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Abstract

We present a novel analysis of the expected risk of weighted majority vote in
multiclass classification. The analysis takes correlation of predictions by ensemble
members into account and provides a bound that is amenable to efficient minimiza-
tion, which yields improved weighting for the majority vote. We also provide a
specialized version of our bound for binary classification, which allows to exploit
additional unlabeled data for tighter risk estimation. In experiments, we apply the
bound to improve weighting of trees in random forests and show that, in contrast
to the commonly used first order bound, minimization of the new bound typically
does not lead to degradation of the test error of the ensemble.

1 Introduction

Weighted majority vote is a fundamental technique for combining predictions of multiple classifiers.
In machine learning, it was proposed for neural networks by Hansen and Salomon| [1990]] and became
popular with the works of |Breiman| [1996] 2001]] on bagging and random forests and the work of
Freund and Schapire| [1996] on boosting. [Zhu|[2015] surveys the subsequent development of the field.
Weighted majority vote is now part of the winning strategies in many machine learning competitions
[e.g.,|Chen and Guestrin, 2016}, [Hochl 2015} [Puurula et al., 2014} [Stallkamp et al.,2012]. Its power
lies in the cancellation of errors effect [Eckhardt and Leel [1985]]: when individual classifiers perform
better than a random guess and make independent errors, the errors average out and the majority vote
tends to outperform the individual classifiers.

A central question in the design of a weighted majority vote is the assignment of weights to individual
classifiers. This question was resolved by |Berend and Kontorovich| [2016] under the assumptions
that the expected error rates of the classifiers are known and their errors are independent. However,
neither of the two assumptions is typically satisfied in practice.

When the expected error rates are estimated based on a sample, the common way of bounding the
expected error of a weighted majority vote is by twice the error of the corresponding randomized
classifier [Langford and Shawe-Taylor, |2002]. A randomized classifier, a.k.a. Gibbs classifier,
associated with a distribution (weights) p over classifiers draws a single classifier at random at each
prediction round according to p and applies it to make the prediction. The error rate of the randomized
classifier is bounded using PAC-Bayesian analysis [McAllester, [1998|, [Seeger, [2002, |[Langford and
Shawe-Taylor, [2002]]. We call this a first order bound. The factor 2 bound on the gap between the
error of the weighted majority vote and the corresponding randomized classifier follows from the
observation that an error by the weighted majority vote implies an error by at least a weighted half of
the base classifiers. The bound is derived using Markov’s inequality. While the PAC-Bayesian bounds
for the randomized classifier are remarkably tight [Germain et al., 2009} Thiemann et al., 2017]], the
factor 2 gap is only tight in the worst-case, but loose in most real-life situations, where the weighted
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majority vote typically performs better than the randomized classifier rather than twice worse. The
reason for looseness is that the approach does not take the correlation of errors into account.

In order to address the weakness of the first order bound, |Lacasse et al.| [2007] have proposed PAC-
Bayesian C-bounds, which are based on Chebyshev-Cantelli inequality (a.k.a. one-sided Chebyshev’s
inequality) and take correlations into account. The idea was further developed by |[Laviolette et al.
[2011]], Germain et al.|[2015]], and [Laviolette et al. [2017]]. However, the C-bounds have two severe
limitations: (1) They are defined in terms of classification margin and the second moment of the
margin is in the denominator of the bound. The second moment is difficult to estimate from data
and significantly weakens the tightness of the bounds [Lorenzen et al., 2019]]. (2) The C-bounds
are difficult to optimize. (Germain et al.|[2015]] were only able to minimize the bounds in a highly
restrictive case of self-complemented sets of voters and aligned priors and posteriors. In binary
classification a set of voters is self-complemented if for any hypothesis & € H the mirror hypothesis
—h, which always predicts the opposite label to the one predicted by h, is also in 7. A posterior
p is aligned on a prior 7 if p(h) + p(—h) = w(h) + w(—h) for all h € H. Obviously, not every
hypothesis space is self-complemented and such sets can only be defined in binary, but not in
multiclass classification. Furthermore, the alignment requirement only allows to shift the posterior
mass within the mirror pairs (h, —h), but not across pairs. If both i and —h are poor classifiers and
their joint prior mass is high, there is no way to remedy this in the posterior.

