
A Task Descriptions and Training Settings

We provide a detailed description of all tasks and some additional details on the training of MDEQ.

Image Classification on CIFAR-10. CIFAR-10 is a well-known computer vision dataset that
consists of 60,000 color images, each of size 32 × 32 [31]. There are 10 object classes and 6,000
images per class. The entire dataset is divided into training (50K images) and testing (10K) sets.

We use two different training settings for evaluating the MDEQ model on CIFAR-10. Follow-
ing Dupont et al. [18], we compare MDEQ-small with other implicit models on CIFAR-10 images
without data augmentation (i.e., the original, raw images), using approximately 170K learnable
parameters in the model. In the second setting, we apply data augmentation to the input images (i.e.,
random cropping, horizontal flipping, etc.), a setting that most competitive vision baselines (e.g.,
ResNets) use by default.

Image Classification on ImageNet. The dataset we use contains 1.2 million labeled training
images from ImageNet [32] distributed over 1,000 classes, and a test set of 150,000 images. The
original ImageNet consists of variable-resolution images, and we follow the standard setting [26] to
use the 224× 224 crops as inputs to the model.

ImageNet is frequently used for pretraining general-purpose image feature extractors that are used
on downstream tasks [26, 63, 62, 57]. We train a small and large MDEQ model, which will act as
their own “backbone” when later fine-tuned on the Cityscapes segmentation task. We train MDEQ on
ImageNet for 100 epochs. Following the practice of Bai et al. [5] with DEQ models for sequences,
we start the training (the first few epochs) of MDEQ with a shallow (5-layer) weight-tied stacking of
fθ to warm up the weights, and then switch to the implicit equilibrium (root) solver for the rest of the
training epochs.

Semantic Segmentation on Cityscapes. Cityscapes is a large-scale urban scene understanding
dataset containing high-quality, pixel-level annotated street scene images from 50 cities [13]. The
dataset consists of 5,000 images, which are divided into 2,975 (tr❛✐♥), 500 (✈❛❧) and 1,525 (t❡st)
sets. Each pixel is classified in a 19-way fashion for evaluation.

We follow the training protocol of prior works [64, 57] to train the MDEQ models on the Cityscapes
tr❛✐♥, and perform random cropping (to 1024× 512) and random horizontal flipping on the training
inputs. The models are evaluated on the Cityscapes ✈❛❧ (single scale and no random flipping) with
the original resolution 2048 × 1024. We use the identical MDEQ model(s) as used in ImageNet
training, but now predict with the high-resolution head.

Hyperparameters. We provide the hyperparameters of the models we used in each of these tasks
in Table 4. Note that we use a single model for both ImageNet classification and Cityscapes
segmentation, so the models share the same configuration (highlighted in red in Table 4 for clarity).
For all tasks, the MDEQ features in resolution i = 1, . . . , n take the shape

(

H
2i−1 ,

W
2i−1

)

i=1,...,n
,

where H,W are the dimensions of the original input. In other words, each resolution uses half the
feature size of its next higher resolution stream. We apply weight normalization [47] to all of the
learnable weights in fθ.

Hardware. For both ImageNet and Cityscapes experiments, MDEQ-Large models were trained on
4 RTX-2080 Ti GPUs, while MDEQ-XL models were trained on 8 Quadro RTX 8000 GPUs. The
CIFAR-10 classification models were trained on 1 GPU (including the baselines).

Initialization of MDEQ Models. For CIFAR-10 and ImageNet, we initialize the parameters of fθ
randomly from N (0, 0.01) (Cityscapes MDEQs use pretrained ImageNet MDEQs). Generally, we
observe that the final performance of MDEQ is not sensitive to the choice of initialization distribution.
However, such random initialization could occasionally induce instabilities in the starting phase of
the training (see red lines in Figure 6). We solve this problem by either 1) temporarily replacing
ReLU with softplus in the first few epochs of training; or 2) warming up the weights by training a
shallow (e.g., 5-layer) weight-tied stacking of fθ, then switching to MDEQ’s equilibrium solver for
the rest of the training.
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Table 4: Settings & hyperparameters of each task. “cls.” means classification task, and “seg.” means
segmentation task. These models coorespond to the ones reported in Tables 1, 2, and 3.

CIFAR-10 (cls.) ImageNet (cls.) Cityscapes (seg.)

