+O

(
m2v

∗
√
T1K1

)
, where v∗ = arg maxv{v[1− F (v)]}.168

The constants in big O’s are independent of F and c.169

Combined with Theorem 1.3 which upper bounds the incentive-awareness measure, we can obtain170

explicit bounds on truthfulness of the two-phase model by plugging in N = T1K1 and m = m1.171

Precisely, for any bounded F , ε = O
(
D11/3m2m

2/3
1

log2(T1K1)
(T1K1)1/3

)
if m1 = o(

√
T1K1) and m1

T1K1
≤172

c ≤ 1
2D . For any MHR F , ε = O

(
v∗m2m1

log3(T1K1)√
T1K1

)
if m1 = o(

√
T1K1) and m1

T1K1
≤ c ≤ 1

4e .173

Thus, for both cases, keeping all the parameters except T1 constant (in particular m1 and m2 are174

constants) implies that ε→ 0 at a rate which is not slower than O((T1)−1/3 log3 T1) as T1 → +∞.175

To simultaneously obtain both approximate BIC and approximate revenue optimality, a certain176

balance between the number of auctions in the two phases must be maintained. Few auctions in the177

first phase and many auctions in the second phase hurt truthfulness as the loss from non-truthful178

bidding (i.e., losing in the first phase) is small compared to the gain from manipulating the reserve179

price in the second phase. Many auctions in the first phase are problematic as we do not have any180

good revenue guarantees in the first phase (since we allow any truthfulM). Thus, a certain balance181

must be maintained, as expressed formally in the following theorem:182

Theorem 2.2. Assume that K2 ≥ K1 ≥ 1 and let m = m1 + m2. In183

TP(M,ERMc;F,T ,m,K, S), to simultaneously obtain ε1-BIC and (1 − ε2) revenue optimal-184

ity (assuming truthful bidding), it suffices to set the parameters as follows:185

• If F is an MHR distribution, m
T1K1

≤ c ≤ 1
4e , m = o(

√
T1K1), then186

ε1 = O
(
v∗m2 log3(T1K1)√

T1K1

)
, and ε2 = O

(
T1

T +
[
log(T1K1)
T1K1

] 2
3

)
.187

• If F is bounded and regular, m
T1K1

≤ c ≤ 1
2D , m = o(

√
T1K), then188

ε1 = O
(
D11/3m5/3 log2(T1K1)

(T1K1)1/3

)
, and ε2 = O

(
T1

T +
√

D·log(T1K1)
T1K1

)
.3189

The proof is given in Appendix C.2. This theorem makes explicit the fact that in order to simulta-190

neously obtain approximate BIC and approximate revenue optimality, T1 cannot be too small nor191

too large: for approximate revenue optimality we need T1 � T and for approximate BIC we need,192

e.g., T1 � (v∗)2m4 log6(v∗m)/K1 for MHR distributions, and T1 � D11m5 log6(Dm)/K1 for193

bounded distributions. When setting the parameters in this way, both ε1 and ε2 go to 0 as T →∞.194

2.3 Multi-Unit Extension195

The auction in the exploitation phase can be generalized to a multi-unit Vickrey auction with196

anonymous reserve, where k ≥ 1 identical units of an item are sold to K2 unit-demand bidders and197

among those bidders whose bids are greater than the reserve price p, at most k bidders with largest198

bids win the units and pay the maximum between p and the (k + 1)-th largest bid. The multi-unit199

Vickrey auction with an anonymous reserve price is revenue-optimal when the value distribution is200

regular, and the optimal reserve price does not depend on k or K2 according to Myerson [30]. Thus201

the optimal reserve price can also be found by ERMc. All our results concerning truthfulness, e.g.,202

3The requirement that F is regular in addition to being bounded comes from the fact that ERMc approximates
the optimal revenue in an auction with many bidders only for regular distributions. In fact, the sample complexity
literature on ERMc only studies the case of one bidder (which is, in our notation, K2 = 1). In this case, i.e., if
the second phase uses posted price auctions, we do not need the regularity assumption. To capture the case of
general K2, we make a technical observation that for regular distributions (1− ε) revenue optimality for a single
buyer implies (1− ε) revenue optimality for many buyers (Lemma C.1). We do not know if this is true without
the regularity assumption or if this observation – which may be of independent interest – was previously known.
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Theorem 2.1, still hold for the multi-unit extension with any k ≥ 1. Moreover, Theorem 2.2 also203

holds because we have already considered the multi-unit extension in its proof in Appendix C.2.204

2.4 Two-Phase ERM Algorithm in Repeated Auctions205

The two-phase model with ERM as the price learning function can be seen as a learning algorithm in206

the following setting of repeated auctions against strategic bidders: there are T rounds of auctions,207

there are K ≥ 1 bidders in each auction, and each bidder participates in at most m auctions. The208

algorithm, which we call “two-phase ERM”, works as follows: in the first T1 rounds, run any truthful,209

prior-independent auctionM (e.g., the second price auction with no reserve); in the later T2 = T −T1210

rounds, run second price auction with reserve p = ERMc(b1, . . . , bT1K) where b1, . . . , bT1K are the211

bids from the first T1 auctions. T1 and c are adjustable parameters.212

In repeated games, one may also consider ε-perfect Bayesian equilibrium (ε-PBE) as the solution213

concept besides ε-BNE. A formal definition is given in Appendix C.4 but roughly speaking, ε-PBE214

requires that the bidding of each bidder at each round of the auctions ε-approximately maximizes215

the total expected utility in all future rounds, conditioning on any observed history of allocations216

and payments. Note that the history may leak some information about the historical bids of other217

buyers and these bids will affect the seller’s choice of mechanisms in future rounds. Similar to218

the ε-BNE notion, we can show that the two-phase ERM algorithm obtains: (1) truthful bidding219

is an O
(

log2(T1K) 3

√
D11Km
T1

)
-PBE; (2)

(
1−O

(
T1

T +
√

D log(T1K)
T1K

))
revenue optimality, for220

bounded distributions; and similar results for MHR distributions. By choosing T1 = Õ(T
2
3 ) to221

maximize revenue, we obtain Õ(T−
2
9 )-truthfulness and (1− Õ(T−

1
3 )) revenue optimality, where222

we assume D, m, and K to be constant.4223

Under the same setting, Liu et al. [27] and Abernethy et al. [1] design learning algorithms using224

differential privacy techniques. We can compare two-phase ERM and their algorithms. In terms225

of truthfulness notion, Liu et al. [27] assume that bidders play an exact PBE instead of ε-PBE,226

so their result is incomparable with ours. Their notion of exact PBE is too strong to be practical227

because bidders need to do a large amount of computation, while our notion guarantees bidders of228

approximately optimal utility as long as they bid truthfully. Although our truthfulness bound is worse229

than the Õ( 1√
T

)-bound of [1], we emphasize that their ε-truthfulness notion is weaker than ours: in230

their definition, each bidder cannot gain more than ε in current and future rounds if she deviates from231

truthful bidding only in the current round, given any fixed future strategy. But in our definition, each232

bidder cannot gain more than ε if she deviates in current and all future rounds. Our algorithm is233

easier to implement and more time-efficient than theirs, and works for unbounded distribution while234

theirs only support bounded distributions because they need to discretize the value space.235

3 A Second Application: Uniform-Price Auctions236

The notion of an incentive-awareness measure (recall Definition 1.2) has implications regarding237

the classic uniform-price auction model, which we believe are of independent interest. In a static238

uniform-price auction we have N copies of a good and N unit-demand bidders with i.i.d. values v239

from F that submit bids b. The auctioneer then sets a price p = P (b). Each bidder i whose value vi240

is above or equal to p receives a copy of the good and pays p, obtaining a utility of vi − p; otherwise241

the utility is zero. Azevedo and Budish [4] show that this auction is “incentive-compatible in the242

large” which means that truthfulness is an ε-BNE and ε goes to zero as N goes to infinity. They243

assume bidders’ value distribution has a finite support and their bids must be chosen from this finite244

support as well. They mention that allowing continuous supports and arbitrary bids is challenging.245

In this context, taking P = ERMc is very natural when the auctioneer aims to maximize revenue.246

Indeed, Goldberg et al. [17] suggest to use the uniform-price auction with P = ERMc, where c = 1
N ,247

as a revenue benchmark for evaluating other truthful auctions they design.248

When the price function is P = ERMc= 1
N , our analysis of the incentive-awareness measure general-249

izes the result of [4] to bounded and to MHR distributions. Moreover, we generalize their result to the250

case where coalitions of at most m bidders can coordinate bids and jointly deviate from truthfulness.251

4The Õ notation omits polylogarithmic terms.
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Theorem 3.1. In the uniform-price auction, suppose that any m bidders can jointly deviate from252

truthful bidding, then no bidder can obtain ε more utility (we call this (m, ε)-group BIC), where,253

• for any P and any bounded F , ε = D∆worst
N,m , and254

• for any MHR distribution F , if we fix P = ERMc with m
N ≤ c ≤

1
4e and m = o(

√
N), then255

ε = O
(
v∗∆worst

N,m

)
+O

(
v∗√
N

)
, where v∗ = arg maxv{v[1− F (v)]}.256

The constants in big O’s are independent of F and c.257

Proof of Theorem 3.1 for bounded distributions. Denote a coalition of m bidders by an index set
I ⊆ {1, . . . , N}, and the true values of all bidders by (vI , v−I). When other bidders bid v−I
truthfully, and the coalition bids bI instead of vI , the reduction of price is at most

P (vI , v−I)− P (bI , v−I) ≤ P (vI , v−I)δI(vI , v−I) ≤ P (vI , v−I)δ
worst
m (v−I) ≤ Dδworst

m (v−I),

by Definition 1.2 and by the fact that all values are upper-bounded by D. Then for each bidder i ∈ I ,258

the increase of her utility by such a joint deviation is no larger than the reduction of price, i.e.259

Ev−I [ui(vI , P (bI , v−I))− ui(vI , P (vI , v−I))] ≤ Ev−I [P (vI , v−I)− P (bI , v−I)]

≤ DEv−I
[
δworst
m (v−I)

]
= D∆worst

N,m .

260

The proof of this theorem for MHR distributions is similar to the proof of Theorem 2.1, thus omitted.261

Combining with Theorem 1.3, we conclude that the uniform-price auction with P = ERMc (for262

the c’s mentioned there) is (m, ε)-group BIC with ε converging to zero at a rate not slower than263

O(m2/3 log2N
N1/3 ) for bounded distributions and O(m log3N√

N
) for MHR distributions (constants in these264

big O’s depend on distributions).265

Theorem 3.1 also generalizes the result in [26] which is only for bounded distributions and m = 1.266

4 More Discussions on Incentive-awareness Measures267

4.1 Overview of the Proof for Upper Bounds on ∆worst
N,m268

Here we provide an overview of the proof of Theorem 1.3. Details are in Appendix B.269

Firstly, we show an important property of ERMc: suppose c ≥ m
N , for any m values vI , any N −m270

values v−I , and any m values vI that are greater than or equal to the maximum value in v−I , we have271

ERMc(vI , v−I) ≥ ERMc(vI , v−I). As a consequence, δworst
m (v−I) = δI(vI , v−I).272

Based on this property, we transfer the expectation in the incentive-awareness measure in the following273

way:274

∆worst
N,m = E[δworst

m (v−I)] = E[δI(vI , v−I)] =

∫ 1

0

Pr[δI(vI , v−I) > η]dη

≤
∫ 1

0

(
Pr[δI(vI , v−I) > η | E] Pr[E] + Pr[E]

)
dη =

∫ 1

0

Pr[δI(vI , v−I) > η ∧ E]dη + Pr[E],

where E denotes the event that the index k∗ = arg maxi>cN{ivi} (which is the index selected by275

ERMc) satisfies k∗ ≤ dN , E denotes the complement of E, and the probability in Pr[E] is taken276

over the random draw of N −m i.i.d. samples from F , with other m samples fixed to be the upper277

bound (can be +∞) of the distribution. For any value distribution, we prove that the first part278 ∫ 1

0

Pr[δI(vI , v−I) > η ∧ E]dη ≤ O

(
3

√
m2

d8
log2N

3
√
N

)
,

with some constructions of auxiliary events and involved probabilistic argument. And we further279

tighten this bound to O
(

m
d7/2

log3N√
N

)
for MHR distribution by leveraging its properties.280
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The final part of the proof is to bound Pr[E]. For bounded distribution, we choose d = 1/D.281

Since the support of the distribution is bounded by [1, D], N · vN ≥ N , while for any k ≤ dN ,282

kvk ≤ ( 1
DN)D = N ≤ NvN . ERMc therefore never chooses an index k ≤ dN (recall that283

in case of a tie, ERMc picks the larger index). This implies Pr[E] = Pr[k∗ ≤ dN ] = 0 for284

bounded distribution. For MHR distribution, we choose d = 1
2e and show Pr[E] = O

(
1
N

)
. As the285

corresponding proof is quite complicated, we omit it here.286

4.2 Lower Bounds on ∆worst
N,m and on the Approximate BIC Parameter, ε1287

Theorem 1.3 gives an upper bound on ∆worst
N,m for bounded and MHR distributions and for a specific288

range of c’s. Here we briefly discuss the lower bound, with details given in Appendix F.289

Lavi et al. [26] show that for the two-point distribution v = 1 and v = 2, each w.p. 0.5, ∆worst
N,1 =290

Ω(N−1/2), when c = 1/N . We adopt their analysis to provide a similar lower bound for [1, D]-291

bounded distributions and the corresponding range of c’s. Let F be a two-point distribution where for292

X ∼ F , Pr[X = 1] = 1− 1/D and Pr[X = D] = 1/D.293

Theorem 4.1. For the above F , for any c ∈ [mN ,
1
2D ], ERMc gives ∆worst

N,m = Ω( 1√
N

) where the294

constant in Ω depends on D.295

Note that ∆worst
N,m only upper bounds the ε1-BIC parameter ε1 in the two-phase model: a lower bound296

on ∆worst
N,m does not immediately implies a lower bound on ε1. Still, a direct argument will show that297

the above distribution F gives the same lower bound on ε1. For simplicity let K1 = K2 = 2 and298

suppose bidder i participates in m1 and m2 auctions in the two phases, respectively. Let N = T1K1299

and assume m1 = o(
√
N). Suppose the first-phase mechanismM is the second price auction with300

no reserve price. Then in the two-phase model with ERMc, ε1 must be Ω( m2√
N

) to guarantee ε1-BIC.301

It remains open to prove a lower bound for MHR distributions, and to close the gap between our302

O(N−1/3 log2N) upper bound and the Ω(N−1/2) lower bound for bounded distributions.303

4.3 Unbounded Regular Distributions304

Theorem 2.2 shows that, in the two-phase model, approximate incentive-compatibility and revenue305

optimality can be obtained simultaneously for bounded (regular) distributions and for MHR distri-306

butions. A natural question would then be: what is the largest class of value distribution we can307

consider? Note that for non-regular distributions, Myerson [30] shows that revenue optimality cannot308

be guaranteed by anonymous reserve price, so ERM is not a correct choice. Thus we generalize309

our results to the class of regular distributions that are unbounded and not MHR. Here we provide a310

sketch, with details given in Appendix G.311

Our results can be generalized to α-strongly regular distributions with α > 0. As defined in [11], a312

distribution F with positive density function f on its support [A,B] where 0 ≤ A ≤ B ≤ +∞ is313