Lorenzen et al.|[2019] have shown that for standard random forests applied to several UCI datasets
the first order bound is typically tighter than the various forms of C-bounds proposed by |Germain
et al.| [2015]]. However, the first order approach has its own limitations. While it is possible to
minimize the bound [Thiemann et al., 2017], it ignores the correlation of errors and minimization of
the bound concentrates the weight on a few top classifiers and reduces the power of the ensemble.
Our experiments show that minimization of the first order bound typically leads to deterioration of
the test error.

We propose a novel analysis of the risk of weighted majority vote in multiclass classification, which
addresses the weaknesses of previous methods. The new analysis is based on a second order Markov’s
inequality, P(Z > ¢) < E [Z 2] / €2, which can be seen as a relaxation of the Chebyshev-Cantelli
inequality. We use the inequality to bound the expected loss of weighted majority vote by four times
the expected tandem loss of the corresponding randomized classifier: The tandem loss measures the
probability that two hypotheses drawn independently by the randomized classifier simultaneously err
on a sample. Hence, it takes correlation of errors into account. We then use PAC-Bayesian analysis
to bound the expected tandem loss in terms of its empirical counterpart and provide a procedure for
minimizing the bound and optimizing the weighting. We show that the bound is reasonably tight and
that, in contrast to the first order bound, minimization of the bound typically does not deteriorate the
performance of the majority vote on new data.

We also present a specialized version of the bound for binary classification, which takes advantage
of unlabeled data. It expresses the expected tandem loss in terms of a difference between the
expected loss and half the expected disagreement between pairs of hypotheses. In the binary case the
disagreements do not depend on the labels and can be estimated from unlabeled data, whereas the
loss of a randomized classifier is a first order quantity, which is easier to estimate than the tandem
loss. We note, however, that the specialized version only gives advantage over the general one when
the amount of unlabeled data is considerably larger than the amount of labeled data.

2 General problem setup

Multiclass classification Let S = {(X3,Y1),...,(X,,Y,)} be an independent identically dis-
tributed sample from X x ), drawn according to an unknown distribution D, where ) is finite and
X is arbitrary. A hypothesis is a function & : X — ), and H denotes a space of hypotheses. We
evaluate the quality of a hypothesis h by the 0-1 loss £/(h(X),Y) = 1(h(X) #Y), where 1(-) is
the indicator function. The expected loss of / is denoted by L(h) = E(x y)~p[¢(h(X),Y")] and the

empirical loss of h on a sample S of size n is denoted by L(h, S) = LS L U(h(X5),Y)).

i=1
Randomized classifiers A randomized classifier (a.k.a. Gibbs classifier) associated with a distri-

bution p on H, for each input X randomly draws a hypothesis h € H according to p and predicts
h(X). The expected loss of a randomized classifier is given by Ej..,[L(h)] and the empirical loss by



Ep~p[L(h, S)]. To simplify the notation we use Ep[-] as a shorthand for Ex,y)~p[] and E,[-] as a
shorthand for Ep,[-].

Ensemble classifiers and majority vote Ensemble classifiers predict by taking a weighted ag-
gregation of predictions by hypotheses from H. The p-weighted majority vote MV, predicts
MV ,(X) = argmaxyey E,[1(h(X) = y)], where ties can be resolved arbitrarily.

If majority vote makes an error, we know that at least a p-weighted half of the classifiers have made
an error and, therefore, {(MV ,(X),Y) < 1(E,[L(h(X) # Y)] > 0.5). This observation leads to
the well-known first order oracle bound for the loss of weighted majority vote.

Theorem 1 (First Order Oracle Bound).
L(MV,) < 2E,[L(h)].

Proaf. We have LMIV,) = Epl{(MV,(X) Y] < B(E,[L(h(X) £ Y)] > 0.5). By applying
Markov’s inequality to random variable Z = E,[1(h ( ) # Y)] we have:
L(MV,) <P(E,[L(h(X) # Y)] 2 0.5) < 2Ep[E,[1(h(X) # Y]] = 2E,[L(h)]. DO

PAC-Bayesian analysis can be used to bound E,[L(h)] in Theoremin terms of E,[L(h, S)], thus
turning the oracle bound into an empirical one. The disadvantage of the first order approach is that
E,[L(h)] ignores correlations of predictions, which is the main power of the majority vote.