MDEQ-Small MDEQ MDEQ-Small MDEQ-Large MDEQ-Small MDEQ-Large

Input Image Size 32× 32 224× 224
1024× 512 (train)

2048× 1024 (test)

Number of Epochs 50 200 100 100 480 480

Batch Size 128 128 128 128 12 12

Optimizer Adam Adam SGD SGD SGD SGD

(Start) Learning Rate 0.001 0.001 0.05 0.05 0.01 0.01

Nesterov Momentum - - 0.9 0.9 - -

Weight Decay 0 0 5e-5 1e-4 2e-4 3e-4

Use Pre-trained Weights - - - - Yes, from ImageNet Yes, from ImageNet

Number of Scales 3 4 4 4

(Exact same model as in ImageNet)

# of Channels for Each Scale [8,16,32] [28,56,112,224] [32,64,128,256] [80,160,320,640]

Width Expansion (in the residual block) 5× 5× 5× 5×

Normalization (# of groups) GroupNorm(4) GroupNorm(4) GroupNorm(4) GroupNorm(4)

Weight Normalization ✦ ✦ ✦ ✦
# of Downsamplings Before Equilirbium Solver 0 0 2 2

Forward Quasi-Newton Threshold Tf 15 15 22 22 27 27

Backward Quasi-Newton Threshold Tb 18 18 25 25 30 30

Limited-Mem. Broyden’s Method Storage Size m 12 12 18 18 18 18

Variational Dropout Rate 0.2 0.25 0.0 0.0 0.03 0.05

B Equilibrium Solving and Convergence Analysis

We extend our discussion on the convergence to equilibrium in Section 3.3 here. First, we briefly
introduce the (limited-memory) Broyden’s method that we use to perform the root-solving.

B.1 (Limited-memory) Broyden’s Method

As our goal is to solve the equation gθ(z
⋆;x) = fθ(z

⋆;x)− z
⋆ = 0 for the (root) equilibrium point

z
⋆ as efficiently as possible, an ideal choice would be Newton’s method:

z
[i+1] = z

[i]
− (J−1

gθ

∣

∣

z
[i])gθ(z

[i];x); z
[0] = 0 (6)

However, in practice this involves two major difficulties. First, for a deep network with realistic
size, the Jacobians are typically prohibitively large to compute and store. For instance, for a layer
converting an input tensor of dimension 32× 32× 80 (e.g., height × width × channels) to an output
of the same shape, the resulting Jacobian will have dimension 81920× 81920, which needs 25GB
of memory to store. Second, even if we can store this Jacobian, inverting it would be an extremely
expensive (cubic complexity) operation.

We therefore use a variant of Broyden’s method [6, 5]:

z
[i+1] = z

[i]
− α ·B[i]gθ(z

[i];x); z
[0] = 0 (7)

where α is an adjustable step size and B[i] is a low-rank approximation to J
−1

gθ

∣

∣

z
[i] . Notably, we do

not need to form the Broyden matrix B[i] explicitly, as we can write it as a sum of low-rank updates:

B[i+1] = B[0] +

i
∑

k=1

u
[k]
v
[k]⊤ = B[0] + UV ⊤ (8)

where u,v comes from the Sherman-Morrison formula [50]. We initialize the Broyden matrix to

B[0] = −I . As described in Section 3.2, we further extended Broyden’s method with a limited-
memory version that stores no more than m low-rank updates u, v each. Specifically, when the
maximum storage memory m is used, we free up memory by discarding the oldest update in U and
V (other schemes are also possible).

B.2 Discussions

Runtime. The rate of convergence of MDEQ is directly related to the runtime of MDEQ. Because
an MDEQ does not have “layers”, a good indicator of computational complexity of MDEQ is the
number of root-finding iterations (e.g., each Broyden iteration evalute fθ exactly once). In practice,
we stop the Broyden iterations at some threshold limit (e.g., 22 iterations), which usually does not
yield the exact equilibrium (see Figure 6 and the discussion below). However, we find these estimates
of the equilibria are usually good enough and sufficient for very competitive training of the MDEQ
models. Similar observations have also been made in sequence-level DEQs [5].
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(a) CIFAR-10 classification
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(b) ImageNet classification
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(c) Cityscapes segmentation

Figure 6: Plots of MDEQ’s convergence to equilibrium (measured by ‖z[i+1]−z
[i]‖

‖z[i]‖
) as a function of

the number of times we evaluate fθ. As input image resolution grows (from CIFAR-10 to Cityscapes),
MDEQ takes more steps to converge with (L-)Broyden’s method. Standard deviation is calculated on
5 randomly selected batches from each dataset.