α-strongly regular if the virtual value function φ(x) = x− 1−F (x)
f(x) satisfies φ(y)−φ(x) ≥ α(y− x)314

whenever y > x (or φ′(x) ≥ α if φ(x) is differentiable). As special cases, regular and MHR315

distributions are 0-strongly and 1-strongly regular distributions, respectively. For any α > 0, we316

obtain bounds similar to MHR distributions on ∆worst
N,m and on approximate incentive-compatibility317

in the two-phase model and the uniform-price auction. Specifically, if F is α-strongly regular then318

∆worst
N,m = O

(
m log3N√

N

)
, if m = o(

√
N) and m

N ≤
(

logN
N

)1/3
≤ c ≤ α1/(1−α)

4 .319

It remains an open problem for future research whether ERMc is incentive-compatible in the large320

for regular but not α-strongly regular distributions for any α > 0. For these distributions the choice321

of c must be more sophisticated since it creates a clash between approximate incentive-compatibility322

and approximate revenue optimality. Intuitively, a large c (for example, a constant) will hurt revenue323

optimality and a too small c will hurt incentive-compatibility. In Appendix G, we provide examples324

and proofs to formally illustrate such a fact, and further discuss our conjecture that some intermediate325

c can maintain the balance between incentive-compatibility and revenue optimality.326
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Broader Impact327

This work is mainly theoretical. It provides some intuitions and guidelines for potential practice, but328

does not have immediate societal consequences. A possible positive consequence is: the auction we329

consider uses an anonymous reserve price, while most of the related works on repeated auctions use330

unfair personalized prices. We do not see negative consequences.331
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A Useful Facts416

In this section we present some facts about ERMc and incentive-awareness measures, some definitions about417

value distributions, and some useful lemmas that will be used throughout.418

A.1 Facts about ERMc and Incentive-Awareness Measures419

Claim A.1. Let P = ERMc, where c ≥ m
N

. For any vI ∈ Rm+ , v−I ∈ RN−m+ , let vI denote m values such420

that min vI ≥ max v−I . Then we have P (vI , v−I) ≥ P (vI , v−I).421

Proof. Let v := max v−I be the largest value in v−I and vI be m copies of v. It suffices to show that422

P (vI , v−I) ≥ P (vI , v−I) since P = ERMc ignores the largest m samples, given cN ≥ m. If vi ≥ v for each423

i ∈ I , then we have P (vI , v−I) = P (vI , v−I) directly. If there exists some i ∈ I such that vi < v, then we424

increase vi to v and show that for any such i and (vi, v−i), P (v, v−i) ≥ P (vi, v−i). Let v′ = P (vi, v−i), then425

one can verify (assuming ERMc picks the smaller value when there are ties) that (1) P (v′, v−i) = P (vi, v−i),426

and (2) P (v′, v−i) ≤ P (v, v−i), implying P (v, v−i) ≥ P (vi, v−i).427

Claim A.2. Let P = ERMc, where c ≥ m
N

. For any vI ∈ Rm+ , v−I ∈ RN−m+ , let vI be any m values that are428

greater than or equal to the maximal value in v−I . Then δworst
m (v−I) = δI(vI , v−I).429

Proof. Recall the definition430

δworst
m (v−I) = sup

vI∈Rm+
δI(vI , v−I) = sup

vI∈Rm+

{
1−

infbI∈Rm+ ERMc(bI , v−I)

ERMc(vI , v−I)

}
.

Claim A.1 immediately implies δworst
m (v−I) = limvI→+∞ δI(vI , v−I). Moreover, since ERMc ignores the431

highest cN ≥ m values, we have ERMc(vI , v−I) = ERMc(v′I , v−I) as long as both vI and v′I are greater than432

or equal to max v−I , no matter what they are exactly. Thus δworst
m (v−I) = δI(vI , v−I) = δI(v

′
I , v−I).433

Therefore, we will use vI to denote any m values that are greater than or equal to max v−I , for example, m434

copies of max v−I or m copies of “+∞”. We always have δworst
m (v−I) = δI(vI , v−I).435

A.2 Quantiles and Revenue Curves of Value Distributions436

For a distribution F (v), define the quantile q(v) = 1− F (v) as a mapping from value space to quantile space.437

Inversely, v(q) = q−1(v) = F−1(1−q) is the mapping from quantile space to value space (i.e., w.p. q a buyer’s438

value will be at least v(q)). Define the revenue curve R(q) = qv(q) as the expected revenue for the seller by439

posting price v(q). Let R∗ = maxq{R(q)} denote the optimal revenue the seller can obtain with one bidder,440

and q∗ = arg maxq R(q), v∗ = v(q∗). When there are several i.i.d. bidders with a regular value distribution, v∗441

is the optimal reserve price in a second price auction, and such an auction is revenue optimal [30]. Any bounded442

distribution satisfies q∗ ≥ 1
D

because for any q < 1
D

, qv(q) ≤ qD < 1 ≤ 1v(1) ≤ R∗. Any MHR distribution443

has a unique q∗ and q∗ ≥ 1
e

[22].444

A.3 Concentration Inequality445

For a distribution F , draw N samples and sort them non-increasingly, v1 ≥ v2 ≥ · · · ≥ vN . Let qj = q(vj)446

denote their quantiles. The ratio j/N is the empirical quantile of value vj since j/N is the quantile of vj in the447

uniform distribution over {v1, . . . , vN}. The following concentration inequality shows that for each value vj ,448

its empirical quantile j/N is close to its true quantile qj with high probability, when m samples are fixed to be449

+∞ while other N −m samples are i.i.d. drawn from F .450

Lemma A.3. Draw N − m i.i.d. samples from a distribution F , and fix m samples to be +∞. Sort these451

samples non-increasingly: +∞ = v1 = · · · = vm > vm+1 ≥ · · · ≥ vN . With probability at least 1− δ over452

the random draw of samples, we have for any j > m,453 ∣∣∣∣qj − j

N

∣∣∣∣ ≤
√

2 ln(2(N −m)δ−1)

N −m +
ln(2(N −m)δ−1)

N −m +
m

N
.

Proof. The value vj (j > m) is the (j − m)th largest value in N − m i.i.d. samples from F , by using454

Bernstein inequality (see e.g., Lemma 5 in Guo et al. [20]), we know that with probability at least 1 − δ,455 ∣∣∣qj − j−m
N−m

∣∣∣ ≤ √ 2 ln(2(N−m)δ−1)
N−m + ln(2(N−m)δ−1)

N−m . Also note that | j
N
− j−m

N−m | = (N−j)
N−m

m
N
< m

N
. By456

triangular inequality,
∣∣qj − j

N

∣∣ ≤√ 2 ln(2(N−m)δ−1)
N−m + ln(2(N−m)δ−1)

N−m + m
N

.457
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B Main Proof: Upper Bounds on Incentive-Awareness Measures458

B.1 Proof of Theorem 1.3459

Recall the setting of Definition 1.2: we draw N i.i.d. values v1, . . . , vN from F , and we have an additional460

parameter m which is the number of bids that can be changed in the input of the price learning function.461

Theorem 1.3 then states an upper bound on ∆worst
N,m for P = ERMc. For bounded distributions, the theorem462

follows immediately from the next lemma which is our main technical lemma. Note that this lemma is useful463

in establishing the bound on ∆worst
N,m not only for bounded distributions but also for all other distributions.464

Throughout, we assume that v1, . . . , vN are sorted, so that v1 ≥ · · · ≥ vN .465

Lemma B.1 (Main Lemma). Suppose m = o(
√
N). Let d be a constant, 0 < d < 1. Suppose m

N
≤ c ≤ d

2
.466

Let E be the event that the index k∗ = arg maxi>cN{ivi} (which is the index selected by ERMc) satisfies467

k∗ ≤ dN . For any non-negative distribution F ,468

∆worst
N,m ≤ O

(
3

√
m2

d8
log2N

3
√
N

)
+ Pr[E],

where the probability in Pr[E] is taken over the random draw of N −m i.i.d. samples from F , with other m469

samples fixed to be +∞.470

To see that this lemma immediately implies the theorem for bounded distribution, choose d = 1/D. Since the471

support of the distribution is bounded by [1, D], N · vN ≥ N while for any k ≤ dN ,472

kvk ≤ (
1

D
N)D = N ≤ NvN .

ERMc therefore never chooses an index k ≤ dN (recall that in case of a tie, ERMc picks the larger index).473

This implies Pr[E] = Pr[k∗ ≤ dN ] = 0 and we have the bound in the theorem.474

Remark. For MHR distributions, Lemma D.5 shows that Pr[E] = O
(

1
N

)
if we choose d = 1

2e
, so Lemma B.1475

already gives an upper bound on ∆worst
N,m . However, we can use some additional properties of MHR distributions476

to strengthen the bound on the first term in the main lemma to O
(

m

d7/2
log3 N√

N

)
, as explained in Appendix D.3.477

B.2 Proof of the Main Lemma (Lemma B.1)478

Let vI be any m values that are greater than the maximal value in v−I . By Claim A.2, δworst
m (v−I) =479

δI(vI , v−I). Thus,480

∆worst
N,m = E[δworst

m (v−I)] = E[δI(vI , v−I)] =

∫ 1

0

Pr[δI(vI , v−I) > η]dη

≤
∫ 1

0

(
Pr[δI(vI , v−I) > η | E] Pr[E] + Pr[E]

)
dη

=

∫ 1

0

Pr[δI(vI , v−I) > η ∧ E]dη + Pr[E], (3)

where E denotes the complement of E. Then the main effort is to upper-bound Pr[δI(vI , v−I) > η ∧ E]. After481

the random draw of v−I , we sort all values non-increasingly, denoted by v1 = · · · = vm ≥ vm+1 ≥ · · · ≥ vN ,482

and let q1 = · · · = qm ≤ qm+1 ≤ · · · ≤ qN be their quantiles, where qj = q(vj). We use a concentration483

inequality (Lemma A.3) to argue that for each value vj , its empirical quantile j/N should be close to its true484

quantile qj with high probability, as follows:485

Claim B.2. Define event Conc:486

Conc =

[
∀j > m,

∣∣∣∣qj − j

N

∣∣∣∣ ≤ 2

√
4 ln(2(N −m))

N −m +
m

N

]
,

then Pr[Conc] ≤ 1
N−m , where the probability is over the random draw of the N −m samples v−I .487

Proof. Set δ = 1
N−m in Lemma A.3.488

Now, define G(η) = Pr[δI(vI , v−I) > η ∧ E ∧ Conc] for 0 ≤ η ≤ 1. We have489

Pr[δI(vI , v−I) > η ∧ E] ≤ G(η) +
1

N −m. (4)
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Lemma B.3. There exists a constant C = Θ
(
m log3 N

d4
√
N

)
such that η > C2/3 ⇒ G(η) ≤ C

η3/2
.490

Finally we upper-bound the integral in (3):491

∫ 1

0

Pr[δI(vI , v−I) > η ∧ E]dη ≤
∫ 1

0

(
G(η) +

1

N −m

)
dη By (4)

≤
∫ C

2
3

0

1dη +

∫ 1

C
2
3

C

η
3
2

dη +
1

N −m By Lemma B.3

≤ 3C
2
3 +

1

N −m = O

(
3

√
m2 log6N

d8N

)
+

1

N −m = O

(
3

√
m2

d8
log2N

3
√
N

)
,

which, together with (3), concludes the proof of Lemma B.1.492

B.3 Proof of Lemma B.3493

Recall that we need to upper-bound G(η) = Pr[δI(vI , v−I) > η ∧ E ∧ Conc] by Θ
(
m log3 N

d4
√
N

1

η3/2

)
. We do494

this via a union bound of M + 1 events, where M is a number to be chosen later. Each event is parameterized495

by ηt, θt for t = 0, . . . ,M which are chosen to satisfy the following conditions:496

• η0 = 1
2
η, η1 = η, η2 = 2η.497

• For t ≥ 3, ηt can be chosen arbitrarily, as long as η2 < η3 < · · · < ηM < 1.498

• ηM+1 = 1.499

• θ0 = 1, and θt = η
2ηt+1

for t = 1, . . . ,M .500

Define the following M + 1 events Bad(ηt, θt), where t = 0, . . . ,M :501

Bad(ηt, θt) =

[
there exists j ≥ k∗ such that

{
vj ≤ (1− ηt)vk∗
jvj ≥ k∗vk∗ − m

θt
vk∗

]
(5)

The next lemma shows that the union of these events contains the event [δI(vI , v−I) > η] ∧ E.502

Lemma B.4. Suppose 2m
dN

< η < 1 and that the parameters ηt, θt satisfy the above conditions. If δI(vI , v−I) >503

η and k∗ > dN , then there exists t ∈ {0, . . . ,M} such that the event Bad(ηt, θt) holds.504

The proof of this lemma is given in Appendix B.4. Moreover, the next lemma upper-bounds the probability of505

each of these bad events, when assuming that Conc holds as well.506

Lemma B.5. If ηt and θt are at least Ω

(
m
d

√
log(N−m)
N−m

)
(for some constant in Ω to be detailed in the proof),507

then Pr[Bad(ηt, θt) ∧ E ∧ Conc] = O

(
m log2 N

d4θt
√
η3tN

)
.508

The proof of Lemma B.5 is in Appendix B.5. Now,509

Pr[δI(vI , v−I) > η ∧ E ∧ Conc] ≤
M∑
t=0

Pr[Bad(ηt, θt) ∧ E ∧ Conc] Lemma B.4

=

M∑
t=0

O

(
m log2N

d4θt
√
η3tN

)
Lemma B.5

= O

(
m log2N

d4
√
N
·
M∑
t=0

ηt+1

η

1

η
3/2
t

)
Definition of θt

Note that because ηt, θt ≥ η
2

, the condition of Lemma B.5 is satisfied under the assumption that η ≥510

Θ

((
m log3 N

d4
√
N

)2/3)
in Lemma B.3. Finally, we choose a sequence of {ηt} to make the above summation small511

enough:512
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Claim B.6. There exist an integer M and parameters η3, . . . , ηM that satisfy the conditions described above,513

such that514

M∑
t=0

ηt+1

η

1

η
3/2
t

= O

(
log log(N −m)

η3/2

)
,

assuming η = Ω

(
m
d

√
log(N−m)
N−m

)
.515

The proof of this claim is given in Appendix B.7. To conclude the proof,516

Pr[δI(vI , v−I) > η ∧ E ∧ Conc] ≤ O
(
m log2N

d4
√
N
· log log(N −m)

η3/2

)
= O

(
m log3N

d4
√
N

1

η3/2

)
.