3 New second order oracle bounds for the majority vote

The key novelty of our approach is using a second order Markov’s inequality: for a non-negative
random variable Z and ¢ > 0, we have P(Z >¢) = P(Z? >¢?) < ¢ 2E[Z%]. We de-
fine the fandem loss of two hypotheses h and h’ on a sample (X,Y") by 4(h(X),h(X),Y) =
L(R(X)#Y AR (X) #Y). (Lacasse et al|[2007] and |Germain et al.| [2015] use the term joint
error for this quantity.) The tandem loss counts an error on a sample (X, Y") only if both & and h' err
on it. The expected tandem loss is defined by

L(h, ') = Ep[L(h(X) # Y AR(X) £ Y)].
The following lemma, given as equation (7) by [Lacasse et al.|[2007] without a proof, relates the
expectation of the second moment of the standard loss to the expected tandem loss. We use p?
as a shorthand for the product distribution p x p over H x H and the shorthand E 2 [L(h, h')] =
Epmp,himp|L(Ry 1))

Lemma 2. In multiclass classification
Ep[E,[L(h(X) # Y)]’] = Ep[L(h, 1)].

A proof is provided in Appendix [A] A combination of second order Markov’s inequality with
Lemma 2] leads to the following result.

Theorem 3 (Second Order Oracle Bound). In multiclass classification
L(MV,) < 4E,2[L(h, R]. €))

Proof. By second order Markov’s inequality applied to Z = E,[1(h(X) # Y)] and Lemma
L(MV,) < PE,[1(h(X) £ Y)] > 0.5) < 4Ep[E,[1(h(X) £ Y)] = dEs[L(h, ). O

3.1 A specialized bound for binary classification

We provide an alternative form of Theorem 3] which can be used to exploit unlabeled data in binary
classification. We denote the expected disagreement between hypotheses h and b’ by D(h,h') =
Ep[1(h(X) # h'(X))] and express the tandem loss in terms of standard loss and disagreement. (The
lemma is given as equation (8) by |Lacasse et al.|[2007]] without a proof.)

Lemma 4. In binary classification

Eyp [L(h, )] = E,[L(1)] ~ S E,a[D(h, )]



A proof of the lemma is provided in Appendix [A] The lemma leads to the following result.
Theorem 5 (Second Order Oracle Bound for Binary Classification). In binary classification

L(MV,) <4E,[L(h)] — 2K 2 [D(h, R)]. 2)
Proof. The theorem follows by plugging the result of Lemmad]into Theorem O

The advantage of the alternative way of writing the bound is the possibility of using unlabeled data
for estimation of D(h, A') in binary prediction (see also (Germain et al., 2015). We note, however,
that estimation of [£ 2 [D(h, h")] has a slow convergence rate, as opposed to [,z [L(h, h’)], which has
a fast convergence rate. We discuss this point in Section[4.4]

3.2 Comparison with the first order oracle bound

From Theorems [[|and [5| we see that in binary classification the second order bound is tighter when
E,2[D(h, h')] > E,[L(h)]. Below we provide a more detailed comparison of Theorems|1]and 3] in
the worst, the best, and the independent cases. The comparison only concerns the oracle bounds,
whereas estimation of the oracle quantities, E,[L(h)] and E ;2 [L(h, i")], is discussed in Section 4.4}

The worst case  Since E 2 [L(h, h')] < E,[L(h)] the second order bound is at most twice worse

than the first order bound. The worst case happens, for example, if all hypotheses in H give identical
predictions. Then E 2 [L(h, h')] = E,[L(h)] = L(MV ,) for all p.

The best case  Imagine that H consists of M > 3 hypotheses, such that each hypothesis errs on
1/M of the sample space (according to the distribution D) and that the error regions are disjoint.
Then L(h) = 1/M for all h and L(h,h') = 0 for all h # h’ and L(h,h) = 1/M. For a uniform
distribution p on H the first order bound is 2E,[L(h)] = 2/M and the second order bound is
4E,2[L(h,h')] = 4/M? and L(MV,) = 0. In this case the second order bound is an order of
magnitude tighter than the first order.