Convergence on High-resolution Inputs. As we scale MDEQ to higher-resolution inputs, the
equilibrium solving process also becomes increasingly challenging. We identify at least two major
reasons behind this phenomenon.

1. As the input resolution gets higher, so does the size of the Jacobian of fθ which we try to
approximate via Broyden’s method. Therefore, more low-rank updates are expected for the
Broyden matrix approximate the Jacobian and solve for the high-dimensional root.

2. Due to the nature of typical vision models, MDEQ employs convolutions with small receptive
fields (e.g., the two 3× 3 convolutions in fθ’s residual block) on very large inputs. To see how
this complicates the equilibrium solving, consider a case where we simply iterate fθ(·;x) on z

to reach the equilibrium point (i.e., not using Broyden’s method; assuming fθ is stable). Then
we need at least as many iterations as required for the stacked fθ to have a receptive field large
enough to cover the entire image. Otherwise, new pixels covered by the larger receptive field will
be available for each additional stack of fθ (which disrupts the equilibrium).
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Figure 7: Comparing MDEQ with single-stream
DEQ on CIFAR-10. All resolutions of MDEQ
converge simultaneously and in a much stabler way
than the single-scale DEQ model. Larger scale
index means higher resolution (e.g., “scale 1” is
the highest scale).

This phenomenon is visualized in Figure 6,
where we show equilibrium convergence of
MDEQ models on CIFAR-10 (low resolution),
ImageNet (medium resolution), and Cityscapes
(high resolution) images by measuring the

change of residual
‖z[i+1]−z

[i]‖
‖z[i]‖

with respect to

calls to fθ. As with our experimental setting in
Section 4, we initialize the Cityscapes MDEQ
with the weights pretrained on ImageNet classifi-
cation (pink line in Figure 6c). In particular, we
observe that more Broyden iterations were re-
quired to reach the fixed point as the images get
larger. For example, whereas MDEQ typically
finds the equilibria with a good level of accuracy
within 30 steps on CIFAR-10 images (cf. Fig-
ure 6a), over 100 steps are used on Cityscapes
images (cf. Figure 6c).

Moreover, in all three cases, Broyden’s method
(blue lines in Figure 6) converges to the fixed point in a more stable and efficient manner than simply
iterating fθ (yellow lines), which often converges poorly or does not converge at all.

We find that the simultaneous multiscale fusion also effectively stabilizes the equilibrium convergence

of an MDEQ. Figure 7 visualizes the convergence of all equilibrium streams (i.e.,
‖z

[i+1]
k

−z
[i]
k

‖

‖z
[i]
k

‖
for

resolution k) in an MDEQ that is applied on CIFAR-10. For comparison, we also visualize the
convergence of a single-stream DEQ [5] that maintains only the highest-resolution stream (i.e.,
32× 32). Specifically, from Figure 7 one can observe that: 1) all MDEQ resolution streams indeed
converge to their equilibria in parallel; 2) lower-resolution streams converge faster than higher-
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Figure 8: Examples of MDEQ-large segmentation results on the Cityscapes dataset.

resolution streams; and 3) high-resolution convergence is much faster in multiscale setting (pink line)
than in the single-stream setting (orange line).

We hypothesize that Broyden’s method and the multiscale fusion help with the equilibrium conver-
gence because both techniques provide a faster way to expand the receptive field of fθ (than simply

stacking it). For Broyden’s method (see Eq. (7)), the Broyden matrix B[i] is a full matrix that mixes

all locations of the feature map (which is represented by gθ(z
[i];x)); whereas typical convolutional

filters only mix the signals locally. On the other hand, multiscale up- and downsamplings broaden the
effective receptive field on the high-resolution stream by direct interpolation from lower-resolution
feature maps.

C Qualitative Segmentation Results on Cityscapes

We demonstrate in Figure 8 some examples of the segmentation results of the MDEQ-large model
(see Table 3) on Cityscapes (✈❛❧) images (of resolution 2048× 1024).
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