Remark. This proof is inspired by a proof in Yao [31]. We improve upon that proof in two aspects: (1) Our517

definition of a sequence of bad events (Lemma B.4) improves upon similar single bad events defined in Yao518

[31] and Lavi et al. [26]; (2) Yao [31] only considers bounded and continuous distributions, while our proof519

works for arbitrary distributions. This is because Yao [31] works in the value space when upper-bounding the520

probability of bad events over the random draw of values v−I (Lemma B.5), but we work in the quantile space,521

which circumvents the boundedness assumption and deals with discontinuity. To argue in the quantile space, we522

need Conc to show that qjvj approximates jvj in the proof of Lemma B.5.523

B.4 Proof of Lemma B.4524

Suppose δI(vI , v−I) > η and k∗ > dN . By definition, there exist m bids bI ∈ Rm+ such that525

ERMc(bI , v−I) < (1 − η)vk∗ . Without loss of generality, we can assume that all m bids are identical,526

as shown in the following claim:527

Claim B.7. For any sorted v = (v1 ≥ · · · ≥ vN ). Let I = {1, . . . ,m}, let528

b∗ = arg min
b∈R+

ERMc(

m copies︷ ︸︸ ︷
b, . . . , b, v−I).

then b∗ = ERMc(b∗, . . . , b∗, v−I) = minbI∈Rm+ ERMc(bI , v−I).529

Proof. We will show that for any vector of m bids bI = (b1, . . . , bm) that minimizes ERMc(bI , v−I), we530

can construct another vector b′I = (b, . . . , b) such that ERMc(b′I , v−I) = ERMc(bI , v−I) = b. Because bI531

minimizes ERMc(bI , v−I), we can assume that there is a bid bi∗ such that ERMc(bI , v−I) = bi∗ (otherwise,532

we can decrease the bids in bI without increasing the price). Let b = bi∗ . For any bj > b, decrease bj to b, then533

the price does not change. For any bj < b, increase bj to b, then the price does not increase; and if the price534

decreases, then it contradicts the fact that ERMc(bI , v−I) is minimized. In this way, we change all bids in bI to535

b, without affecting the price.536

By Claim B.7, there exists b ∈ R+ which equals ERMc(b, . . . , b, v−I) and satisfies537

b < (1− η)vk∗ . (6)

Choose index i for which vi ≥ b > vi+1. Assume for now i ≤ N − 1, we will postpone the analysis for i = N538

to the end. Now we show that setting j = i or i+ 1 will satisfy the lemma. Clearly i ≥ k∗. The change of the539

bids vector caused by b is:540

(v1, . . . , vm, vm+1, . . . , vk∗ , . . . , vi, vi+1, . . . , vN )→ (vm+1, . . . , vk∗ , . . . , vi,

m times︷ ︸︸ ︷
b, . . . , b, vi+1, . . . , vN ).

Note that k∗ −m > dN −m ≥ cN , so vk∗ will not be ignored by ERMc after the change of bids. Then in541

order for b to be chosen by ERMc, we need:542

i · b ≥ (k∗ −m) · vk∗ = k∗vk∗ −mvk∗ . (7)

We will choose j depending on how large vi is:543

(a) If vi < (1− 1
2
η)vk∗ = (1− η0)vk∗ , we set j = i and t = 0. Clearly, ivi ≥ ib ≥ k∗vk∗ −mvk∗ .544

(b) If vi ≥ (1− 1
2
η)vk∗ , then we set j = i+ 1 and choose the t (1 ≤ t ≤M ) such that545

(1− ηt)vk∗ ≥ vi+1 > (1− ηt+1)vk∗ . (8)
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To see why (i+ 1)vi+1 ≥ k∗vk∗ − 2ηt+1

η
mvk∗ holds, first we write b as a convex combination of vi and546

vi+1: b = (1− λ)vi + λvi+1. From (6) and (7), we immediately get547

(1− η)vk∗ > (1− λ)vi + λvi+1, (9)

548

(1− λ)ivi + λ(i+ 1)vi+1 ≥ k∗vk∗ −mvk∗ . (10)
Equation (10) further implies λ(i+ 1)vi+1 ≥ k∗vk∗ − (1− λ)k∗vk∗ −mvk∗ . Divide by λ,549

(i+ 1)vi+1 ≥ k∗vk∗ −
m

λ
vk∗ .

Then it remains to lower-bound λ by θt. Intuitively, since vi is larger than (1− η
2
)vk∗ but b < (1− η)vk∗ ,550

the coefficient of vi+1 cannot be too small. Formally, from (9) and (8), we have:551

(1− η)vk∗ > (1− λ)(1− 1

2
η)vk∗ + λ(1− ηt+1)vk∗ ,

552

=⇒ 1− η > 1− 1

2
η − λ(ηt+1 −

1

2
η)

553

=⇒ λ >
1
2
η

ηt+1 − 1
2
η
≥ η

2ηt+1
= θt,

concluding the proof of this case.554

Finally we return to the analysis for i = N . If k
∗

N
< 1− 1

2
η, then vN ≤ k∗vk∗

N
< (1− 1

2
η)vk∗ , so the above555

argument (a) can be reused. Otherwise, from (6) and (7), we have:556

(1− η)vk∗ > b ≥ (k∗ −m)vk∗

N
≥ (1− 1

2
η − m

N
)vk∗ ,

which contradicts the assumption that η > 2m
dN

.557

B.5 Proof of Lemma B.5558

For convenience we drop the subscript t and just write η = ηt, θ = θt. Recall that we need to upper-bound559

Pr[Bad(η, θ) ∧ E ∧ Conc] where:560

• Bad(η, θ) implies that there exists j ≥ k∗ such that vj ≤ (1− η)vk∗ and jvj ≥ k∗vk∗ − m
θ
vk∗ .561

• E is k∗ ≥ dN .562

• Conc requires that |qj − j
N
| ≤ 2

√
4 ln(2(N−m))

N−m + m
N

for any j > m.563

Define564

H =
m

dθ − m
N

and h =
1

2

(
dη − 4

√
4 ln(2(N −m))

N −m − 4m

Nθ

)
.

Assume H,h > 0, which can be satisfied when η and θ are at least Ω

(
m
d

√
log(N−m)
N−m

)
.565

Claim B.8. The event [Bad(η, θ) ∧ E ∧ Conc] implies that there exists j ≥ k∗ which satisfies:566

1. jvj ≤ k∗vk∗ ≤ (j +H)vj;567

2. qj − qk∗ ≥ 2h.568

Proof of Claim B.8. Choose the j in Bad(η, θ) which satisfies jvj ≥ k∗vk∗ − m
θ
vk∗ . To see why the first569

inequality holds, note that dNvk∗ ≤ k∗vk∗ ≤ jvj + m
θ
vk∗ ≤ Nvj + m

θ
vk∗ , subtracting the first and forth570

term, we get (dN − m
θ

)vk∗ ≤ Nvj , further implying k∗vk∗ ≤ jvj + m
θ

Nvj
(dN−m/θ) , which is the first inequality.571

Now consider the second inequality. Since Bad(η, θ) requires jvj ≥ k∗vk∗ − m
θ
vk∗ and vj ≤ (1− η)vk∗ , we572

have573

j ≥
k∗vk∗ − m

θ
vk∗

(1− η)vk∗
=
k∗ − m

θ

1− η ≥ (k∗ − m

θ
)(1 + η) = k∗ + k∗η − m

θ
(1 + η) ≥ k∗ + dNη − 2

m

θ
,

and dividing by N ,574

j

N
− k∗

N
≥ dη − 2

m

Nθ
.
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Using the condition Conc on j and k∗, we can derive the relationship between qj and qk∗ by simple calculation:575

qj − qk∗ ≥
(
dη − 2

m

Nθ

)
− 2

(
2

√
4 ln(2(N −m))

N −m +
m

N

)
≥ 2h.

576

Divide the quantile space [0, 1] into [0, d/2] and (1− d/2)/h equal-length intervals with length h,577

[0, 1] = [0,
d

2
] ∪ I1 ∪ I2 ∪ · · · ∪ I 1−d/2

h

, (11)

where Il = (d/2 + (l− 1)h, d/2 + lh]. Thus a uniformly random draw of quantile falls into Il with probability578

h. Define i∗l and i∗<(l+1):579

i∗l = arg max
i>cN

{
ivi | qi ∈ Il

}
or i∗l = ∅ if there is no such i.

580
i∗<(l+1) = arg max

i>cN

{
ivi | qi ∈ I1 ∪ · · · ∪ Il

}
or i∗<(l+1) = ∅ if there is no such i.

And Al
def
= i∗l vi∗l , A<(l+1)

def
= i∗<(l+1)vi∗<(l+1)

. Moreover, define event Wl for each l,581

Wl =
[
{i∗l+2 6= ∅} ∧

{
i∗<(l+1) 6= ∅

}
∧
{
Al+2 ≤ A<(l+1) ≤ Al+2 +Hṽl+2

}]
,

where ṽl+2
def
= v(d/2 + (l + 1)h) is the upper bound on the values with quantiles in Il+2. We argue that if582

the event [Bad(η, θ) ∧ E ∧ Conc] holds then there must exist an index l such that Wl holds. To see this,583

consider the index j that is promised to exist in Bad(η, θ) and choose the index l such that qj ∈ Il+2. Note that584

[E ∧ Conc] implies qj ≥ qk∗ > d/2, so both qj and qk∗ must fall in I1 ∪ I2 ∪ · · · . To see why Wl must hold,585

note that:586

• Al+2 ≤ A<(l+1) since qj − qk∗ > 2h, implying qk∗ ∈ I<(l+1) and A<(l+1) = k∗vk∗ .587

• A<(l+1) ≤ Al+2 +Hṽl+2 since k∗vk∗ ≤ (j +H)vj ≤ i∗l+2vi∗l+2
+Hṽl+2.588

Therefore, a union bound over Pr[Wl] suffices to prove that Pr[Bad(η, θ) ∧ E ∧ Conc] is small. The idea589

to bound Pr[Wl] is a refinement of Yao [31]: Note that there is an interval Il+1 with length h between Il+2590

and I<(l+1) and consider the number X of quantiles falling into Il+1. There is enough randomness in X as591

its variance is Ω(hN), implying that the difference between the rankings of any pair of quantiles in Il+2 and592

I<(l+1) varies broadly. As a result, it’s unlikely thatA<(l+1) will fall in the short interval [Al+2, Al+2+Hṽl+2].593

Formally, we will prove that594

Lemma B.9. For any l, Pr[Wl] ≤ O(H log2 N√
hd3N

).595

The proof of Lemma B.9 is in Appendix B.6. To conclude,596

Pr[Bad(η, θ) ∧ E ∧ Conc] ≤

1−d/2
h∑
l=1

Pr[Wl] ≤
1

h
O

(
H log2N√
hd3N

)
= O

(
m log2N

dθ
√

(dη)3d3N

)
,

where the last equality is because H = O(m
dθ

) and h = Ω(dη) under the assumption that η and θ are at least597

Ω(m
d

√
log(N−m)
N−m ).598

B.6 Proof of Lemma B.9599

We need to upper-bound Pr[Wl] over the random draw of v−I , or in quantile space, q−I , which are N −m600

i.i.d. random draws from Uniform[0, 1]. Let NL be the number of quantile draws that are in L def
= [0, d/2] ∪601

I1 ∪ · · · ∪ Il+1. Suppose we draw the quantiles in the following procedure: first determine NL, then draw602

N −m−NL quantiles that are not in L; finally draw NL quantiles that are in L.603

Note that NL follows a binomial distribution, and a Chernoff bound implies that604

Pr[NL ≥
d

4
(N −m)] ≥ 1− exp

(
−d(N −m)

16

)
. (12)

We thus assume NL ≥ d(N −m)/4.605
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Then draw N −m−NL quantiles from [0, 1]\L, so i∗l+2, vi∗l+2
and Al+2 are determined. Suppose i∗l+2 6= ∅;606

otherwise, Wl does not hold.607

Now we draw NL quantiles, q(1), . . . , q(NL) from L. Consider the increment of A<(l+1), as a sequence608

A(t), t = 1, . . . , NL. After the time t− 1 when A(t−1) ≥ Al+2, the index i∗<(l+1) is no longer ∅. When one609

more sample q(t) is generated, there are three cases:610

1. If q(t) ∈ [0, d/2], A(t−1) increases by at least ṽl+2. This is because each term iv
(t−1)
i increases to611

(i+ 1)v
(t)
i ≥ iv

(t−1)
i + ṽl+2, for any i such that qi ∈ I1, . . . , Il.612

2. If q(t) ∈ I1 ∪ · · · ∪ Il, then A(t−1) does not decrease.613

3. If q(t) ∈ Il+1, A(t−1) does not change.614

Let s be the number of quantiles that are not in Il+1, and A(t1), . . . , A(ts) be those steps, and write B(i) def
=615

(A(ti) −Al+2)/ṽl+2 for i = 1, . . . , s. We have A<(l+1) = ṽl+2B
(s) +Al+2. Then our task is to analyze the616

probability that B(s) ∈ [0, H].617

We can think of the generation of B(s) as follows: regardless of s, first generate an infinite sequence618

B(1), B(2), . . ., where at each step i the value B(i) is increased by 1 with probability at least Pr[q ∈ [0, d/2] |619

q ∈ L] ≥ d/2. Then pick an index s by a binomial distribution Bin(NL, 1 − Pr[q ∈ Il+1 | q ∈ L]). Then620

the s-th value in the infinite sequence {B(i)} is chosen as B(s). Note that Bin(NL, 1− Pr[q ∈ Il+1 | q ∈ L])621

is dominated by Bin(NL, 1− h), so the probability that B(s) takes on any one of the values in the sequence622

{B(i)} is at most Pr[s = i] = O(1/
√
hNL).623

Then we consider the length of the sub-sequence where B(i) ∈ [0, H]. Intuitively, the expected number of steps624

for B(i) to increase by H , is at most H/(d/2). The probability that it takes more than 2H(logNL)2/d steps625

implies that the sum of 2H(logNL)2/d i.i.d. Bernoulli variables whose success probability is at least d/2 does626

not reach H , which can be bounded by a Chernoff bound:627

Pr[Length >
2H(logNL)2

d
] ≤ Pr[Bin

(
2H(logNL)2

d
,
d

2

)
< H]

≤ exp

(
−1

2
H(logNL)2

(
1− 1

(logNL)2

)2
)

= O

(
exp

(
−1

8
(logNL)2

))
= O

(
N
− 1

8
logNL

L

)
.

Assuming Length ≤ (2H(logNL)2)/d, the probability that B(s) ∈ [0, H] can be bounded by a union bound:628 ∑
i:B(i)∈[0,H]

Pr[s = i] ≤ Length ·O
(

1√
hNL

)
≤ O

(
H(logNL)2

d
√
hNL

)
.

Therefore,629

Pr[Wl] ≤ O
(
H(logNL)2

d
√
hNL

)
+O

(
N
− 1

8
logNL

L

)
≤ O

(
H(logN)2

d
√
hdN

)
+

(
d

4
(N −m)

)− 1
8
log d

4
(N−m)

+ exp

(
−d(N −m)

16

)
By (12)

= O

(
H(logN)2√

hd3N

)
.

B.7 Proof of Claim B.6630

We need to show that there exist an integer M and parameters η0 = 1
2
η < η1 = η < η2 = 2η < η3 < · · · <631

ηM < ηM+1 = 1, such that632

M∑
t=0

ηt+1

η

1

η
3/2
t

= O

(
log log(N −m)

η3/2

)
.