The independent case  Assume that all hypotheses in  make independent errors and
have the same error rate, L(h) = L(h') for all h and h’. Then for h # h' we
have L(h,1) — Ep[L(h(X)£Y AW(X)£Y)] = Ep[l(h(X) £ Y)W (X)2Y)] =
Ep[L(h(X) # Y)|Ep[L(R'(X) #Y)] = L(h)? and L(h,h) = L(h). For a uniform distribu-
tion p the second order bound is 4E 2 [L(h, k’)] = 4(L(h)? + 57 L(h)(1 — L(h))) and the first order
bound is 2E,[L(h)] = 2L(h). Assuming that M is large, so that we can ignore the second term in
the second order bound, we obtain that it is tighter for L(h) < 1/2 and looser otherwise. The former
is the interesting regime, especially in binary classification.

In Appendix [B] we give additional intuition about Theorems [I] and [3] by providing an alternative
derivation.

3.3 Comparison with the oracle C-bound

The oracle C-bound is an alternative second order bound based on Chebyshev-Cantelli inequality
(Theorem [C.13]in the appendix). It was first derived for binary classification by [Lacasse et al. [2007}
Theorem 2] and several alternative forms were proposed by |Germain et al.| [2015, Theorem 11].
Laviolette et al.|[2017, Corollary 1] extended the result to multiclass classification. To facilitate the
comparison with our results we write the bound in terms of the tandem loss. In Appendix |D|we
provide a direct derivation of Theorem [6] from Chebyshev-Cantelli inequality and in Appendix [E| we
show that it is equivalent to prior forms of the oracle C-bound.

Theorem 6 (C-tandem Oracle Bound). IfE,[L(h)] < 1/2, then

2 [L(h, 1')] — Eo[L(R)]?
Ep2[L(h, )] = Ey[L(h)] + 3

L(MV,) <

The theorem is essentially identical to the first form of oracle C-bound by |[Lacasse et al.| [2007,
Theorem 2] and, as we show, it holds for multiclass classification. In Appendix [C| we show that the
second order Markov’s inequality behind Theorem [3]is a relaxation of Chebyshev-Cantelli inequality.
Therefore, the oracle C-bound is always at least as tight as the second order oracle bound in Theorem|3}



In particular, Germain et al.| show that if the classifiers make independent errors and their error rates
are identical and below 1/2, the oracle C-bound converges to zero with the growth of the number of
classifiers, whereas, as we have shown above, the bound in Theorem [3|only converges to 4L(h)?.
However, the oracle C-bound has [E 2 [L(h, h’)] and E,[L(h)] in the denominator, which comes as a
significant disadvantage in its estimation from data and minimization [Lorenzen et al.,[2019], as we
also show in our empirical evaluation.

4 Second order PAC-Bayesian bounds for the weighted majority vote

We apply PAC-Bayesian analysis to transform oracle bounds from the previous section into empirical
bounds. The results are based on the following two theorems, where we use KL(p||7) to denote
the Kullback-Leibler divergence between distributions p and 7 and kl(p||q) to denote the Kullback-
Leibler divergence between two Bernoulli distributions with biases p and q.

Theorem 7 (PAC-Bayes-kl Inequality, Seeger, 2002). For any probability distribution m on H that is
independent of S and any 6 € (0, 1), with probability at least 1 — § over a random draw of a sample
S, for all distributions p on H simultaneously:

(B, [L(h. S)] [, (L)) < LD+ DEVE0), 3)

n

The next theorem provides a relaxation of the PAC-Bayes-kl inequality, which is more convenient for
optimization. The upper bound is due to Thiemann et al.|[2017] and the lower bound follows by an
almost identical derivation, see Appendix [F| Both results are based on the refined Pinsker’s lower
bound for the kl-divergence. Since both the upper and the lower bound are deterministic relaxations of
PAC-Bayes-kl, they hold simultaneously with no need to take a union bound over the two statements.

Theorem 8 (PAC-Bayes-\ Inequality, [Thiemann et al., 2017). For any probability distribution w on
‘H that is independent of S and any ¢ € (0, 1), with probability at least 1 — § over a random draw of
a sample S, for all distributions p on H and all \ € (0,2) and ~y > 0 simultaneously:

E,[L(h,S)] | KL(p|lm) +In(2/m/9)
3 N1-2n

N o KL(p|r) + In(2/7/9)
E, [L(h)] > (1 - 5) E,[L(h, S)] — o . )

E, [L(h)] < “)

—_

4.1 A general bound for multiclass classification

We define the empirical tandem loss
. 1 <
L(h, 1, S) = =Y L(h(X;) # Y; AW (X;) £ Y5)
n
i=1
and provide a bound on the expected loss of p-weighted majority vote in terms of the empirical
tandem losses.