17



We start with:633

M∑
t=0

ηt+1

η

1

η
3/2
t

=
1

η3/2

M∑
t=0

ηt+1/η

(ηt/η)3/2
=

1

η3/2

(
O(1) +

M∑
t=2

ηt+1/η

(ηt/η)3/2

)
(13)

Let ηt+1/η = (ηt/η)3/2 for any t ≥ 2. We can recursively compute ηt until the maximum step t = M which634

satisfies ηM < 1. Then (13) is upper-bounded by 1

η3/2
(O(1) +M). By our construction of {ηt}, we have635

ηM
η

= (
η2
η

)
3
2
M−2

= 2
3
2
M−2

<
1

η
.

Thus,636

M < log3/2 log2

1

η
+ 2 = O(log log

1

η
) = O(log log(N −m)),

where the last equality follows from the assumption that η = Ω

(
m
d

√
log(N−m)
N−m

)
. Thus, the summation (13)637

becomes638

M∑
t=0

ηt+1

η

1

η
3/2
t

= O

(
log log(N −m)

η3/2

)
.

as required.639

C Missing Proofs From Section 2640

C.1 Proof of Theorem 2.1 (for Bounded Distributions)641

Proof of Theorem 2.1 for bounded Distributions. First consider the reduction of reserve price caused by the
deviation of bidder i. The true values of all bidders in the first phase are (vI , v−I), where bidder i’s true values
are vI ∈ Rmi,1+ . When other bidders bid v−I truthfully, and bidder i bids bI instead, the reserve price p changes
from P (vI , v−I) to P (bI , v−I) and the change is at most

P (vI , v−I)− P (bI , v−I) ≤ P (vI , v−I)δI(vI , v−I) ≤ P (vI , v−I)δ
worst
mi,1 (v−I) ≤ Dδworst

m1
(v−I),

by Definition 1.2 and by the fact that all values are upper-bounded by D. Consider the increase of utility in the642

second phase. We claim that for any two possible reserve prices p2 ≤ p1, for any v ∈ R+, for any K2 ≥ 1, we643

have644

uK2(v, p2)− uK2(v, p1) ≤ p1 − p2. (14)
To see this, first re-write uK2(v, p) in (2) as

uK2(v, p) = EX2,...,XK2
∼F
[
(v −max{p,X∗})+

]
,

where X∗ def
= max{X2, . . . , XK2} and (x)+

def
= max{x, 0}. Note that (x)+ − (y)+ ≤ |x− y|, thus645

uK2(v, p2)− uK2(v, p1) = E
[
(v −max{p2, X∗})+ − (v −max{p1, X∗})+

]
≤ E [|max{p1, X∗} −max{p2, X∗}|] ≤ E [|p1 − p2|] = p1 − p2.

For the first phase we have UMi (vi, bI , v−I) ≤ UMi (vi, vI , v−I) sinceM is truthful. Thus, by (1) and (14)646

the difference in interim utilities is at most647

Ev−i

[
UTP
i (vi, bI , v−I)− UTP

i (vi, vI , v−I)
]

≤ Ev−i

[
UMi (vi, bI , v−I)− UMi (vi, vI , v−I)

]
+ Ev−i

mi,1+mi,2∑
t=mi,1+1

[
uK2 (vi,t, P (bI , v−I))− uK2 (vi,t, P (vI , v−I))

]
≤ 0 + Ev−i [m2(P (vI , v−I)− P (bI , v−I))] ≤ Ev−i

[
m2Dδ

worst
m1

(v−I)
]

= m2D∆worst
T1K1,m1

,

which indicates that truthful bidding is an ε-BNE, where ε = m2D∆worst
T1K1,m1

. This concludes the proof for648

bounded distributions.649

Remark. The proof for MHR distributions is trickier since the difference P (vI , v−I) − P (bI , v−I) can be650

unbounded. Intuitively, the probability that P (vI , v−I) will be higher than (1 + o(1))v∗ (v∗ is defined in the651

statement of the lemma) is exponentially small, and the main effort is to show that the expected difference652

P (vI , v−I)− P (bI , v−I) multiplied by this exponentially small probability is negligible. Full details are given653

Appendix D.2.654
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C.2 Proof of Theorem 2.2655

The bound on approximate truthfulness, i.e., ε1, follows from Theorem 2.1 and Theorem 1.3, where we first656

obtain the bound on ∆worst
T1K1,m1

from Theorem 1.3 by setting N = T1K1 and m = m1 and then replace m2m1657

with O(m2) for MHR distribution and replacing m2m
2/3
1 with O(m5/3) for bounded distribution.658

It remains to consider revenue, where we will use sample complexity results to obtain the convergence rate of the659

revenue loss, i.e., ε2. Let rev1, rev2 be the expected revenues of the two phases in TP(M, P ;T ,m,K, S),660

and rev∗ be the revenue obtained by using Myerson’s auction in all rounds, i.e., rev∗ = T1MyeK1 +T2MyeK2661

where MyeK is the revenue of Myerson’s auction with K i.i.d. bidders from F . For rev1, we only have662

rev1 ≥ 0 since we do not any revenue guarantee for the arbitrary first-phase mechanismM. Now consider663

rev2, let rK2(p) denote the expected revenue of a second price auction with reserve price p. Since the values in664

the two phases are independent, we have665

rev2 = T2 · Ev1,...,vT1K1
∼F

[
rK2(ERMc(v1, . . . , vT1K1))

]
.

We need to compare rK2(ERMc(v1, . . . , vT1K1)) with MyeK2 . Since bidders have i.i.d. regular value dis-666

tributions, Myerson’s auction is exactly the second price auction with reserve price p = v∗. When K2 = 1,667

Myerson’s auction becomes a post-price auction. Let εsample(·) be the inverse function of the required number668

of samples for ERMc to guarantee (1 − εsample)-optimal revenue (as obtained in Huang et al. [23]) in the669

posted-price auction, i.e., the expected revenue of a one-bidder auction with a posted price p determined by670

ERMc withN samples is at least (1−εsample(N)) times the optimal expected revenue. Then for the one-bidder671

case, we have672

rev2 = T2(1− εsample(T1K1))Mye1.

For general K2, while the sample complexity literature does not analyze the revenue of the same reserve price673

p = ERMc(v1, . . . , vT1K1) in a second price auction with K2 ≥ 2 bidders, we are able to generalize the674

existing revenue guarantee to the case of multiple bidders (and multiple units) under the assumption that the675

distribution is regular. The generalization is made by the following lemma, which we believe is of independent676

interest:677

Lemma C.1. For any regular distribution F , if the expected revenue of a posted price auction with price p and678

with one bidder whose value is drawn from F is (1 − ε)-optimal, then the revenue of a Vickrey auction with679

reserve price p selling at most k ≥ 1 units of a item to K ≥ 2 i.i.d. unit-demand bidders with values from F is680

also (1− ε)-optimal.681

The proof is in Appendix C.3. Thus for K2 ≥ 2, we also have: rev2 = T2(1− εsample(T1K1))MyeK2 .682

Finally,683

1− ε2 =
rev1 + rev2

rev∗
≥ 0 + T2MyeK2 · (1− εsample(T1K1))

T1MyeK1 + T2MyeK2

≥ 1− T1MyeK1

T1MyeK1 + T2MyeK2
− εsample(T1K1)

≥ 1− T1

T
− εsample(T1K1) (MyeK2 ≥ MyeK1 since K2 ≥ K1)

From Huang et al. [23], we know that for bounded distributions, εsample(N) = O(
√

D·logN
N

) when c ≤ 1
2D

,684

and for MHR distributions (MHR implies regularity), εsample(N) = O([ logN
N

]
2
3 ) when c ≤ 1

4e
. This implies685

the bounds on ε2 as stated in the theorem, and concludes the proof.686

C.3 Proof of Lemma C.1687

It’s more convenient to work in the quantile space. Let v(q), R(q) = qv(q) be the value curve and revenue688

curve of F . It’s well-known that the derivative R′(q) equals to the virtual value φ(v(q)) = v − 1−F (v)
f(v)

and by689

Myerson’s Lemma, the expected revenue with allocation rule x(·) equals to the virtual surplus:690

rev =

K∑
i=1

E[R′(q)xi(q)].

Let xK,k(q) be the allocation to (the probability of winning of) a bidder whose value has quantile q in a691

Vickrey auction selling k units to K bidders without reserve price. Specifically, x1,1(q) = 1; for general K,692
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xK,1(q) = (1− q)K−1; for general K, k, xK,k(q) =
∑k−1
i=0

(
K−1
i

)
qi(1− q)K−1−i. With reserve price p0, let693

q0 = q(p0), then the allocation becomes xK,kq0 (q) = xK,k(q) for q < q0 and xK,kq0 (q) = 0 otherwise. So the694

revenue of p0 is695

rev(K, k) = K

∫ q0

0

R′(q)xK,k(q)dq,

and the optimal revenue is:696

rev∗(K, k) = K

∫ q∗

0

R′(q∗)xK,k(q)dq,

where q∗ satisfies: R′(q) ≥ 0, ∀q ≤ q∗ and R′(q) ≥ 0, ∀q ≥ q∗. And define:697

loss(K, k) = rev∗(K, k)− rev(K, k) = K

∫ q∗

q0

R′(q)xK,k(q)dq.

Since p0 is (1− ε)-optimal with K = 1, k = 1 (the posted-price auction), we have:698

loss(1, 1) ≤ ε · rev∗(1, 1).

Now for general K, k:699

• If q0 > q∗. The loss:700

loss(K, k) = K

∫ q0

q∗
−R′(q)xK,k(q)dq

≤ K
∫ q0

q∗
−R′(q)xK,k(q∗)dq

= KxK,k(q∗)

∫ q0

q∗
−R′(q)dq = KxK,k(q∗)loss(1, 1),

since xK,k(q) is non-increasing in q (actually, the monotonicity of xK,k(q) is the only property that is701

used throughout the proof), and the optimal revenue:702

rev∗(K, k) ≥ K
∫ q∗

0

R′(q)xK,k(q∗)dq

= KxK,k(q∗)

∫ q∗

0

R′(q)dq = KxK,k(q∗)rev∗(1, 1),

which gives: loss(K,k)
rev∗(K,k) ≤

loss(1,1)
rev∗(1,1) ≤ ε.703

• If q0 < q∗. The loss:704

loss(K, k) = K

∫ q∗

q0

R′(q)xK,k(q)dq ≤ KxK,k(q0)loss(1, 1),

and the optimal revenue:705

rev∗(K, k) = K

∫ q0

0

R′(q)xK,k(q)dq +K

∫ q∗

q0

R′(q)xK,k(q)dq

≥ K
∫ q0

0

R′(q)xK,k(q0)dq +K

∫ q∗

q0

R′(q)xK,k(q)dq

= KxK,k(q0)rev(1, 1) + loss(K, k),

which gives:706

loss(K, k)

rev∗(K, k)
≤ loss(K, k)

KxK,k(q0)rev(1, 1) + loss(K, k)
=

1
KxK,k(q0)rev(1,1)

loss(K,k)
+ 1

≤ 1
rev(1,1)
loss(1,1)

+ 1
≤ 1

1−ε
ε

+ 1
= ε.

C.4 Perfect Bayesian Equilibrium707

Here we consider the setting of T -round repeated auctions where each auction contains K ≥ 1 bidders and each708

bidder participates in at most m rounds of auctions. We use vi = (vti) to denote bidder i’s profile of values,709
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where vti is her value at round t if she participates in that round. Similarly denote by bi = (bti) the bids of710

bidder i. Values are i.i.d. samples from some distribution F .711

In repeated auctions, the seller can adjust the mechanism dynamically based on the bidding history of buyers,712

and buyers can use historical information to adjust their bidding strategies. The solution concept of an ε-perfect713

Bayesian equilibrium (ε-PBE) captures this dynamic nature. For each bidder i, we use hti to denote the history714

she can observe at the start of round t. For example, hti includes her bid bt
′
i , whether she receives the item, how715

much she pays, etc, at round t′ < t if she participates in round t′. We assume that bidder i cannot observe the716

bids in the auctions she does not participate in. We allow bidder i to anticipate her values in future rounds, so she717

can make decision on her entire value profile vi = (vti). Bidder i’s strategy is thus denoted by σi = (σti) where718

σti maps vi and hti to a bid bti = σti(vi, h
t
i). Let U [t:T ]

i (σ;vi, h
t
i) be the total expected utility of bidder i in719

rounds t, t+ 1, . . . , T , given her value profile vi, the history hti at round t, and bidders playing σ = (σi, σ−i).720

Definition C.2. A profile of strategy σ = (σi, σ−i) is an ε-perfect Bayesian equilibrium (ε-PBE) if for each721

bidder i, each round t, any history hti, any values vi, the strategy σi approximately maximizes bidder i’s722

expected utility from round t to round T up to ε error, i.e., U [t:T ]
i (σ;vi, h

t
i) ≥ U

[t:T ]
i (σ′i, σ−i;vi, h

t
i)− ε for723

any alternative strategy σ′i.724

Definition C.3. The seller’s mechanism (or auction learning algorithm) is ε-perfect Bayesian incentive-725

compatible (ε-PBIC) if truthful bidding (i.e., σti(vi, h
t
i) = vti ) is an ε-PBE.726

We emphasize that the expected utility U [t:T ]
i (σ;vi, h

t
i) is conditioned on hti. This is because, the history hti727

which includes the allocation of item and the payment of bidder i can leak information about other bidders’ bids728

(or values). Other bidders’ bids will influence the mechanism the seller will use in future rounds. Thus, based on729

this information, bidder i can update her belief about other bidders’ bids and the seller’s choice of mechanisms730

by Bayesian rule, then she can compute her expected utility on her updated belief.731

PBIC of the two-phase ERM algorithm. As discussed, the two-phase ERM algorithm is a learning732

algorithm that learns approximately revenue-optimal auctions in an approximately incentive-compatible way733

against strategic bidders in repeated auctions. The algorithm, obtained by adopting the two-phase model with734

ERM as the price learning function and setting K1 = K2 = K, works as follows:735

• in the first T1 rounds, run any truthful, prior-independent auctionM, e.g., the second price auction736

with no reserve;737

• in the later T2 = T − T1 rounds, run second price auction with reserve p = ERMc(b1, . . . , bT1K)738

where b1, . . . , bT1K are the bids from the first T1 auctions.739

T1 and c are adjustable parameters of the two-phase ERM algorithm.740

Theorem C.4. The two-phase ERM algorithm is ε-PBIC, where,741

• for any bounded F , ε = mD∆worst
T1K,mK , and742

• for any MHR F , if m
T1
≤ c ≤ 1

4e
andmK = o(

√
T1K), then ε = O

(
mv∗∆worst

T1K,mK

)
+O

(
mv∗√
T1K

)
,743

where v∗ = arg maxv{v[1− F (v)]}.744

The constants in big O’s are independent of F and c.745

Combining with the bounds on ∆worst
N,m in Theorem 1.3, we have746

Corollary C.5. The two-phase ERM algorithm is ε1-PBIC, where,747

• for any bounded F ,748

ε1 = O

log2(T1K)
3

√
D11Km5

T1


if m
T1
≤ c ≤ 1

2D
and mK = o(

√
T1K);749

• for any MHR F ,750

ε1 = O

(
log3(T1K)v∗m2

√
K

T1
,

)
if m
T1
≤ c ≤ 1

4e
and mK = o(

√
T1K).751

The constants in big O’s are independent of F and c.752

The guarantee of (1− ε2) revenue optimality is the same as Theorem 2.2:753
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• For bounded and regular distribution, ε2 = O
(
T1
T

+
√

D·log(T1K)
T1K

)
.754

• For MHR distribution, ε2 = O

(
T1
T

+
[
log(T1K)
T1K

] 2
3

)
.755

In the rest of this section we prove Theorem C.4 for bounded distributions. The proof is similar to that of756

Theorem 2.1 except that we need to consider the effect of history hti on the conditional distribution of the values757

of other bidders when considering perfect Bayesian equilibrium. The extension to MHR distributions is similar758

to the extension of Theorem 2.1 to MHR distributions (discussed in Appendix D.2) and hence omitted.759

Proof of Theorem C.4 for bounded distributions. Assume that other bidders bid truthfully and bidder i deviates760

from truthful bidding to other strategy, consider the increase of bidder i’s total expected utility from round t to761

T , for each t, given any history hti and any values vi. If t > T1, then the auctions in t and later rounds are in the762

second phase and never change due to the deviation of bidder i, thus deviation does not increase her utility.763

Then we consider t ≤ T1. Strategic bidding does not increase bidder i’s utility in rounds t, t+1, . . . , T1 because764

these rounds are in the first phase and the mechanism in the first phase is truthful. Thus, strategic bidding can765

increase her utility only in the second phase. Let t′ > T1 be a second-phase round in which she participates.766

The auction at round t′ is a second-price auction with reserve price determined by ERMc from bids in rounds 1767

to T1. Denote by v[1:T1] the values of all bidders in rounds 1 to T1. If bidder i bid truthfully, then the reserve768

price at round t′ is p1 = ERMc(v[1:T1]). Let A ⊆ [1 : T1] be the set of rounds in which bidder i participates769

from round 1 to round T1. Then we can partition v[1:T1] into two parts: vA and v[1:T1]\A, where vA denotes770

bidders’ values in the rounds in A, and v[1:T1]\A denotes the values in the rounds not in A. There are |A|K771

values in vA, |A| of which are bidder i’s values. By deviating, bidder i can change her values in vA to some772

arbitrary bids. We denote by bA the bids of bidder i and the values of other bidders in vA. After deviation, the773

reserve price is changed to p2 = ERMc(bA,v[1:T1]\A). By (14), the increase of bidder i’s utility due to the774

change of reserve price is at most p1 − p2, which is further upper-bounded by775

p1 − p2 = ERMc(vA,v[1:T1]\A)− ERMc(bA,v[1:T1]\A)

≤ ERMc(vA,v[1:T1]\A) · δI(vA,v[1:T1]\A)

≤ ERMc(vA,v[1:T1]\A) · δworst
|A|K (v[1:T1]\A)

≤ D · δworst
|A|K (v[1:T1]\A).

We then argue that given any history hti, v
[1:T1]\A are still i.i.d. samples from F , from bidder i’s perspective.776

Note that bidder i does not participate in the auctions in rounds [1 : T1]\A, and the auctions she does participate777

in before round t is prior-independent, which implies that the allocation of item and the payments of bidders778

in any round depend only on the bids of bidders in that round but not on any information like bids from other779

rounds. Moreover, other bidders’ values across different rounds are independent. Therefore, the auctions bidder i780

participates in leaks no information about other bidders’ values in rounds [1 : T1]\A.781

Therefore, the increase of bidder i’s expected utility at round t′ is at most782

E
[
p1 − p2 | hti,vi

]
≤ E

[
D · δworst

|A|K (v[1:T1]\A) | hti,vi
]

= Ev[1:T1]\A∼F

[
D · δworst

|A|K (v[1:T1]\A)
]

= D ·∆worst
T1K,|A|K

≤ D ·∆worst
T1K,mK ,

where the last inequality is because |A| ≤ m and ∆worst
N,m1

≥ ∆worst
N,m2

for m1 ≥ m2.783

Since bidder i participates in at most m auctions, the sum of increases of expected utility from round t to T is at784

most mD∆worst
T1K,mK .785

D Analysis for MHR Distributions786

Recall that a distribution F is MHR if its hazard rate f(x)
1−F (x)

is monotone non-decreasing.787

D.1 Properties of MHR Distributions788

Recall that R(q) = qv(q) is the revenue curve of distribution F , where q(v) = 1 − F (v). And q∗ =789

arg maxq R(q) is the quantile of the optimal reserve price v∗ = arg maxv[1− F (v)]v = v(q∗).790
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For MHR distributions, we first introduce a lemma which says that q∗ is bounded away from 0 by a constant.791

Lemma D.1 (Hartline et al. [22]). Any MHR distribution has a unique q∗, and q∗ ≥ 1
e

.792

Moreover, the revenue curve decreases quadratically from q∗.793

Lemma D.2 (Huang et al. [23], Lemma 3.3). For any MHR F , for any 0 ≤ q ≤ 1, R(q∗) − R(q) ≥794
1
4
(q∗ − q)2R(q∗).795

The following lemma shows that samples from an MHR distribution are rarely too large.796

Lemma D.3. LetF be an MHR distribution. LetX = max{v1, . . . , vN}where v1, . . . , vN areN i.i.d. samples797

from F . For any x ≥ v∗, we have Pr[X > x] ≤ Ne−x/v
∗+1.798

Proof. Note that 1− F (x) = exp
{
−
∫ x
0

f(v)
1−F (v)

dv
}
≤ exp

{
−
∫ x
v∗

f(v)
1−F (v)

dv
}

. By the definition of v∗ we799

know (v∗[1 − F (v∗)])′ = 0, or f(v∗)
1−F (v∗) = 1

v∗ . By the definition of MHR, we have f(x)
1−F (x)

≥ 1
v∗ for any800

x ≥ v∗, thus801

1− F (x) ≤ exp

{
−
∫ x

v∗

1

v∗
dv

}
= exp

{
−x− v

∗

v∗

}
.

Then the lemma follows from a simple union bound:802

Pr[X > x] = Pr[∃i, vi > x] ≤ N [1− F (x)] ≤ N exp
{
− x

v∗
+ 1
}
.

803

We will use above lemmas to prove some further lemmas which characterize the behavior of ERMc on samples804

from a MHR distribution, where c can be any value between m/N and 1/(2e). The samples we consider consist805

of m copies of +∞, denoted by vI , and N −m random draws from F . We sort the samples non-increasingly806

and use807

v−I = (vm+1 ≥ vm+2 ≥ · · · ≥ vN )

to denote the random draws. Let qm+1 ≤ qm+2 ≤ · · · ≤ qN denote their quantiles where qj = q(vj).808

Lemma D.4. Let F be an MHR distribution. Suppose m = o(
√
N). Fix m values vI to be +∞, and randomly809

draw N − m values v−I from F . Let k∗ = arg maxi>cN{ivi}, i.e., the index selected by ERMc, where810
m
N
≤ c ≤ 1

2e
. Then we have811

R(qk∗) ≥

(
1−O

(√
logN

N

))
R(q∗),

with probability at least 1−O
(

1
N

)
.812

Proof. Let γ def
= 2

√
4 ln(2(N−m))

N−m + m
N

= O

(√
logN
N

)
as in Claim B.2. We have |qj − j

N
| ≤ γ for any813

j > m with probability at least 1− 1
N−m . We thus assume |qj − j

N
| ≤ γ.814

The intuition is follows: The product jvj divided by N approximates R(qj) = qjvj up to an O(γ) error. Our815

proof consists of three steps: The first step is to show that with high probability, there must be some sample816

with quantile qi that is very close to q∗ so its revenue R(qi) ≈ R(q∗) ≈ i
N
vi. The second step is to argue817

that all samples with quantile qj < 1
2e

are unlikely to be chosen by ERMc because qj is too small and the gap818

between q∗ and 1
2e

leads to a large loss in revenue, roughly speaking, j
N
vj ≈ R(qj) < (1− 1

4
( 1
2e

)2)R(q∗) ≈819

(1−Ω(1)) i
N
vi. The final step is to show that if a quantile qj > 1

2e
is to be chosen by ERMc, then it must have820

equally good revenue as qi.821

Formally:822

1. Firstly, consider the quantile interval [q∗ − γ, q∗]. Each random draw qi, if falling into this interval,823

will satisfy:824

i

N
vi ≥ (qi − γ)vi ≥ (q∗ − 2γ)vi ≥ (q∗ − 2γ)v∗ ≥ (1− 2eγ)q∗v∗, (15)

where the last but one inequality is because qi ≤ q∗ and the last one follows from q∗ ≥ 1
e

. The825

probability that no quantile falls into [q∗ − γ, q∗] is at most826

(1− γ)N−m =

(
1−O

(√
logN

N

))N−m
= o(

1

N
).
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2. For the second step, first note that the qi ∈ [q∗ − γ, q∗] in the first step will be considered by ERMc
827

since i ≥ (qi − γ)N ≥ (q∗ − 2γ)N ≥ ( 1
e
− 2γ)N > cN . Then suppose ERMc chooses another828

quantile qj instead of qi, we must have829

j

N
vj ≥

i

N
vi. (16)

We will show that such probability is small if qj < 1
2e

+ γ. Pick a threshold quantile 1
T

where830

T = N1/4. Consider two cases:831

• If 0 ≤ qj < 1
T

. We argue that ERMc picks qj with probability at most o( 1
N

). Note that832

j

N
vj ≤ (qj + γ)vj ≤ (

1

T
+ γ)vj , (17)

together with (16) and (15), we obtain ( 1
T

+ γ)vj ≥ (1− 2eγ)q∗v∗, implying833

vj ≥
1− 2eγ

e

Tv∗

1 + Tγ
= Ω(Tv∗),

since Tγ = O
(√

logN

N1/4

)
→ 0. According to Lemma D.3, the probability that there exists834

vj > Ω(Tv∗) is at most835

N exp

{
−Ω(Tv∗)

v∗
+ 1

}
= o(

1

N
).

• If 1
T
≤ qj < 1

2e
+ γ. We argue that ERMc will never choose such qj . Note that836

j

N
vj ≤ (qj + γ)vj ≤ (1 + Tγ)qjvj , (18)

together with (16) and (15), we obtain (1 + Tγ)qjvj > (1− 2eγ)q∗v∗. Then by Lemma D.2,837

1− 2eγ

1 + Tγ
≤ qjvj
q∗v∗

≤ 1− 1

4
(qj − q∗)2 ≤ 1− 1

4
(

1

2e
− γ)2. (19)

However, the left hand side of (19) approaches to 1 since γ and Tγ approach 0 while the right838

hand side is strictly less than 1, a contradiction. So this case never happens.839

3. Finally, if qj ≥ 1
2e

+ γ. We argue that if ERMc picks qj instead of qi, then R(qj) approximates840

R(qi) well, satisfying the conclusion in the lemma. This is because841

R(qj) = qjvj ≥ (
j

N
− γ)vj

≥ (1− 2eγ)
j

N
vj

j

N
≥ qj − γ ≥

1

2e

≥ (1− 2eγ)
i

N
vi Eq. (16)

≥ (1− 2eγ)(1− 2eγ)q∗v∗ Eq. (15)

= (1−O(γ))R(q∗).

Combining above three steps and the event in the beginning of the proof, we have R(qk∗) ≥ (1 −842

O(
√

logN
N

))R(q∗) except with probability at most843

1

N −m + o(
1

N
) + o(

1

N
) = O(

1

N
).

844

Lemma D.5. Let F be an MHR distribution. Suppose m = o(
√
N). Fix m values vI to be +∞, and randomly845

draw N − m values v−I from F . Let k∗ = arg maxi>cN{ivi}, i.e., the index selected by ERMc, where846

m
N
≤ c ≤ 1

2e
. Let ε = 4

√
logN
N

. Then with probability at least 1−O
(

1
N

)
, the following inequalities hold:847

1. qk∗ ≥ q∗ −O(ε);848

2. k∗ ≥ [q∗ −O(ε)]N > 1
2e
N ;849

3. vk∗ ≤ [1 +O(ε)]v∗.850
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Proof. For inequality (1), by Lemma D.2 and Lemma D.4, with probability at least 1−O( 1
N

), we have851

1

4
(qk∗ − q∗)2 ≤

R(q∗)−R(qk∗)

R(q∗)
≤ O

(√
logN

N

)
.

Taking the square root, we obtain qk∗ ≥ q∗ −O
(

4

√
logN
N

)
.852

Assume that (1) holds. To prove (2), note that by Claim B.2, we have k∗

N
≥ qk∗ −O

(√
logN
N

)
≥ q∗ −O(ε)853

except with probability at most O( 1
N

), and q∗ > 1
e

.854

Finally, inequality (3) follows from855

vk∗

v∗
=
R(qk∗)

qk∗

q∗

R(q∗)
≤ 1 · q

∗

qk∗
≤ q∗

q∗ −O(ε)
= 1 +

O(ε)

q∗ −O(ε)
≤ 1 +O(eε).

856

D.2 Detailed Proof of Theorem 2.1 for MHR Distributions857

Let ∆U(vi, bI , v−I) = UTP
i (vi, bI , v−I)− UTP

i (vi, vI , v−I). Similar to the proof for bounded distributions,858

we have for any vi, bI , v−I ,859

∆U(vi, bI , v−I) ≤ m2 ·
(

ERMc(vI , v−I)− ERMc(bI , v−I)

)
≤ m2 · ERMc(vI , v−I) · δworst

m1
(v−I).

By Claim A.2, we have ERMc(vI , v−I) ≤ ERMc(vI , v−I) where vI can be any m1 values (e.g., +∞) that860

are greater than the maximal value in v−I , when c ≥ m1
T1K1

.861

Let N = T1K1, define two threshold prices T1 =
√
Nv∗ and T2 = [1 + O(ε)]v∗ where ε = 4

√
logN
N

as in862

Lemma D.5. Note that for sufficiently large N , T1 > T2. With the random draw of v−I from F , denote the863

random variable ERMc(vI , v−I) by P , we have:864

Ev−i [∆U(vi, bI , v−I)] = Ev−I [∆U(vi, bI , v−I) | P ≤ T2] · Pr[P ≤ T2]

+Ev−I [∆U(vi, bI , v−I) | T2 < P ≤ T1] · Pr[T2 < P ≤ T1]

+Ev−I [∆U(vi, bI , v−I) | P > T1] · Pr[P > T1]

def
= E1 + E2 + E3. (20)

1. For the first term E1,865

E1 = Ev−I [∆U(vi, bI , v−I) | P ≤ T2] · Pr[P ≤ T2]

≤ Ev−I
[
m2 · P · δworst

m1
(v−I) | P ≤ T2

]
· Pr[P ≤ T2]

≤ m2 · T2 · Ev−I
[
δworst
m1

(v−I) | P ≤ T2

]
· Pr[P ≤ T2]

≤ m2 · [1 +O(ε)]v∗ · Ev−I
[
δworst
m1

(v−I)
]

= O
(
m2 · v∗ ·∆worst

N,m1

)
.