Theorem 9. For any probability distribution w on H that is independent of S and any 6 € (0, 1),
with probability at least 1 — § over a random draw of S, for all distributions p on H and all X € (0,2)
simultaneously:

E,2[L(h,1',S)]  2KL(p|7) + In(2y/n/d)
LMV,) < 4 ( 1—)/2 * A1 —=X/2)n ) '

Proof. The theorem follows by using the bound in equation (@) to bound E ;> [L(h, h")] in Theorem 3]
We note that KL(p?||72) = 2 KL(p||7) [Germain et al., 2015, Page 814]. O

It is also possible to use PAC-Bayes-kl to bound I ,2[L(h, i')] in Theorem 3| which actually gives
a tighter bound, but the bound in Theorem @] is more convenient for minimization. [Tolstikhin and



Seldin| [2013]] have shown that for a fixed p the expression in Theorem@] is convex in A and has a
closed-form minimizer. In Appendix (G| we show that for fixed A and S the bound is convex in p.
Although in our applications S is not fixed and the bound is not necessarily convex in p, a local
minimum can still be efficiently achieved by gradient descent. A bound minimization procedure is
provided in Appendix [H]

4.2 A specialized bound for binary classification

We define the empirical disagreement

m

Bl I, 8') = " 1(h(X) # ' (X,),

i=1

where S’ = {X1,..., X, }. The set S’ may have an overlap with the inputs X of the labeled set
S, however, S’ may include additional unlabeled data. The following theorem bounds the loss of
weighted majority vote in terms of empirical disagreements. Due to possibility of using unlabeled
data for estimation of disagreements in the binary case, the theorem has the potential of yielding a
tighter bound when a considerable amount of unlabeled data is available.

Theorem 10. In binary classification, for any probability distribution ™ on H that is independent of
S and S" and any 6 € (0, 1), with probability at least 1 — 6 over a random draw of S and S’, for all
distributions p on H and all A € (0,2) and v > 0 simultaneously:

B L0, 5)]  KL{plm) + In(4y/7/6)
L(MVP)<4< =32 T A0—A2m )

_ 2KL(p|m) +1n(4\/ﬁ/6>> .

ym

—92 ((1 — 7/2)EP2 [Iﬁ)(h, R, Sl)]

Proof. The theorem follows by using the upper bound in equation () to bound E,[L (k)] and the
lower bound in equation (3) to bound I 2 [D(h, h')] in Theorem [5} We replace 6 by §/2 in the upper
and lower bound and take a union bound over them. O

Using PAC-Bayes-kl to bound E,[L(h)] and E ,2[D(h, h')] in Theorem [5|gives a tighter bound, but
the bound in Theorem [I0]is more convenient for minimisation. The minimization procedure is
provided in Appendix [H|

4.3 Ensemble construction

Thiemann et al.|[2017]] have proposed an elegant way of constructing finite data-dependent hypothesis
spaces that work well with PAC-Bayesian bounds. The idea is to generate multiple splits of a data
set S into pairs of subsets S = T} U Sy, such that T, N S, = @. A hypothesis h is then trained
on T}, and I:(h, Sh) provides an unbiased estimate of its loss. The splits cannot depend on the data.
Two examples of such splits are splits generated by cross-validation [Thiemann et al.| 2017] and
splits generated by bagging in random forests, where out-of-bag (OOB) samples provide unbiased
estimates of expected losses of individual trees [[Lorenzen et al.l 2019]. It is possible to train multiple
hypotheses with different parameters on each split, as it happens in cross-validation. The resulting set
of hypotheses produces an ensemble, and PAC-Bayesian bounds provide generalization bounds for a
weighted majority vote of the ensemble and allow optimization of the weighting. There are two minor
modifications required: the weighted empirical losses |E,, [L(h, S)] in the bounds are replaced by
weighted validation losses [E,, [ﬁ(h, Sh)], and the sample size n is replaced by the minimal validation
set size nyi, = miny, |Sy|. It is possible to use any data-independent prior, with uniform prior
m(h) = 1/|H| being a natural choice in many cases [Thiemann et al.l[2017].