2. For the second term, we claim that E2 = O(m2v
∗

√
N

).866

By Lemma D.5, we have Pr[P > [1 +O(ε)]v∗] ≤ O( 1
N

). Therefore,867

E2 = Ev−I [∆U(vi, bI , v−I) | T2 < P ≤ T1] · Pr[T2 < P ≤ T1]

≤ Ev−I [m2 · P · 1 | T2 < P ≤ T1] · Pr[T2 < P ≤ T1]

≤ m2 · T1 · Pr[P > T2]

≤ m2 ·
√
Nv∗ ·O

(
1

N

)
= O

(
m2v

∗
√
N

)
.
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3. For the third term, we claim that E3 = o(m2v
∗

N
).868

Let B be the upper bound on the support of F (B can be +∞). Let FP (x) be the distribution of P .869

For convenience, suppose it is continuous and has density fP (x). We have:870

E3 = Ev−I [∆U(vi, bI , v−I) | P > T1] · Pr[P > T1]

≤ Ev−I [m2 · P · 1 | P > T1] · Pr[P > T1]

= m2 · Ev−I [P | P > T1] · Pr[P > T1]

= m2 ·
∫ B

T1

xfP (x)dx

= m2 ·
(∫ B

T1

[1− FP (x)]dx+ T1[1− FP (T1)]

)
.

Let max{v−I} denote the maximum value in the N −m1 samples v−I . By Lemma D.3, we have for871

any x ≥ v∗,872

1− FP (x) = Pr[P > x] ≤ Pr[max{v−I} > x] ≤ Ne−
x
v∗ +1.

Thus,873 ∫ B

T1

[1− FP (x)]dx+ T1[1− FP (T1)] ≤ v∗Ne−
T1
v∗ +1 + T1Ne

−T1
v∗ +1

= v∗N(1 +
√
N)e−

√
N+1

= o(
v∗

N
),

as desired.874

Combining the three items,875

Ev−i [∆U(vi, bI , v−I)] = O
(
m2v

∗∆worst
N,m1

)
+O

(
m2v

∗
√
N

)
.

D.3 An Improved Bound on Incentive-Awareness Measure for MHR Distributions876

Here we improve the upper bound on ∆worst
N,m for MHR distributions by proving:877

Lemma D.6 (Tigher bound for MHR distributions). Moreover, if F is MHR, let d = 1
2e

, and suppose m
N
≤ c ≤878

1
4e

, we have879

∆worst
N,m ≤ O

(
m

d7/2
log3N√

N

)
+ Pr[E].

The main idea is to limit the range of the quantile qj of the “bad value” vj in Bad(ηt, θt) in Lemma B.5. Recall880

that in the proof of Lemma B.5 we assume qj can take any value in [0, 1], divide [0, 1] into O(1/h) intervals (as881

in (11)), and take a union bound to upper-bound the probability that a bad qj exists. For MHR distributions,882

however, we will show that qjvj is a (1−O(
√

logN
N

)) approximation to R(q∗), thus we can use Lemma D.2883

to reduce the possible range of qj from 1 to O( 4

√
logN
N

).884

D.3.1 Proof of Lemma D.6885

We repeat the argument for Lemma B.1 until Claim B.2, before which we have:886

∆worst
N,m ≤

∫ 1

0

Pr[δI(vI , v−I) > η ∧ E]dη + Pr[E]. (21)

Let γ = O(
√

logN
N

) be the upper bound on |qj − j
N
| in Conc. With the random draw of N −m samples v−I887

from F (and assume other m samples vI are equal to max{v−I}), we have |qj − j
N
| < γ for any j > m with888

probability at least 1− 1
N−m . Moreover, by Lemma D.4 and Lemma D.5, with probability at least 1−O( 1

N
)889

we have R(qk∗) = qk∗vk∗ ≥ (1− ε)R(q∗) and qk∗ ≥ q∗ −O(
√
ε) > 1

2e
, where ε = O(

√
logN
N

). Combine890

the above two inequalities with Conc and denote the combined event by Conc′, i.e.,891

Conc′
def
= Conc ∧ [R(qk∗) ≥ (1− ε)R(q∗)] ∧

[
qk∗ ≥ q∗ −O(

√
ε) >

1

2e

]
.
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We have Pr[Conc′] ≤ O( 1
N

). Re-define G(η) = Pr[δI(vI , v−I) > η ∧ E ∧ Conc′], and re-write (4):892

Pr[δI(vI , v−I) > η ∧ E] ≤ G(η) +O

(
1

N

)
. (22)

The following steps of bounding G(η) = Pr[δI(vI , v−I) > η ∧ E ∧ Conc′] are the same as before (in893

particular, Lemma B.4 in Lemma B.3), until upper-bounding Pr[Bad(η, θ) ∧ E ∧ Conc′] (Lemma B.5), where894

we improve the bound by a factor of 4

√
logN
N

.895

Lemma D.7 (Improved Lemma B.5 for MHR distributions). Let d = 1
2e

. If η and θ are at least896

Ω

(
m
d

√
log(N−m)
N−m

)
, then Pr[Bad(η, θ) ∧ E ∧ Conc′] = O

(
4

√
logN
N

m log2 N

d4θ
√
η3N

)
.897

Proof. The proof is the same as that of Lemma B.5 (in Appendix B.5), except that before dividing the quantile898

space [0, 1], we argue that the space to be divided can be shortened to [q∗ −O(
√
ε), q∗ +O(

√
ε)].899

Consider the index j that is promised to exist in Bad(η, θ),900

R(qj) = qjvj

≥ (
j

N
− γ)vj Conc′

≥ k∗

N
vk∗ −

m

Nθ
vk∗ − γvk∗ jvj ≥ k∗vk∗ −

m

θ
vk∗ and vj∗ ≤ vk∗

≥ (qk∗ − γ)vk∗ −
m

Nθ
vk∗ − γvk∗ Conc′

=
[
qk∗ − (2γ +

m

Nθ
)
]
vk∗

=

[
1−

2γ + m
Nθ

qk∗

]
R(q∗k)

≥
[
1− 2e(2γ +

m

Nθ
)
]

(1− ε)R(q∗) qk∗ ≥
1

2e
and R(qk∗) ≥ (1− ε)R(q∗) in Conc′

=

[
1−O

(√
logN

N

)]
R(q∗) Definition of γ and ε, and θ = Ω

(
m

√
logN

N

)
.

By Lemma D.2, we have901

|qj − q∗| ≤ 2

√√√√O

(√
logN

N

)
= O

(
4

√
logN

N

)
.

Now we modify the analysis after Claim B.8. Consider those intervals Il’s with length h in (11) that intersect902

with903

Iqj =

[
q∗ −O

(
4

√
logN

N

)
, q∗ +O

(
4

√
logN

N

)]
.

There are at most O
(

1
h

4

√
logN
N

)
such intervals and we denote the set of (indices of) those intervals by L. The904

definitions of i∗l , i∗<(l+1), Al, A<(l+1), and Wl remain unchanged. By choosing the index l such that qj ∈ Il+2,905

we know that if the event [Bad(η, θ) ∧ E ∧ Conc′] holds then Wl must hold for some l such that l + 2 ∈ L.906

By Lemma B.9 we have Pr[Wl] ≤ O(H log2 N√
hd3N

). Taking a union bound over l, we obtain907

Pr[Bad(η, θ) ∧ E ∧ Conc′] ≤ O

(
1

h
4

√
logN

N
· H log2N√

hd3N

)
= O

(
4

√
logN

N

m log2N

dθ
√

(dη)3d3N

)
,

where the last equality is because H = O(m
dθ

) and h = Ω(dη) under the assumption that η and θ are at least908

Ω(m
d

√
log(N−m)
N−m ).909

Then we improve Lemma B.3 based on Lemma D.7.910

Lemma D.8 (Improved Lemma B.3). If η is at least Ω

(
m
d

√
log(N−m)
N−m

)
, then G(η) = O

(
m log3 N

d4N3/4
1

η3/2

)
.911
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Proof. Modify the end of Appendix B.3,912

Pr[δI(vI , v−I) > η ∧ E ∧ Conc′] ≤
M∑
t=0

Pr[Bad(ηt, θt) ∧ E ∧ Conc′] Lemma B.4

=

M∑
t=0

O

(
4

√
logN

N

m log2N

d4θt
√
η3tN

)
Lemma D.7

=

M∑
t=0

O

(
4

√
logN

N

m log2N

d4
√
N

ηt+1

η
√
η3t

)
Definition of θt

= O

(
4

√
logN

N

m log2N

d4
√
N
·
M∑
t=0

ηt+1

η

1

η
3/2
t

)

Note that because ηt, θt ≥ η
2

, the condition of Lemma D.7 is satisfied when η = Ω(m
d

√
log(N−m)
N−m ).913

By Claim B.6, we can choose a sequence of {ηt} such that914

M∑
t=0

ηt+1

η

1

η
3/2
t

= O

(
log log(N −m)

η3/2

)
.

Therefore,915

Pr[δI(vI , v−I) > η ∧ E ∧ Conc′] ≤ O
(
m log2+1/4N

d4N1/2+1/4
· log log(N −m))

η3/2

)
= O

(
m log3N

d4N3/4

1

η3/2

)
.

916

We finish the proof of Lemma D.6 by computing the integral in (21). Let C = Θ
(
m log3 N

d4N3/4

)
be the bound on917

G(η) in Lemma D.8, and let A = Θ(m
d

√
log(N−m)
N−m ) = Θ(m

d

√
logN
N

) be the condition on the lower bound on918

η in Lemma D.8. Then G(η) < C

η3/2
when η > max{C2/3, A}. If C2/3 > A, then we have919 ∫ 1

0

Pr[δI(vI , v−I) > η ∧ E]dη ≤
∫ 1

0

(
G(x) +O

(
1

N

))
dx by (22)

≤
∫ C

2
3

0

1dx+

∫ 1

C
2
3

C

x
3
2

dx+O

(
1

N

)
= C

2
3 +

C

− 1
2

− C

− 1
2

C−
1
3 +O

(
1

N

)
≤ 3C

2
3 +O

(
1

N

)
= O

(
m2/3

d8/3
log2N√

N

)
+O

(
1

N

)
= O

(
m2/3

d8/3
log2N√

N

)
.

If A > C2/3, then we have:920 ∫ 1

0

Pr[δI(vI , v−I) > η ∧ E]dη ≤
∫ 1

0

(
G(x) +O

(
1

N

))
dx by (22)

≤
∫ A

0

1dx+

∫ 1

A

C

x
3
2

dx+O

(
1

N

)
= A+

C

− 1
2

− C

− 1
2

A−
1
2 +O

(
1

N

)

≤ Θ

(
m

d

√
logN

N

)
+ Θ

(
m1−1/2 log3−1/4N

d4−1/2N3/4−1/4

)
+O

(
1

N

)
= O

(
m

d7/2
log3N√

N

)
,

which, together with (21), concludes the proof of Lemma D.6.921
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E Analysis for α-Strongly Regular Distributions922

E.1 Useful Lemmas923

Lemma E.1 (Cole and Roughgarden [11]). Any α-strongly regular distribution has a unique q∗, and q∗ ≥924

α
1

1−α .925

Lemma E.2 (Huang et al. [23], Lemma 3.5). For any α-strongly regular distribution F , for any 0 ≤ q ≤ 1,926

R(q∗)−R(q) ≥ α
3

(q∗ − q)2R(q∗).927

Lemma E.3. Let F be an α-strongly regular distribution. Let X = max{v1, . . . , vN} where v1, . . . , vN are928

N i.i.d. samples from F . For any x ≥ v∗, we have Pr[X > x] ≤ N
(

v∗

(1−α)x+αv∗

) 1
1−α .929

Proof. Note that 1− F (x) = exp
{
−
∫ x
0

f(v)
1−F (v)

dv
}
≤ exp

{
−
∫ x
v∗

f(v)
1−F (v)

dv
}

. By the definition of v∗ we930

know (v∗[1− F (v∗)])′ = 0, or f(v∗)
1−F (v∗) = 1

v∗ . By the definition of α-strong regularity, we have931 (
1− F (x)

f(x)

)′
= 1− dφ

dx
≤ 1− α

and932
1− F (x)

f(x)
≤ 1− F (v∗)

f(v∗)
+ (1− α)(x− v∗).

Thus933 ∫ x

v∗

f(v)

1− F (v)
≥
∫ x

v∗

1
1−F (v∗)
f(v∗) + (1− α)(v − v∗)

dv =
1

1− α [ln (v∗ + (1− α)(x− v∗))− ln v∗]

and934

1− F (x) ≤ exp

{
− 1

1− α ln
v∗ + (1− α)(x− v∗)

v∗

}
=

(
v∗

(1− α)x+ αv∗

) 1
1−α

.

Then the lemma follows from a simple union bound:935

Pr[X > x] = Pr[∃i, vi > x] ≤ N [1− F (x)] ≤ N
(

v∗

(1− α)x+ αv∗

) 1
1−α

.

936

Claim E.4. (Improved Claim B.2) Define event Conc:937

Conc =

[
∀j > m,

∣∣∣∣qj − j

N

∣∣∣∣ ≤ 2

√
3

α

ln(2(N −m))

N −m +
m

N

]
,

then Pr[Conc] ≤ 1

(N−m)
3−2α
2α

, where the probability is over the random draw of the N −m samples v−I .938

Proof. Set δ = 1

(N−m)
3−2α
2α

in Lemma A.3.939

Lemma E.5. Let F be an α-strongly regular distribution. Suppose m = o(
√
N). Fix m values vI to be +∞,940

and randomly draw N −m values v−I from F . Let k∗ = arg maxi>cN{ivi}, i.e., the index selected by ERMc,941

where
(
logN
N

) 1
3 ≤ c ≤ α1/(1−α)

2
. Then we have942

R(qk∗) ≥

(
1−O

(√
logN

N

))
R(q∗),

with probability at least 1−O
(

1

N
3−2α
2α

)
. The constants in the big O’s depend on α.943

Proof. Let γ def
= 2

√
3
α

log(2(N−m))
N−m + m

N
= O

(√
logN
N

)
as in Claim E.4. We have |qj − j

N
| ≤ γ for any944

j > m with probability at least 1 − 1

(N−m)
3−2α
2α

. We thus assume |qj − j
N
| ≤ γ. For simplicity, we define945

e(α) = α1/(1−α), and Lemma E.1 implies q∗ ≥ e(α).946
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The intuition is follows: The product jvj divided by N approximates R(qj) = qjvj up to an O(γ) error. Our947

proof consists of three steps: The first step is to show that with high probability, there must be some sample with948

quantile qi that is very close to q∗ so its revenue R(qi) ≈ R(q∗) ≈ i
N
vi. The second step is to argue that all949

samples with quantile qj < e(α)
2

are unlikely to be chosen by ERMc because qj is too small and the gap between950

q∗ and e(α)
2

leads to a large loss in revenue, roughly speaking, j
N
vj ≈ R(qj) < (1 − α

3
( e(α)

2
)2)R(q∗) ≈951

(1− Ω(1)) i
N
vi. The final step is to show that if a quantile qj > e(α)

2
is to be chosen by ERMc, then it must952

have equally good revenue as qi.953

Formally:954

1. Firstly, consider the quantile interval [q∗ − γ, q∗]. Each random draw qi, if falling into this interval,955

will satisfy:956

i

N
vi ≥ (qi − γ)vi ≥ (q∗ − 2γ)vi ≥ (q∗ − 2γ)v∗ ≥ (1− 2γ/e(α))q∗v∗, (23)

where the last but one inequality is because qi ≤ q∗ and the last one follows from q∗ ≥ e(α). The957

probability that no quantile falls into [q∗ − γ, q∗] is at most958

(1− γ)N−m =

(
1−O

(√
logN

N

))N−m
= o(

1

N
3−2α
2α

).

2. For the second step, first note that the qi ∈ [q∗ − γ, q∗] in the first step will be considered by ERMc
959

since i ≥ (qi− γ)N ≥ (q∗− 2γ)N ≥ (e(α)− 2γ)N > cN . Then suppose ERMc chooses another960

quantile qj instead of qi, we must have961

j

N
vj ≥

i

N
vi. (24)

We will show that such qj does not exist.962

Suppose ERMc chooses qj , then j must satisfy j/N > c >
(
logN
N

) 1
3 , and as a result, qj >963 (

logN
N

) 1
3 − γ.964

If
(
logN
N

) 1
3 − γ < qj <

e(α)
2

+ γ, note that965

j

N
vj ≤ (qj + γ)vj ≤

1 +
γ(

logN
N

) 1
3 − γ

 qjvj , (25)

together with (24) and (23), we obtain

(
1 + γ

( logN
N )

1
3−γ

)
qjvj > (1 − 2γ/e(α))q∗v∗. Then by966

Lemma E.2,967

1− 2γ/e(α)

1 + γ

( logN
N )

1
3−γ

≤ qjvj
q∗v∗

≤ 1− α

3
(qj − q∗)2 ≤ 1− α

3
(
e(α)

2
− γ)2. (26)

However, the left hand side of (26) approaches to 1 while the right hand side is strictly less than 1, a968

contradiction. So this case never happens.969

3. Finally, if qj ≥ e(α)
2

+ γ. We argue that if ERMc picks qj instead of qi, then R(qj) approximates970

R(qi) well, satisfying the conclusion in the lemma. This is because971

R(qj) = qjvj ≥ (
j

N
− γ)vj

≥ (1− 2γ

e(α)
)
j

N
vj

j

N
≥ qj − γ ≥

e(α)

2

≥ (1− 2γ

e(α)
)
i

N
vi Eq. (24)

≥ (1− 2γ

e(α)
)(1− 2γ

e(α)
)q∗v∗ Eq. (23)

= (1−O(γ))R(q∗).
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Combining above three steps and the event in the beginning of the proof, we have R(qk∗) ≥ (1 −972

O(
√

logN
N

))R(q∗) except with probability at most973

1

(N −m)
3−2α
2α

+ o(
1

N
3−2α
2α

) = O(
1

N
3−2α
2α

).

974

Lemma E.6. Let F be an α-strongly regular distribution. Suppose m = o(
√
N). Fix m values vI to be +∞,975

and randomly draw N −m values v−I from F . Let k∗ = arg maxi>cN{ivi}, i.e., the index selected by ERMc,976

where
(
logN
N

) 1
3 ≤ c ≤ α1/(1−α)

2
. Let ε = 4

√
logN
N

. Then with probability at least 1 − O
(

1

N
3−2α
2α

)
, the977

following three inequalities hold:978

1. qk∗ ≥ q∗ −O(ε);979

2. k∗ ≥ [q∗ −O(ε)]N > α1/(1−α)

2
N ;980

3. vk∗ ≤ [1 +O(ε)]v∗.981

The constants in the big O’s depend on α.982

Proof. Define e(α) = α1/(1−α). We have q∗ ≥ e(α).983

For inequality (1), by Lemma E.2 and Lemma E.5, with probability at least 1−O( 1

N
3−2α
2α

), we have984

α

3
(qk∗ − q∗)2 ≤

R(q∗)−R(qk∗)

R(q∗)
≤ O

(√
logN

N

)
.

Taking the square root, we obtain qk∗ ≥ q∗ −O
(

4

√
logN
N

)
.985

To prove (2), note that by Claim E.4, we have k∗

N
≥ qk∗ −O

(√
logN
N

)
≥ q∗ −O(ε).986

Finally, (3) follows from987

vk∗

v∗
=
R(qk∗)

qk∗

q∗

R(q∗)
≤ 1 · q

∗

qk∗
≤ q∗

q∗ −O(ε)
= 1 +

O(ε)

q∗ −O(ε)
≤ 1 +O

(
ε

e(α)

)
.

988

E.2 Detailed Proof of Theorem 2.1 for α-Strongly Regular Distributions989

Let ∆U(vi, bI , v−I) = UTP
i (vi, bI , v−I)− UTP

i (vi, vI , v−I). Similar to the proof for bounded distributions,990

we have for any vi, bI , v−I ,991

∆U(vi, bI , v−I) ≤ m2 ·
(

ERMc(vI , v−I)− ERMc(bI , v−I)

)
≤ m2 · ERMc(vI , v−I) · δworst

m1
(v−I).

By Claim A.2, we have ERMc(vI , v−I) ≤ ERMc(vI , v−I) where vI can be any m1 values (e.g., +∞) that992

are greater than the maximal value in v−I , when c ≥ m1
T1K1

.993

Let N = T1K1, define two threshold prices T1 = N
3(1−α)

2α v∗ and T2 = [1 +O(ε)]v∗ where ε = 4

√
logN
N

as994

in Lemma E.6.995

Note that for sufficiently large N , T1 > T2. With the random draw of v−I from F , denote the random variable996

ERMc(vI , v−I) by P , we have:997

Ev−i [∆U(vi, bI , v−I)] = Ev−I [∆U(vi, bI , v−I) | P ≤ T2] · Pr[P ≤ T2]

+Ev−I [∆U(vi, bI , v−I) | T2 < P ≤ T1] · Pr[T2 < P ≤ T1]

+Ev−I [∆U(vi, bI , v−I) | P > T1] · Pr[P > T1]

def
= E1 + E2 + E3. (27)
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1. For the first term E1,998

E1 = Ev−I [∆U(vi, bI , v−I) | P ≤ T2] · Pr[P ≤ T2]

≤ Ev−I
[
m2 · P · δworst

m1
(v−I) | P ≤ T2

]
· Pr[P ≤ T2]

≤ m2 · T2 · Ev−I
[
δworst
m1

(v−I) | P ≤ T2

]
· Pr[P ≤ T2]

≤ m2 · [1 +O(ε)]v∗ · Ev−I
[
δworst
m1

(v−I)
]

= O
(
m2 · v∗ ·∆worst

N,m1

)
.

2. For the second term, we claim that E2 = O(m2v
∗

√
N

).999

By Lemma E.6, we have Pr[P > [1 +O(ε)]v∗] ≤ O( 1

N
3−2α
2α

). Therefore,1000

E2 = Ev−I [∆U(vi, bI , v−I) | T2 < P ≤ T1] · Pr[T2 < P ≤ T1]

≤ Ev−I [m2 · P · 1 | T2 < P ≤ T1] · Pr[T2 < P ≤ T1]

≤ m2 · T1 · Pr[P > T2]

≤ m2 ·N
3(1−α)

2α v∗ ·O
(

1

N
3−2α
2α

)
= O

(
m2v

∗
√
N

)
.

3. For the third term, we claim that E3 = o(m2v
∗

√
N

).1001

Let B be the upper bound on the support of F (B can be +∞). Let FP (x) be the distribution of P .1002

For convenience, suppose it is continuous and has density fP (x). We have:1003

E3 = Ev−I [∆U(vi, bI , v−I) | P > T1] · Pr[P > T1]

≤ Ev−I [m2 · P · 1 | P > T1] · Pr[P > T1]

= m2 · Ev−I [P | P > T1] · Pr[P > T1]

= m2 ·
∫ B

T1

xfP (x)dx

= m2 ·
(∫ B

T1

[1− FP (x)]dx+ T1[1− FP (T1)]

)
.

Let max{v−I} denote the maximum value in the N −m1 samples v−I . By Lemma E.3, we have for1004

any x ≥ v∗,1005

1− FP (x) = Pr[P > x] ≤ Pr[max{v−I} > x] ≤ N
(

v∗

(1− α)x+ αv∗

) 1
1−α

.

Thus,1006 ∫ B

T1

[1− FP (x)]dx+ T1[1− FP (T1)]

≤
∫ B

T1

N

(
v∗

(1− α)x+ αv∗

) 1
1−α

dx+ T1N

(
v∗

(1− α)T1 + αv∗

) 1
1−α

≤ N

α
· (v∗)

1
1−α

[(1− α)T1 + αv∗]
α

1−α
+ T1N

(
v∗

(1− α)T1 + αv∗

) 1
1−α

=
N

α
· (T1 + αv∗)

(
v∗

(1− α)T1 + αv∗

) 1
1−α

= O

(
v∗√
N

)
,

as desired.1007

Combining the three items,1008

Ev−I [∆U(vI , bI , v−I)] = O
(
m2v

∗∆worst
N,m1

)
+O

(
m2v

∗
√
N

)
,

where the constants in O’s depend on α.1009
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F Lower Bounds1010

F.1 Discussion1011

A lower bound on ∆worst
N,m . Theorem 1.3 gives an upper bound on ∆worst

N,m for a specific range of c’s. When one1012

considers respective lower bounds, a preliminary question would be: how does the choice of c affect the possible1013

lower bound? The following result shows that it is enough to prove a lower bound for one specific c in the range1014

of allowed c’s. The same lower bound will then hold for all c’s in that range.1015

Proposition F.1. Let ∆worst
N,m (c) denote the worst-case incentive-awareness measure of ERMc. Suppose1016

m = o(
√
N).1017

• For bounded distributions, ∆worst
N,m (c) = ∆worst

N,m (m
N

), for any c ∈ [m
N
, 1
2D

].1018

• For MHR distributions, ∆worst
N,m (c) is bounded by ∆worst

N,m (m
N

)±O( 1
N

), for any c ∈ [m
N
, 1
4e

].1019

Proof. Fix any d ∈ (0, 1) and any c ∈ [m
N
, d
2
]. Recall that ∆worst

N,m (c) = Ev−I∼F [δworst
m (v−I , c)], where,

letting vI be a vector of m identical values that are equal to max v−I , then by Claim A.2,

δworst
m (v−I , c) = 1−

infbI∈Rm+ P (bI , v−I , c)

P (vI , v−I , c)
.

Let k∗(v, c) = arg maxi>cN{iv(i)} where v = (vI , v−I), i.e. the index of P (v, c) in v. We show that, if1020

k∗(v, c) > dN for c = m
N

, then1021

• P (vI , v−I , c
′) = P (vI , v−I ,

m
N

) for any c′ ∈ [m
N
, d]. To see this, note that1022

k∗(v,
m

N
) = arg max

i>m
N
N

{iv(i)} = arg max
i>dN

{iv(i)} = arg max
i>c′N

{iv(i)} = k∗(v, c′),

where the second equality follow from our assumption that k∗(v, m
N

) > dN > m and the third1023

equality is because m
N
≤ c′ ≤ d.1024

• infbI∈Rm+ P (bI , v−I , c
′) = infbI∈Rm+ P (bI , v−I ,

m
N

) for any c′ ∈ [m
N
, d
2
]. Fix c = m

N
and consider1025

any c′ ∈ [m
N
, d
2
]. Let bI ∈ Rm+ be any bids such that P (bI , v−I , c) < P (vI , v−I , c). Let vb =1026

(bI , v−I). Consider k∗(vb, c), we have vb(k∗(vb,c)) < v(k∗(v,c)), so k∗(vb, c) must be greater than1027

the index of v(k∗(v,c)) in vb. The index of v(k∗(v,c)) in vb is at least k∗(v, c)−m, thus k∗(vb, c) >1028

k∗(v, c) −m > dN −m ≥ d
2
N . We claim that P (bI , v−I , c

′) = P (bI , v−I , c). To see this, note1029

that1030

k∗(bI , v−I ,
m

N
) = arg max

i>m
N
N

{ivb(i)} = arg max
i> d

2
N

{ivb(i)} = arg max
i>c′N

{ivb(i)} = k∗(bI , v−I , c
′),

where the second equality is because k∗(vb, m
N

) > d
2
N , and the third equality follows from m

N
≤1031

c′ ≤ d
2

.1032

Thus, δworst
m (v−I , c) = δworst

m (v−I ,
m
N

) for any c ∈ [m
N
, d
2
]. Define E(c) = [k∗ ≤ dN ], then1033

∆worst
N,m (c) = E[δworst

m (v−I , c)]

= E[δworst
m (v−I , c) | E(c)] · Pr[E(c)] + E[δworst

m (v−I , c) | E(c)] · Pr[E(c)]

= E[δworst
m (v−I ,

m

N
) | E(c)] · Pr[E(c)] + E[δworst

m (v−I , c) | E(c)] · Pr[E(c)].