For pairs of hypotheses (h, h’) we use the overlaps of their validation sets Sj, N Sy to calculate an

unbiased estimate of their tandem loss, L (h, k', S, N Sy/), which replaces L(k, b, S) in the bounds.
The sample size n is then replaced by Ny = ming, p/(Sp N Spr).



4.4 Comparison of the empirical bounds

We provide a high-level comparison of the empirical first order bound (FO), the new empirical second
order bound based on the tandem loss (TND, Theorem E]), and the new empirical second order bound
based on disagreements (DIS, Theorem[I0). The two key quantities in the comparison are the sample
size n in the denominator of the bounds and fast and slow convergence rates for the standard (first
order) loss, the tandem loss, and the disagreements. [Tolstikhin and Seldin| [2013]] have shown that if
we optimize \ for a given p, the PAC-Bayes-A bound in equation (4] can be written as

2E,[L(h, S)] (KL(p||m) + In(2v/n/9)) | 2(KL(pl|m) +In(2v/n/0))

E,[L(h)] < E,[L(h, S>]+\/

This form of the bound, introduced by McAllester| [2003]], is convenient for explanation of fast

and slow rates. If E,[L(h,S)] is large, then the middle term on the right hand side dominates
the complexity and the bound decreases at the rate of 1//n, which is known as a slow rate. If

E,[L(h, S)] is small, then the last term dominates and the bound decreases at the rate of 1/n, which
is known as a fast rate.

FO vs. TND The advantage of the FO bound is that the validation sets S}, available for estimation

of the first order losses L(h, Sy,) are larger than the validation sets .Sy, N S}, available for estimation of
the tandem losses. Therefore, the denominator ny;, = miny, |:Sy| in the FO bound is larger than the
denominator nyi, = miny, p/ |Sy N Sp/| in the TND bound. The TND disadvantage can be reduced
by using data splits with large validation sets S}, and small training sets 7}, as long as small training
sets do not overly impact the quality of base classifiers h. Another advantage of the FO bound is
that its complexity term has KL(p||7), whereas the TND bound has 2 KL(p||7). The advantage of
the TND bound is that E 2 [L(h, h')] < E,[L(h)] and, therefore, the convergence rate of the tandem
loss is typically faster than the convergence rate of the first order loss. The interplay of the estimation
advantages and disadvantages, combined with the advantages and disadvantages of the underlying
oracle bounds discussed in Section [3.2] depends on the data and the hypothesis space.

TND vs. DIS  The advantage of the DIS bound relative to the TND bound is that in presence of a
large amount of unlabeled data the disagreements D(h, h') can be tightly estimated (the denominator
m is large) and the estimation complexity is governed by the first order term, E,[L(h)], which is
"easy" to estimate, as discussed above. However, the DIS bound has two disadvantages. A minor
one is its reliance on estimation of two quantities, E,[L(h)] and E ,2[D(h, h')], which requires a
union bound, e.g., replacement of § by §/2. A more substantial one is that the disagreement term is
desired to be large, and thus has a slow convergence rate. Since slow convergence rate relates to fast
convergence rate as 1/y/n to 1/n, as a rule of thumb the DIS bound is expected to outperform TND
only when the amount of unlabeled data is at least quadratic in the amount of labeled data, m > n?.

S Empirical evaluation

We studied the empirical performance of the bounds using standard random forests [Breiman, [2001]]
on a subset of data sets from the UCI and LibSVM repositories [Dua and Graff, [2019} |(Chang and
Lin, 2011]]. An overview of the data sets is given in Table|l.1|in the appendix. The number of points
varied from 3000 to 70000 with dimensions d < 1000. For each data set we set aside 20% of the
data for a test set S¢est and used the remaining data, which we call .S, for ensemble construction
and computation of the bounds. Forests with 100 trees were trained until leaves were pure, using
the Gini criterion for splitting and considering v/d features in each split. We made 50 repetitions of
each experiment and report the mean and standard deviation. In all our experiments 7w was uniform
and 6 = 0.05. We present two experiments: (1) a comparison of tightness of the bounds applied
to uniform weighting, and (2) a comparison of weighting optimization the bounds. Additional
experiments, where we explored the effect of using splits with increased validation and decreased
training subsets, as suggested in Section[4.4] and where we compared the TND and DIS bounds in
presence of unlabeled data, are described in Appendix