For bounded distributions, consider d = 1
D

and c ∈ [m
N
, 1
2D

]. We have proved in Theorem 1.3 that Pr[E(c)] = 01034

for any c ∈ [m
N
, d
2
]. Thus ∆worst

N,m (c) = E[δworst
m (v−I ,

m
N

) | E(c)] · Pr[E(c)] = ∆worst
N,m (m

N
).1035

For MHR distributions, let d = 1
2e

, as proved in Lemma D.5, Pr[E] = O( 1
N

) for c ∈ [m
N
, 1
4e

]. Then1036

0 ≤ E[δworst
m (v−I , c) | E(c)] · Pr[E(c)] ≤ 1 · Pr[E(c)] = O( 1

N
). Thus

∣∣∆worst
N,m (c)−∆worst

N,m (m
N

)
∣∣ ≤ O( 1

N
)1037

for any c ∈ [m
N
, 1
4e

].1038

1039

Lavi et al. [26] show a lower bound that can be compared to our upper bounds in Theorem 1.3. Specifically,1040

they show that for the two-point distribution v = 1 and v = 2, each w.p. 0.5, ∆worst
N,1 = Ω(1/

√
N). It is easy to1041

adopt their analysis to any two-point distribution with v1 = 1 and v2 > 1. Since this is a bounded distribution,1042

we obtain the following corollary:1043
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Corollary F.2. For the class of bounded distribution with support in [1, D], and any choice of m
N
≤ c ≤ 1

2D
,1044

ERMc gives ∆worst
N,m (c) = Ω( 1√

N
) where the constant in Ω depends on D.1045

It remains open to prove other lower bounds on ∆worst
N,m , especially for MHR distributions.1046

A lower bound on the approximate truthfulness parameter, ε1. Since ∆worst
N,m only upper bounds the1047

approximate truthfulness parameter ε1, a lower bound on ∆worst
N,m does not immediately implies a lower bound on1048

ε1. However, an argument similar to above shows the same lower bound directly on ε1. Consider the two-point1049

distribution F where forX ∼ F , Pr[X = 1] = 1− 1
D

and Pr[X = D] = 1
D

. For simplicity let K1 = K2 = 21050

and suppose bidder i participates in m1 and m2 auctions in the two phases, respectively. Let N = T1K1 and1051

assume m1 = o(
√
N). Suppose the first-phase mechanismM is the second price auction with no reserve price.1052

Then,1053

Proposition F.3. In the above setting, ε1 = Ω
(
m2√
N

)
for any c ∈ [m1

N
, 1
2D

], where the constant in Ω depends1054

on D.1055

The proof is in Appendix F.2. Once again, it remains open (and interesting, we believe) to prove a lower1056

bound for MHR distributions, and to close the gap between our upper bound for bounded distributions which is1057

O(N−1/3 log2N).1058

F.2 Proof of Proposition F.3: Lower Bound for the Two-Phase Model1059

Consider the two-point distribution F where for X ∼ F , Pr[X = 1] = 1 − 1
D

and Pr[X = D] = 1
D

. For1060

simplicity let K1 = K2 = 2, and suppose bidder i participates in m1 and m2 auctions in the two phases,1061

respectively. Let N = T1K1 and assume m1 = o(
√
N). Suppose the first-phase mechanism M is the1062

second price auction with no reserve price. We argue that to satisfy ε1-approximate truthfulness, ε1 must be1063

Ω

(
m2(D−1)2√

(D−1)N

)
, for c ∈ [m

N
, 1
2D

].1064

Suppose the values of bidder i across two phases are all D’s, i.e.,1065

vi = (

m1︷ ︸︸ ︷
D, . . . ,D,

m2︷ ︸︸ ︷
D, . . . ,D),

and bidder i bids m1 (D − ε)’s with ε = D2

N
in the first phase (assume N � D2),1066

bI = (

m1︷ ︸︸ ︷
D − ε, . . . , D − ε).

Recall the definition of the interim utility of bidder i:1067

Ev−I
[
UTP
i (vi, bI , v−I)

]
= Ev−I

[
UMi (vi, bI , v−I) +m2u

K2(D,P (bI , v−I))
]
.

• First consider the increase of interim utility in the second phase. If the reserve price is D, then bidder1068

i’s utility is1069

uK2(D,D) = 0. (28)

If the reserve price is 1, then her utility becomes1070

uK2(D, 1) = (1− 1

D
) · (D − 1) +

1

D
· 0 =

(D − 1)2

D
. (29)

We then consider the probability that the reserve price is decreased from D to 1 because bidder i1071

deviates from D to D − ε. This probability is over the random draw of N −m1 values v−I . Suppose1072

there are exactly ( 1
D
N +1−m1)D’s in v−I . Then when bidder i bids truthfully, there are ( 1

D
N +1)1073

D’s in (vI , v−I) in total, which results in P (vI , v−I) = D because ( 1
D
N + 1) ·D > N ·1. However,1074

if bidder i deviates to bI , then P (bI , v−I) becomes 1, because1075

(
1

D
N + 1) · (D − ε) = N(1 +

D

N
)(1− D

N
) < N · 1, and (

1

D
N + 1−m1) ·D ≤ N · 1.

Thus, the reserve price is decreased from D to 1 with probability at least:1076

Pr[Bin(N −m1,
1

D
) =

1

D
N + 1−m1] = Ω

 1√
1
D

(1− 1
D

)N

 . (30)
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Combining (30), (29) and (28), we obtain1077

Ev−I
[
m2u

K2(D,P (bI , v−I))−m2u
K2(D,P (vI , v−I))

]
≥ Ω

 1√
1
D

(1− 1
D

)N

m2

(
(D − 1)2

D
− 0

)
= Ω

(
m2(D − 1)2√

(D − 1)N

)
. (31)

• Then we upper bound the utility loss due to non-truthful bidding in the first phase for bidder i. Note1078

that sinceM is the second price auction with no reserve price, no matter bidder i bidsD orD− ε > 1,1079

her interim utility is the same:1080

Ev−I
[
UMi (vi, vI , v−I)

]
= m1

(
(1− 1

D
)(D − 1) +

1

D
· 0
)

=
m1(D − 1)2

D
,

1081

Ev−I
[
UMi (vi, bI , v−I)

]
= m1

(
(1− 1

D
)(D − 1) +

1

D
· 0
)

=
m1(D − 1)2

D
.

Thus1082

Ev−I
[
UMi (vi, bI , v−I)− UMi (vi, vI , v−I)

]
= 0. (32)

Finally, by (31) and (32), we have1083

Ev−I
[
UTP
i (vi, bI , v−I)− UTP

i (vi, vI , v−I)
]
≥ Ω

(
m2(D − 1)2√

(D − 1)N

)
,

which gives a lower bound on ε1.1084

G Unbounded Regular Distributions1085

G.1 Discussion1086

Theorem 2.2 shows that approximate truthfulness and revenue optimality can be obtained simultaneously for1087

bounded (regular) distributions and for MHR distributions. A natural question would then be: what is the largest1088

class of value distribution that we can consider? If K1 > 1 or K2 > 1 (i.e., each auction includes multiple1089

bidders, at least 2), then running a second price auction with an anonymous reserve price may not be optimal if1090

the distribution is non-regular [30]. Moreover, even in the one-bidder case, the sample complexity literature1091

analyzes the ERM algorithm only for regular or for non-regular and bounded distributions. For other classes1092

of distributions, ERM does not seem to be the correct choice. Thus, the class of general unbounded regular1093

distributions is the largest class we can consider. Still, our results do not cover this entire class since MHR1094

distributions is a strict sub-class of regular distributions and for regular but non-MHR distributions we assume1095

boundedness.1096

Our results can be generalized to the class of α-strongly regular distributions with α > 0. As defined in [11], a1097

distribution F with positive density function f on its support [A,B] where 0 ≤ A ≤ B ≤ +∞ is α-strongly1098

regular if the virtual value function φ(x) = x− 1−F (x)
f(x)

satisfies φ(y)− φ(x) ≥ α(y − x) whenever y > x1099

(or φ′(x) ≥ α if φ(x) is differentiable). As special cases, regular and MHR distributions are 0-strongly and1100

1-strongly regular distributions, respectively. For α > 0, we obtain bounds similar to MHR distributions1101

on ∆worst
N,m and approximate incentive-compatibility in the two-phase model and the uniform-price auction.1102

Specifically, Theorem 1.3 can be extended to any α-strongly regular distribution with α > 0 as follows:1103

Theorem G.1. If F is α-strongly regular for 0 < α ≤ 1, then ∆worst
N,m = O

(
m log3 N√

N

)
, when m = o(

√
N)1104

and m
N
≤
(
logN
N

)1/3 ≤ c ≤ α1/(1−α)

4
. The constants in O and o depend on α.1105

Note that this bound holds only for large enough N ’s since α1/(1−α) → 0 as α→ 0. However, for any fixed1106

α > 0 there exists a large enough N such that the relevant range for appropriate c’s will be non-empty.5 The1107

proof of the upper bound on ∆worst
N,m is similar to the proof for MHR distributions (Lemma D.6), except that, we1108

need c ≥
(
logN
N

)1/3
to guarantee Pr[E] = O( 1

N
) (Lemma E.6); thus we omit the proof.1109

Similarly, both of Theorem 2.1 which says that the two-phase model is (O(m2v
∗∆worst

T1K1,m1
)+O( m2v

∗
√
T1K1

))-BIC1110

and Theorem 3.1 which says that the uniform-price auction is (m, (O(v∗∆worst
N,m ) +O( v∗√

N
)))-group BIC, hold1111

for any α-strongly regular distribution with α > 0. The proof of the former is in Appendix E.2 and the latter is1112

omitted.1113

5The constant in the big O depends on α, so it is constant only if the distribution function is fixed. However,
it goes to infinity as α→ 0.
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Figure 1: For equal-revenue distribution,
∆worst
N,1 (in black) on the y-axis as a function

of N on the x-axis, with c = 1/N . Three
other functions are plotted for reference.

Figure 2: For equal-revenue distribution,
∆worst
N,1 (in black) on the y-axis as a function of

N on the x-axis, with c = Θ((logN/N)1/3).
Three other functions are plotted for refer-
ence.

It remains an open problem for future research whether ERMc is incentive-aware in the large for regular1114

distributions that are not α-strongly regular for any α > 0. For these distributions additional technical challenges1115

exist since the choice of c in ERMc creates a clash between approximate truthfulness and approximate revenue1116

optimality. Unlike MHR and bounded regular distributions for which we can fix c = m/N to obtain approximate1117

truthfulness and revenue optimality, for arbitrary unbounded distribution we have to choose c more carefully. If1118

c is too large, for example, a positive constant, then we cannot obtain nearly optimal revenue.1119

Specifically, to obtain close-to-optimal revenue for all bounded distributions on [1, D] it is easy to verify that we1120

need c ≤ 1/D. Since the class of unbounded regular distributions contains all bounded regular distributions for1121

all D ∈ R+, it follows that c cannot be a constant. We therefore need to consider a non-constant c(N). In fact,1122

it has been shown in [23] that if c(N)→ 0 as N →∞ then approximate revenue optimality can be satisfied.1123

However, if c is too small, truthfulness will be violated, as discussed in the following two examples (assume1124

m = 1 for simplicity).1125

Example G.2 (Small c hurts truthfulness). Suppose we choose c(N) = 1
N

, that is, ERMc ignores only the1126

largest sample. Consider the equal-revenue distribution F (v) = 1 − 1
v

for v ∈ [1,+∞). Note that this is a1127

0-strongly regular distribution but not α-strongly regular for any α > 0 since for any x, φ(x) = 0. Similarly to1128

Yao [31], we prove in Appendix G.2 that ∆worst
N,1 does not go to 0 as N → +∞. This is also visible in Fig. 1,1129

which shows in black ∆worst
N,1 (on the y-axis) as a function ofN (on the x-axis). This was obtained via simulation,1130

for c = 1/N . Three other functions are plotted in other colors, for reference. However, whether ∆worst
N,1 → 01131

crucially depends on the choice of c, as can be seen in Fig. 2, where ∆worst
N,1 seems to converge to zero with1132

c = Θ((logN/N)1/3).1133

Example G.3 (Does an intermediate c hurt truthfulness as well?). Now assume c = Θ((logN/N)1/3), and1134

consider the “triangular” distribution F (v) = 1− 1
v+1

for v ∈ [0,+∞). This distribution can be seen as the1135

limit of a series of bounded regular distributions whose upper bounds and optimal reserve prices both tend to1136

+∞. Note that it is a regular distribution but not α-strongly regular for any α > 0. We do not know whether1137

∆worst
N,1 → 0 as N →∞ (see Fig. 3). In particular, our main lemma (Lemma B.1) may not suffice to analyze this1138

distribution as Pr[E] (as defined in that lemma) is unlikely to go to zero as N goes to infinity (see Fig. 4 for1139

simulation results).1140

G.2 Proof of Example G.2: ∆worst
N,1 6→ 0 for the Equal-Revenue Distribution and c = 1/N1141

We show that when F is the equal-revenue distribution, F (v) = 1− 1
v

, (v ∈ [1,+∞)), and c = 1/N , ∆worst
N,11142

does not go to 0 as N → +∞.1143

Recall Definition 1.2, ∆worst
N,1 = Ev−I [δworst

N,1 (v−I)]: we draw N − 1 i.i.d. values v−I = {v2, . . . , vN} from F ,1144

and a bidder can change any value vI = v1 to any non-negative bid b1. Let the other values v−I = {v2, . . . , vN}1145

be sorted as v(2) ≥ · · · ≥ v(N). Let λ = 10, λ′ = 1, and let TN−1 be the event that v(2) > λ(N − 1) and1146

v(3) < λ′(N − 1). Let VN−1 be the event that max3≤i≤N{i · v(i)} ≤ λ(N − 1).1147

When v−I satisfies event TN−1 ∧ VN−1, then1148

δworst
m (v−I) ≥ 1− λ′

λ
. (33)
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Figure 3: ∆worst
N,1 for the triangular distribu-

tion, with c = Θ((logN/N)1/3)

Figure 4: Pr[k∗ < 2cN ] as a function of
N for the triangular distribution, with c =
(logN/N)1/3/5. Our simulations show that
Pr[E] ≥ Pr[k∗ < 2cN ] ≥ 0.815.

This is because when TN−1 ∧ VN−1 happens, there exists some v1 > λ(N − 1), resulting P (vI , v−I) >1149

λ(N−1), while the bidder can strategically bid b1 < λ′(N−1) and change the price to P (bI , v−I) < λ′(N−1).1150

Moreover, we will show that the probability that the event TN−1 ∧ VN−1 happens satisfies1151

Pr[TN−1 ∧ VN−1] ≥ 0.9 · 1

λ
e−

2
λ′ . (34)

Combining (33) and (34), we know

∆worst
m ≥ (1− λ′

λ
) · (0.9 · 1

λ
e−

2
λ′ ) > 0.

The proof of (34) is separated into two parts. Firstly,

Pr[TN−1] =

(
N − 1

1

)
1

λ(N − 1)
(1− 1

λ′(N − 1)
)N−2 ≥ 1

λ
e−

2
λ′ .

Then we show that1152

Pr[VN−1 | TN−1] < 0.1.

Let z3, . . . , zN be i.i.d. random draws according to F conditioning on z < λ′(N−1), i.e., for any t ∈ [1, N−1],
recalling that λ′ = 1,

Pr
z∼F

[z > t | z < λ′(N − 1)] =
1

1− 1
N−1

(
1

t
− 1

N − 1
).

Let Y maxN−1 = max3≤i≤N{i · z(i)} where z(3) ≥ · · · ≥ z(N) is the sorted list of zi’s. Clearly,

Pr[VN−1 | TN−1] = Pr[Y maxN−1 ≥ λ(N − 1)].

For any t ≥ 1, let Mt be the number of zi’s (3 ≤ i ≤ N ) satisfying zi ≥ t, and Bt be the event that1153

t · (Mt + 2) ≥ λ(N−1)
2

. Let tk = N−1
2k

for 1 ≤ k ≤ blog2(N − 1)c. As the event Y maxN−1 ≥ λ(N − 1) implies1154 ∨
1≤k≤blog2(N−1)cBtk , we have1155

Pr[Y maxN−1 ≥ λ(N − 1)] ≤
blog2(N−1)c∑

k=1

Pr[Btk ]. (35)

Note that E[Mt] = N−1
t
− 1. Using Chernoff’s bound, we have1156

Pr[Bt] = Pr[Mt ≥
λ(N − 1)

2t
− 2] ≤ e−

1
3
(N−1

t
−1)(λ

2
−1)2 . (36)

Combining (35) and (36), we know1157

Pr[VN−1 | TN−1] = Pr[Y maxN−1 ≥ λ(N − 1)] ≤
blog2(N−1)c∑

k=1

e−
1
3
(2k−1)(λ

2
−1)2 <

+∞∑
k=1

e−
1
3
k(λ

2
−1)2 < 0.1,

and this completes the proof of (34).1158
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