The python source code for replicating the experiments is available at Githutﬂ

https://github.com/StephanLorenzen/MajorityVoteBounds


https://github.com/StephanLorenzen/MajorityVoteBounds
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Figure 1: Test risk (black) and the bounds for a uniformly weighted random forest on a subset of
binary (left) and multiclass (right) datasets. Plots for the remaining datasets are provided in Figures[[.4]
and[[.5]in the appendix.
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Figure 2: (a) The median, 25%, and 75% quantiles of the ratio ﬁ(MVP* , Stcst)/f/(MVu, Stest) Of
the test loss of majority vote with optimized weighting p* generated by FO and TND. The plot is on
a logarithmic scale. Values above 1 represent degradation in performance on new data and values
below 1 represent an improvement. (b) The optimized weights p* generated by FO and TND.

Uniform weighting In Figure [T we compare tightness of FO, C1 and C2 (the two forms of C-
bound by |Germain et al.l 2015 see Appendix E] for the oracle forms), the C-tandem bound (CTD,
Theorem [6)), and TND applied to uniformly weighted random forests on a subset of data sets. The
right three plots are multiclass datasets, where C1 and C2 are inapplicable. The outcomes for the
remaining datasets are reported in Figures[[.4|and [L.5]in the appendix. Since no optimization was
involved, we used the PAC-Bayes-kl to bound E,[L(h)], E2[L(h, h')], and E 2 [D(h, h')] in the first
and second order bounds, which is tighter than using PAC-Bayes-\. The TND bound was the tightest
for 5 out of 16 data sets, and provided better guarantees than the C-bounds for 4 out of 7 binary data
sets. In most cases, the FO-bound was the tightest.

Optimization of the weighting We compared the loss on the test set S;est and tightness after using
the bounds for optimizing the weighting p. As already discussed, the C-bounds are not suitable for
optimization (see also Lorenzen et al., 2019) and, therefore, excluded from the comparison. We used
the PAC-Bayes-\ form of the bounds for E,[L(h)], E 2 [L(h, h')], and E 2 [D(h, k)] for optimization
of p and then used the PAC-Bayes-kl form of the bounds for computing the final bound with the
optimized p. Optimization details are provided in Appendix

Figure [2a] compares the ratio of the loss of majority vote with optimized weighting to the loss of
majority vote with uniform weighting on St for p* found by minimization of FO and TND. The
numerical values are given in Table [[.6]in the appendix. While both bounds tighten with optimization,
we observed that optimization of FO considerably weakens the performance on S for all datasets,
whereas optimization of TND did not have this effect and in some cases even improved the outcome.
Figure [2b| shows optimized distributions for two sample data sets. It is clearly seen that FO placed



all the weight on a few top trees, while TND hedged the bets on multiple trees. The two figures
demonstrate that the new bound correctly handled interactions between voters, as opposed to FO.

6 Discussion

We have presented a new analysis of the weighted majority vote, which provides a reasonably tight
generalization guarantee and can be used to guide optimization of the weights. The analysis has been
applied to random forests, where the bound can be computed using out-of-bag samples with no need
for a dedicated hold-out validation set, thus making highly efficient use of the data. We have shown
that in contrary to the commonly used first order bound, minimization of the new bound does not
lead to deterioration of the test error, confirming that the analysis captures the cancellation of errors,
which is the core of the majority vote.
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Broader impact

Ensemble classifiers, in particular random forests, are among the most important tools in machine
learning [Fernandez-Delgado et al.l 2014, [Zhul 2015]], which are very frequently applied in practice
[e.g., |Chen and Guestrinl 2016, [Hochl 2015| |Puurula et al.| 2014} [Stallkamp et al.| 2012]. Our
study provides generalization guarantees for random forests and a method for tuning the weights
of individual trees within a forest, which can lead to even higher accuracies. The result is of high
practical relevance.

Given that machine learning models are increasingly used to make decisions that have a strong impact
on society, industry, and individuals, it is important that we have a good theoretical understanding
of the employed methods and are able to provide rigorous guarantees for their performance. And
here lies the strongest contribution of the line of research followed in our study, in which we derive
rigorous bounds on the generalization error of random forests and other ensemble methods for
multiclass classification.
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